![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > aecoms | Structured version Visualization version GIF version |
Description: A commutation rule for identical variable specifiers. Usage of this theorem is discouraged because it depends on ax-13 2363. (Contributed by NM, 10-May-1993.) (New usage is discouraged.) |
Ref | Expression |
---|---|
aecoms.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) |
Ref | Expression |
---|---|
aecoms | ⊢ (∀𝑦 𝑦 = 𝑥 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aecom 2418 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦) | |
2 | aecoms.1 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (∀𝑦 𝑦 = 𝑥 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-10 2129 ax-12 2163 ax-13 2363 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-nf 1778 |
This theorem is referenced by: axc11 2421 nd4 10582 axrepnd 10586 axpownd 10593 axregnd 10596 axinfnd 10598 axacndlem5 10603 axacnd 10604 wl-ax11-lem1 36951 wl-ax11-lem3 36953 wl-ax11-lem9 36959 wl-ax11-lem10 36960 e2ebind 43874 |
Copyright terms: Public domain | W3C validator |