MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff13 Structured version   Visualization version   GIF version

Theorem dff13 7195
Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 29-Oct-1996.)
Assertion
Ref Expression
dff13 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem dff13
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dff12 6723 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑧∃*𝑥 𝑥𝐹𝑧))
2 ffn 6656 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
3 vex 3442 . . . . . . . . . . . . . . 15 𝑥 ∈ V
4 vex 3442 . . . . . . . . . . . . . . 15 𝑧 ∈ V
53, 4breldm 5855 . . . . . . . . . . . . . 14 (𝑥𝐹𝑧𝑥 ∈ dom 𝐹)
6 fndm 6589 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76eleq2d 2814 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐴 → (𝑥 ∈ dom 𝐹𝑥𝐴))
85, 7imbitrid 244 . . . . . . . . . . . . 13 (𝐹 Fn 𝐴 → (𝑥𝐹𝑧𝑥𝐴))
9 vex 3442 . . . . . . . . . . . . . . 15 𝑦 ∈ V
109, 4breldm 5855 . . . . . . . . . . . . . 14 (𝑦𝐹𝑧𝑦 ∈ dom 𝐹)
116eleq2d 2814 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐴 → (𝑦 ∈ dom 𝐹𝑦𝐴))
1210, 11imbitrid 244 . . . . . . . . . . . . 13 (𝐹 Fn 𝐴 → (𝑦𝐹𝑧𝑦𝐴))
138, 12anim12d 609 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → ((𝑥𝐹𝑧𝑦𝐹𝑧) → (𝑥𝐴𝑦𝐴)))
1413pm4.71rd 562 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → ((𝑥𝐹𝑧𝑦𝐹𝑧) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝐹𝑧𝑦𝐹𝑧))))
15 eqcom 2736 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑧)
16 fnbrfvb 6877 . . . . . . . . . . . . . . 15 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑧𝑥𝐹𝑧))
1715, 16bitrid 283 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑧 = (𝐹𝑥) ↔ 𝑥𝐹𝑧))
18 eqcom 2736 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑦) ↔ (𝐹𝑦) = 𝑧)
19 fnbrfvb 6877 . . . . . . . . . . . . . . 15 ((𝐹 Fn 𝐴𝑦𝐴) → ((𝐹𝑦) = 𝑧𝑦𝐹𝑧))
2018, 19bitrid 283 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐴𝑦𝐴) → (𝑧 = (𝐹𝑦) ↔ 𝑦𝐹𝑧))
2117, 20bi2anan9 638 . . . . . . . . . . . . 13 (((𝐹 Fn 𝐴𝑥𝐴) ∧ (𝐹 Fn 𝐴𝑦𝐴)) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) ↔ (𝑥𝐹𝑧𝑦𝐹𝑧)))
2221anandis 678 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) ↔ (𝑥𝐹𝑧𝑦𝐹𝑧)))
2322pm5.32da 579 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → (((𝑥𝐴𝑦𝐴) ∧ (𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦))) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝐹𝑧𝑦𝐹𝑧))))
2414, 23bitr4d 282 . . . . . . . . . 10 (𝐹 Fn 𝐴 → ((𝑥𝐹𝑧𝑦𝐹𝑧) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)))))
2524imbi1d 341 . . . . . . . . 9 (𝐹 Fn 𝐴 → (((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ (((𝑥𝐴𝑦𝐴) ∧ (𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦))) → 𝑥 = 𝑦)))
26 impexp 450 . . . . . . . . 9 ((((𝑥𝐴𝑦𝐴) ∧ (𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦))) → 𝑥 = 𝑦) ↔ ((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)))
2725, 26bitrdi 287 . . . . . . . 8 (𝐹 Fn 𝐴 → (((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦))))
2827albidv 1920 . . . . . . 7 (𝐹 Fn 𝐴 → (∀𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ∀𝑧((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦))))
29 19.21v 1939 . . . . . . . 8 (∀𝑧((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)) ↔ ((𝑥𝐴𝑦𝐴) → ∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)))
30 19.23v 1942 . . . . . . . . . 10 (∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦) ↔ (∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦))
31 fvex 6839 . . . . . . . . . . . 12 (𝐹𝑥) ∈ V
3231eqvinc 3606 . . . . . . . . . . 11 ((𝐹𝑥) = (𝐹𝑦) ↔ ∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)))
3332imbi1i 349 . . . . . . . . . 10 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦))
3430, 33bitr4i 278 . . . . . . . . 9 (∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
3534imbi2i 336 . . . . . . . 8 (((𝑥𝐴𝑦𝐴) → ∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)) ↔ ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
3629, 35bitri 275 . . . . . . 7 (∀𝑧((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)) ↔ ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
3728, 36bitrdi 287 . . . . . 6 (𝐹 Fn 𝐴 → (∀𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
38372albidv 1923 . . . . 5 (𝐹 Fn 𝐴 → (∀𝑥𝑦𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
39 breq1 5098 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐹𝑧𝑦𝐹𝑧))
4039mo4 2559 . . . . . . 7 (∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥𝑦((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦))
4140albii 1819 . . . . . 6 (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑧𝑥𝑦((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦))
42 alrot3 2161 . . . . . 6 (∀𝑧𝑥𝑦((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦))
4341, 42bitri 275 . . . . 5 (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥𝑦𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦))
44 r2al 3165 . . . . 5 (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
4538, 43, 443bitr4g 314 . . . 4 (𝐹 Fn 𝐴 → (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
462, 45syl 17 . . 3 (𝐹:𝐴𝐵 → (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
4746pm5.32i 574 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑧∃*𝑥 𝑥𝐹𝑧) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
481, 47bitri 275 1 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2531  wral 3044   class class class wbr 5095  dom cdm 5623   Fn wfn 6481  wf 6482  1-1wf1 6483  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fv 6494
This theorem is referenced by:  dff13f  7196  f1veqaeq  7197  fpropnf1  7208  dff14a  7211  dff1o6  7216  fcof1  7228  nf1const  7245  soisoi  7269  f1opr  7409  f1o2ndf1  8062  fnwelem  8071  smo11  8294  tz7.48lem  8370  omsmo  8583  unxpdomlem3  9157  unfilem2  9213  fofinf1o  9241  inf3lem6  9548  r111  9690  fseqenlem1  9937  fodomacn  9969  alephf1  9998  alephiso  10011  ackbij1lem17  10148  infpssrlem5  10220  fin23lem28  10253  fin1a2lem2  10314  fin1a2lem4  10316  axcc2lem  10349  domtriomlem  10355  cnref1o  12905  injresinj  13710  om2uzf1oi  13879  cshf1  14735  wwlktovf1  14883  reeff1  16048  bitsf1  16376  crth  16708  eulerthlem2  16712  1arith  16858  vdwlem12  16923  xpsff1o  17490  setcmon  18013  fthestrcsetc  18075  embedsetcestrclem  18082  fthsetcestrc  18090  yoniso  18210  ghmf1  19144  kerf1ghm  19145  orbsta  19211  symgextf1  19319  symgfixf1  19335  odf1  19460  znf1o  21477  cygznlem3  21495  uvcf1  21718  lindff1  21746  mvrf1  21912  ply1sclf1  22192  scmatf1  22435  mdetunilem8  22523  mat2pmatf1  22633  pm2mpf1  22703  ist0-4  23633  ovolicc2lem4  25438  recosf1o  26461  efif1olem4  26471  basellem4  27011  mpodvdsmulf1o  27121  dvdsmulf1o  27123  lgsqrlem2  27275  lgseisenlem2  27304  2lgslem1b  27320  negsf1o  27984  onsiso  28193  om2noseqf1o  28219  bdayn0sf1o  28283  axlowdimlem15  28920  upgrwlkdvdelem  29700  wlkswwlksf1o  29843  wwlksnextinj  29863  clwlkclwwlkf1  29973  clwwlkf1  30012  frgrncvvdeqlem8  30269  numclwwlk1lem2f1  30320  pjmf1  31679  unopf1o  31879  2ndresdju  32611  fnpreimac  32633  s3f1  32907  ccatf1  32909  swrdf1  32917  mndlactf1  32999  mndractf1  33001  tocyccntz  33105  dff15  35070  f1resrcmplf1d  35073  f1resfz0f1d  35106  erdszelem9  35191  mrsubff1  35506  msubff1  35548  mvhf1  35551  f1omptsnlem  37329  fvineqsnf1  37403  fvineqsneu  37404  poimirlem26  37645  poimirlem27  37646  grpokerinj  37892  cdleme50f1  40542  dihf11  41266  hashscontpow  42115  hashnexinj  42121  aks6d1c5  42132  sticksstones2  42140  aks6d1c6lem3  42165  fimgmcyc  42527  dnnumch3  43040  wessf1ornlem  45183  projf1o  45195  sumnnodd  45631  dvnprodlem1  45947  fourierdlem34  46142  fourierdlem51  46158  fsetsnf1  47056  cfsetsnfsetf1  47063  fcoresf1  47073  imasetpreimafvbijlemf1  47408  fargshiftf1  47445  sprsymrelf1  47500  prproropf1o  47511  fmtnof1  47539  prmdvdsfmtnof1  47591  uspgrsprf1  48151  1arymaptf1  48647  2arymaptf1  48658  rrx2xpref1o  48723  oppff1  49153  diag1f1  49312  diag2f1  49314
  Copyright terms: Public domain W3C validator