| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-nfae1 | Structured version Visualization version GIF version | ||
| Description: Unlike nfae 2433, this specialized theorem avoids ax-11 2160. (Contributed by Wolf Lammen, 26-Jun-2019.) |
| Ref | Expression |
|---|---|
| wl-nfae1 | ⊢ Ⅎ𝑥∀𝑦 𝑦 = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aecom 2427 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦) | |
| 2 | nfa1 2154 | . 2 ⊢ Ⅎ𝑥∀𝑥 𝑥 = 𝑦 | |
| 3 | 1, 2 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥∀𝑦 𝑦 = 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1539 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: wl-nfnae1 37572 |
| Copyright terms: Public domain | W3C validator |