Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > aecoms | Structured version Visualization version GIF version |
Description: A commutation rule for identical variable specifiers. Usage of this theorem is discouraged because it depends on ax-13 2373. (Contributed by NM, 10-May-1993.) (New usage is discouraged.) |
Ref | Expression |
---|---|
aecoms.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) |
Ref | Expression |
---|---|
aecoms | ⊢ (∀𝑦 𝑦 = 𝑥 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aecom 2428 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦) | |
2 | aecoms.1 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (∀𝑦 𝑦 = 𝑥 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-10 2140 ax-12 2174 ax-13 2373 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-nf 1790 |
This theorem is referenced by: axc11 2431 nd4 10330 axrepnd 10334 axpownd 10341 axregnd 10344 axinfnd 10346 axacndlem5 10351 axacnd 10352 wl-ax11-lem1 35715 wl-ax11-lem3 35717 wl-ax11-lem9 35723 wl-ax11-lem10 35724 e2ebind 42136 |
Copyright terms: Public domain | W3C validator |