MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aecoms Structured version   Visualization version   GIF version

Theorem aecoms 2428
Description: A commutation rule for identical variable specifiers. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 10-May-1993.) (New usage is discouraged.)
Hypothesis
Ref Expression
aecoms.1 (∀𝑥 𝑥 = 𝑦𝜑)
Assertion
Ref Expression
aecoms (∀𝑦 𝑦 = 𝑥𝜑)

Proof of Theorem aecoms
StepHypRef Expression
1 aecom 2427 . 2 (∀𝑦 𝑦 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦)
2 aecoms.1 . 2 (∀𝑥 𝑥 = 𝑦𝜑)
31, 2sylbi 216 1 (∀𝑦 𝑦 = 𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788
This theorem is referenced by:  axc11  2430  nd4  10277  axrepnd  10281  axpownd  10288  axregnd  10291  axinfnd  10293  axacndlem5  10298  axacnd  10299  wl-ax11-lem1  35663  wl-ax11-lem3  35665  wl-ax11-lem9  35671  wl-ax11-lem10  35672  e2ebind  42072
  Copyright terms: Public domain W3C validator