MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aecoms Structured version   Visualization version   GIF version

Theorem aecoms 2436
Description: A commutation rule for identical variable specifiers. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 10-May-1993.) (New usage is discouraged.)
Hypothesis
Ref Expression
aecoms.1 (∀𝑥 𝑥 = 𝑦𝜑)
Assertion
Ref Expression
aecoms (∀𝑦 𝑦 = 𝑥𝜑)

Proof of Theorem aecoms
StepHypRef Expression
1 aecom 2435 . 2 (∀𝑦 𝑦 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦)
2 aecoms.1 . 2 (∀𝑥 𝑥 = 𝑦𝜑)
31, 2sylbi 217 1 (∀𝑦 𝑦 = 𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2178  ax-13 2380
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782
This theorem is referenced by:  axc11  2438  nd4  10659  axrepnd  10663  axpownd  10670  axregnd  10673  axinfnd  10675  axacndlem5  10680  axacnd  10681  wl-ax11-lem1  37539  wl-ax11-lem3  37541  wl-ax11-lem9  37547  wl-ax11-lem10  37548  e2ebind  44534
  Copyright terms: Public domain W3C validator