MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff13 Structured version   Visualization version   GIF version

Theorem dff13 7067
Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 29-Oct-1996.)
Assertion
Ref Expression
dff13 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem dff13
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dff12 6614 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑧∃*𝑥 𝑥𝐹𝑧))
2 ffn 6545 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
3 vex 3412 . . . . . . . . . . . . . . 15 𝑥 ∈ V
4 vex 3412 . . . . . . . . . . . . . . 15 𝑧 ∈ V
53, 4breldm 5777 . . . . . . . . . . . . . 14 (𝑥𝐹𝑧𝑥 ∈ dom 𝐹)
6 fndm 6481 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76eleq2d 2823 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐴 → (𝑥 ∈ dom 𝐹𝑥𝐴))
85, 7syl5ib 247 . . . . . . . . . . . . 13 (𝐹 Fn 𝐴 → (𝑥𝐹𝑧𝑥𝐴))
9 vex 3412 . . . . . . . . . . . . . . 15 𝑦 ∈ V
109, 4breldm 5777 . . . . . . . . . . . . . 14 (𝑦𝐹𝑧𝑦 ∈ dom 𝐹)
116eleq2d 2823 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐴 → (𝑦 ∈ dom 𝐹𝑦𝐴))
1210, 11syl5ib 247 . . . . . . . . . . . . 13 (𝐹 Fn 𝐴 → (𝑦𝐹𝑧𝑦𝐴))
138, 12anim12d 612 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → ((𝑥𝐹𝑧𝑦𝐹𝑧) → (𝑥𝐴𝑦𝐴)))
1413pm4.71rd 566 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → ((𝑥𝐹𝑧𝑦𝐹𝑧) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝐹𝑧𝑦𝐹𝑧))))
15 eqcom 2744 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑧)
16 fnbrfvb 6765 . . . . . . . . . . . . . . 15 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑧𝑥𝐹𝑧))
1715, 16syl5bb 286 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑧 = (𝐹𝑥) ↔ 𝑥𝐹𝑧))
18 eqcom 2744 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑦) ↔ (𝐹𝑦) = 𝑧)
19 fnbrfvb 6765 . . . . . . . . . . . . . . 15 ((𝐹 Fn 𝐴𝑦𝐴) → ((𝐹𝑦) = 𝑧𝑦𝐹𝑧))
2018, 19syl5bb 286 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐴𝑦𝐴) → (𝑧 = (𝐹𝑦) ↔ 𝑦𝐹𝑧))
2117, 20bi2anan9 639 . . . . . . . . . . . . 13 (((𝐹 Fn 𝐴𝑥𝐴) ∧ (𝐹 Fn 𝐴𝑦𝐴)) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) ↔ (𝑥𝐹𝑧𝑦𝐹𝑧)))
2221anandis 678 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) ↔ (𝑥𝐹𝑧𝑦𝐹𝑧)))
2322pm5.32da 582 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → (((𝑥𝐴𝑦𝐴) ∧ (𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦))) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝐹𝑧𝑦𝐹𝑧))))
2414, 23bitr4d 285 . . . . . . . . . 10 (𝐹 Fn 𝐴 → ((𝑥𝐹𝑧𝑦𝐹𝑧) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)))))
2524imbi1d 345 . . . . . . . . 9 (𝐹 Fn 𝐴 → (((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ (((𝑥𝐴𝑦𝐴) ∧ (𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦))) → 𝑥 = 𝑦)))
26 impexp 454 . . . . . . . . 9 ((((𝑥𝐴𝑦𝐴) ∧ (𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦))) → 𝑥 = 𝑦) ↔ ((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)))
2725, 26bitrdi 290 . . . . . . . 8 (𝐹 Fn 𝐴 → (((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦))))
2827albidv 1928 . . . . . . 7 (𝐹 Fn 𝐴 → (∀𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ∀𝑧((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦))))
29 19.21v 1947 . . . . . . . 8 (∀𝑧((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)) ↔ ((𝑥𝐴𝑦𝐴) → ∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)))
30 19.23v 1950 . . . . . . . . . 10 (∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦) ↔ (∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦))
31 fvex 6730 . . . . . . . . . . . 12 (𝐹𝑥) ∈ V
3231eqvinc 3556 . . . . . . . . . . 11 ((𝐹𝑥) = (𝐹𝑦) ↔ ∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)))
3332imbi1i 353 . . . . . . . . . 10 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦))
3430, 33bitr4i 281 . . . . . . . . 9 (∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
3534imbi2i 339 . . . . . . . 8 (((𝑥𝐴𝑦𝐴) → ∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)) ↔ ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
3629, 35bitri 278 . . . . . . 7 (∀𝑧((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)) ↔ ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
3728, 36bitrdi 290 . . . . . 6 (𝐹 Fn 𝐴 → (∀𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
38372albidv 1931 . . . . 5 (𝐹 Fn 𝐴 → (∀𝑥𝑦𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
39 breq1 5056 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐹𝑧𝑦𝐹𝑧))
4039mo4 2565 . . . . . . 7 (∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥𝑦((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦))
4140albii 1827 . . . . . 6 (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑧𝑥𝑦((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦))
42 alrot3 2161 . . . . . 6 (∀𝑧𝑥𝑦((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦))
4341, 42bitri 278 . . . . 5 (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥𝑦𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦))
44 r2al 3122 . . . . 5 (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
4538, 43, 443bitr4g 317 . . . 4 (𝐹 Fn 𝐴 → (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
462, 45syl 17 . . 3 (𝐹:𝐴𝐵 → (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
4746pm5.32i 578 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑧∃*𝑥 𝑥𝐹𝑧) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
481, 47bitri 278 1 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1541   = wceq 1543  wex 1787  wcel 2110  ∃*wmo 2537  wral 3061   class class class wbr 5053  dom cdm 5551   Fn wfn 6375  wf 6376  1-1wf1 6377  cfv 6380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fv 6388
This theorem is referenced by:  dff13f  7068  f1veqaeq  7069  fpropnf1  7079  dff14a  7082  dff1o6  7086  fcof1  7097  nf1const  7114  soisoi  7137  f1opr  7267  f1o2ndf1  7891  fnwelem  7898  smo11  8101  tz7.48lem  8177  omsmo  8383  unxpdomlem3  8884  unfilem2  8936  fofinf1o  8951  inf3lem6  9248  r111  9391  fseqenlem1  9638  fodomacn  9670  alephf1  9699  alephiso  9712  ackbij1lem17  9850  infpssrlem5  9921  fin23lem28  9954  fin1a2lem2  10015  fin1a2lem4  10017  axcc2lem  10050  domtriomlem  10056  cnref1o  12581  injresinj  13363  om2uzf1oi  13526  cshf1  14375  wwlktovf1  14524  reeff1  15681  bitsf1  16005  crth  16331  eulerthlem2  16335  1arith  16480  vdwlem12  16545  xpsff1o  17072  setcmon  17593  fthestrcsetc  17657  embedsetcestrclem  17664  fthsetcestrc  17672  yoniso  17793  ghmf1  18651  orbsta  18707  symgextf1  18813  symgfixf1  18829  odf1  18953  kerf1ghm  19763  znf1o  20516  cygznlem3  20534  uvcf1  20754  lindff1  20782  mvrf1  20950  ply1sclf1  21210  scmatf1  21428  mdetunilem8  21516  mat2pmatf1  21626  pm2mpf1  21696  ist0-4  22626  ovolicc2lem4  24417  recosf1o  25424  efif1olem4  25434  basellem4  25966  dvdsmulf1o  26076  lgsqrlem2  26228  lgseisenlem2  26257  2lgslem1b  26273  axlowdimlem15  27047  upgrwlkdvdelem  27823  wlkswwlksf1o  27963  wwlksnextinj  27983  clwlkclwwlkf1  28093  clwwlkf1  28132  frgrncvvdeqlem8  28389  numclwwlk1lem2f1  28440  pjmf1  29797  unopf1o  29997  2ndresdju  30705  fnpreimac  30728  s3f1  30941  ccatf1  30943  swrdf1  30948  tocyccntz  31130  dff15  32769  f1resrcmplf1d  32772  f1resfz0f1d  32785  erdszelem9  32874  mrsubff1  33189  msubff1  33231  mvhf1  33234  f1omptsnlem  35244  fvineqsnf1  35318  fvineqsneu  35319  poimirlem26  35540  poimirlem27  35541  grpokerinj  35788  cdleme50f1  38294  dihf11  39018  sticksstones2  39825  dnnumch3  40575  wessf1ornlem  42395  projf1o  42409  sumnnodd  42846  dvnprodlem1  43162  fourierdlem34  43357  fourierdlem51  43373  fsetsnf1  44218  cfsetsnfsetf1  44225  fcoresf1  44235  imasetpreimafvbijlemf1  44529  fargshiftf1  44566  sprsymrelf1  44621  prproropf1o  44632  fmtnof1  44660  prmdvdsfmtnof1  44712  isomuspgrlem2c  44955  uspgrsprf1  44982  1arymaptf1  45661  2arymaptf1  45672  rrx2xpref1o  45737
  Copyright terms: Public domain W3C validator