![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-nfae1 | Structured version Visualization version GIF version |
Description: Unlike nfae 2441, this specialized theorem avoids ax-11 2158. (Contributed by Wolf Lammen, 26-Jun-2019.) |
Ref | Expression |
---|---|
wl-nfae1 | ⊢ Ⅎ𝑥∀𝑦 𝑦 = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aecom 2435 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦) | |
2 | nfa1 2152 | . 2 ⊢ Ⅎ𝑥∀𝑥 𝑥 = 𝑦 | |
3 | 1, 2 | nfxfr 1851 | 1 ⊢ Ⅎ𝑥∀𝑦 𝑦 = 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1535 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2178 ax-13 2380 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 |
This theorem is referenced by: wl-nfnae1 37482 |
Copyright terms: Public domain | W3C validator |