| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aecoms | Structured version Visualization version GIF version | ||
| Description: A commutation rule for identical variable specifiers. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 10-May-1993.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| aecoms.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) |
| Ref | Expression |
|---|---|
| aecoms | ⊢ (∀𝑦 𝑦 = 𝑥 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aecom 2431 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦) | |
| 2 | aecoms.1 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (∀𝑦 𝑦 = 𝑥 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 ax-13 2376 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: axc11 2434 nd4 10604 axrepnd 10608 axpownd 10615 axregnd 10618 axinfnd 10620 axacndlem5 10625 axacnd 10626 wl-ax11-lem1 37603 wl-ax11-lem3 37605 wl-ax11-lem9 37611 wl-ax11-lem10 37612 e2ebind 44588 |
| Copyright terms: Public domain | W3C validator |