MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naecoms Structured version   Visualization version   GIF version

Theorem naecoms 2428
Description: A commutation rule for distinct variable specifiers. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.)
Hypothesis
Ref Expression
naecoms.1 (¬ ∀𝑥 𝑥 = 𝑦𝜑)
Assertion
Ref Expression
naecoms (¬ ∀𝑦 𝑦 = 𝑥𝜑)

Proof of Theorem naecoms
StepHypRef Expression
1 aecom 2426 . 2 (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑦 𝑦 = 𝑥)
2 naecoms.1 . 2 (¬ ∀𝑥 𝑥 = 𝑦𝜑)
31, 2sylnbir 331 1 (¬ ∀𝑦 𝑦 = 𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2143  ax-12 2179  ax-13 2371
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-nf 1785
This theorem is referenced by:  sb9  2518  eujustALT  2566  nfcvf2  2920  axpowndlem2  10481  axnulg  35094  wl-sbcom2d  37574  wl-mo2df  37583  wl-eudf  37585
  Copyright terms: Public domain W3C validator