Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  chnind Structured version   Visualization version   GIF version

Theorem chnind 32944
Description: Induction over a chain. See nnind 12211 for an explanation about the hypotheses. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Hypotheses
Ref Expression
chnind.1 (𝑐 = ∅ → (𝜓𝜒))
chnind.2 (𝑐 = 𝑑 → (𝜓𝜃))
chnind.3 (𝑐 = (𝑑 ++ ⟨“𝑥”⟩) → (𝜓𝜏))
chnind.4 (𝑐 = 𝐶 → (𝜓𝜂))
chnind.6 (𝜑𝐶 ∈ ( < Chain𝐴))
chnind.7 (𝜑𝜒)
chnind.8 (((((𝜑𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
chnind (𝜑𝜂)
Distinct variable groups:   < ,𝑐,𝑑,𝑥   𝐴,𝑐,𝑑,𝑥   𝐶,𝑐   𝜑,𝑐,𝑑,𝑥   𝜂,𝑐   𝜃,𝑐   𝜏,𝑐   𝜓,𝑑,𝑥
Allowed substitution hints:   𝜓(𝑐)   𝜒(𝑥,𝑐,𝑑)   𝜃(𝑥,𝑑)   𝜏(𝑥,𝑑)   𝜂(𝑥,𝑑)   𝐶(𝑥,𝑑)

Proof of Theorem chnind
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chnind.6 . . 3 (𝜑𝐶 ∈ ( < Chain𝐴))
21chnwrd 32940 . 2 (𝜑𝐶 ∈ Word 𝐴)
3 id 22 . 2 (𝜑𝜑)
4 ischn 32939 . . . 4 (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑖 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑖 − 1)) < (𝐶𝑖)))
51, 4sylib 218 . . 3 (𝜑 → (𝐶 ∈ Word 𝐴 ∧ ∀𝑖 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑖 − 1)) < (𝐶𝑖)))
65simprd 495 . 2 (𝜑 → ∀𝑖 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑖 − 1)) < (𝐶𝑖))
7 dmeq 5870 . . . . . . . 8 (𝑐 = ∅ → dom 𝑐 = dom ∅)
87difeq1d 4091 . . . . . . 7 (𝑐 = ∅ → (dom 𝑐 ∖ {0}) = (dom ∅ ∖ {0}))
9 fveq1 6860 . . . . . . . 8 (𝑐 = ∅ → (𝑐‘(𝑖 − 1)) = (∅‘(𝑖 − 1)))
10 fveq1 6860 . . . . . . . 8 (𝑐 = ∅ → (𝑐𝑖) = (∅‘𝑖))
119, 10breq12d 5123 . . . . . . 7 (𝑐 = ∅ → ((𝑐‘(𝑖 − 1)) < (𝑐𝑖) ↔ (∅‘(𝑖 − 1)) < (∅‘𝑖)))
128, 11raleqbidv 3321 . . . . . 6 (𝑐 = ∅ → (∀𝑖 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑖 − 1)) < (𝑐𝑖) ↔ ∀𝑖 ∈ (dom ∅ ∖ {0})(∅‘(𝑖 − 1)) < (∅‘𝑖)))
1312anbi2d 630 . . . . 5 (𝑐 = ∅ → ((𝜑 ∧ ∀𝑖 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑖 − 1)) < (𝑐𝑖)) ↔ (𝜑 ∧ ∀𝑖 ∈ (dom ∅ ∖ {0})(∅‘(𝑖 − 1)) < (∅‘𝑖))))
14 chnind.1 . . . . 5 (𝑐 = ∅ → (𝜓𝜒))
1513, 14imbi12d 344 . . . 4 (𝑐 = ∅ → (((𝜑 ∧ ∀𝑖 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑖 − 1)) < (𝑐𝑖)) → 𝜓) ↔ ((𝜑 ∧ ∀𝑖 ∈ (dom ∅ ∖ {0})(∅‘(𝑖 − 1)) < (∅‘𝑖)) → 𝜒)))
16 dmeq 5870 . . . . . . . 8 (𝑐 = 𝑑 → dom 𝑐 = dom 𝑑)
1716difeq1d 4091 . . . . . . 7 (𝑐 = 𝑑 → (dom 𝑐 ∖ {0}) = (dom 𝑑 ∖ {0}))
18 fveq1 6860 . . . . . . . 8 (𝑐 = 𝑑 → (𝑐‘(𝑖 − 1)) = (𝑑‘(𝑖 − 1)))
19 fveq1 6860 . . . . . . . 8 (𝑐 = 𝑑 → (𝑐𝑖) = (𝑑𝑖))
2018, 19breq12d 5123 . . . . . . 7 (𝑐 = 𝑑 → ((𝑐‘(𝑖 − 1)) < (𝑐𝑖) ↔ (𝑑‘(𝑖 − 1)) < (𝑑𝑖)))
2117, 20raleqbidv 3321 . . . . . 6 (𝑐 = 𝑑 → (∀𝑖 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑖 − 1)) < (𝑐𝑖) ↔ ∀𝑖 ∈ (dom 𝑑 ∖ {0})(𝑑‘(𝑖 − 1)) < (𝑑𝑖)))
2221anbi2d 630 . . . . 5 (𝑐 = 𝑑 → ((𝜑 ∧ ∀𝑖 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑖 − 1)) < (𝑐𝑖)) ↔ (𝜑 ∧ ∀𝑖 ∈ (dom 𝑑 ∖ {0})(𝑑‘(𝑖 − 1)) < (𝑑𝑖))))
23 chnind.2 . . . . 5 (𝑐 = 𝑑 → (𝜓𝜃))
2422, 23imbi12d 344 . . . 4 (𝑐 = 𝑑 → (((𝜑 ∧ ∀𝑖 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑖 − 1)) < (𝑐𝑖)) → 𝜓) ↔ ((𝜑 ∧ ∀𝑖 ∈ (dom 𝑑 ∖ {0})(𝑑‘(𝑖 − 1)) < (𝑑𝑖)) → 𝜃)))
25 dmeq 5870 . . . . . . . 8 (𝑐 = (𝑑 ++ ⟨“𝑥”⟩) → dom 𝑐 = dom (𝑑 ++ ⟨“𝑥”⟩))
2625difeq1d 4091 . . . . . . 7 (𝑐 = (𝑑 ++ ⟨“𝑥”⟩) → (dom 𝑐 ∖ {0}) = (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0}))
27 fveq1 6860 . . . . . . . 8 (𝑐 = (𝑑 ++ ⟨“𝑥”⟩) → (𝑐‘(𝑖 − 1)) = ((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)))
28 fveq1 6860 . . . . . . . 8 (𝑐 = (𝑑 ++ ⟨“𝑥”⟩) → (𝑐𝑖) = ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖))
2927, 28breq12d 5123 . . . . . . 7 (𝑐 = (𝑑 ++ ⟨“𝑥”⟩) → ((𝑐‘(𝑖 − 1)) < (𝑐𝑖) ↔ ((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)))
3026, 29raleqbidv 3321 . . . . . 6 (𝑐 = (𝑑 ++ ⟨“𝑥”⟩) → (∀𝑖 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑖 − 1)) < (𝑐𝑖) ↔ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)))
3130anbi2d 630 . . . . 5 (𝑐 = (𝑑 ++ ⟨“𝑥”⟩) → ((𝜑 ∧ ∀𝑖 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑖 − 1)) < (𝑐𝑖)) ↔ (𝜑 ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖))))
32 chnind.3 . . . . 5 (𝑐 = (𝑑 ++ ⟨“𝑥”⟩) → (𝜓𝜏))
3331, 32imbi12d 344 . . . 4 (𝑐 = (𝑑 ++ ⟨“𝑥”⟩) → (((𝜑 ∧ ∀𝑖 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑖 − 1)) < (𝑐𝑖)) → 𝜓) ↔ ((𝜑 ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → 𝜏)))
34 dmeq 5870 . . . . . . . 8 (𝑐 = 𝐶 → dom 𝑐 = dom 𝐶)
3534difeq1d 4091 . . . . . . 7 (𝑐 = 𝐶 → (dom 𝑐 ∖ {0}) = (dom 𝐶 ∖ {0}))
36 fveq1 6860 . . . . . . . 8 (𝑐 = 𝐶 → (𝑐‘(𝑖 − 1)) = (𝐶‘(𝑖 − 1)))
37 fveq1 6860 . . . . . . . 8 (𝑐 = 𝐶 → (𝑐𝑖) = (𝐶𝑖))
3836, 37breq12d 5123 . . . . . . 7 (𝑐 = 𝐶 → ((𝑐‘(𝑖 − 1)) < (𝑐𝑖) ↔ (𝐶‘(𝑖 − 1)) < (𝐶𝑖)))
3935, 38raleqbidv 3321 . . . . . 6 (𝑐 = 𝐶 → (∀𝑖 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑖 − 1)) < (𝑐𝑖) ↔ ∀𝑖 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑖 − 1)) < (𝐶𝑖)))
4039anbi2d 630 . . . . 5 (𝑐 = 𝐶 → ((𝜑 ∧ ∀𝑖 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑖 − 1)) < (𝑐𝑖)) ↔ (𝜑 ∧ ∀𝑖 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑖 − 1)) < (𝐶𝑖))))
41 chnind.4 . . . . 5 (𝑐 = 𝐶 → (𝜓𝜂))
4240, 41imbi12d 344 . . . 4 (𝑐 = 𝐶 → (((𝜑 ∧ ∀𝑖 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑖 − 1)) < (𝑐𝑖)) → 𝜓) ↔ ((𝜑 ∧ ∀𝑖 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑖 − 1)) < (𝐶𝑖)) → 𝜂)))
43 chnind.7 . . . . 5 (𝜑𝜒)
4443adantr 480 . . . 4 ((𝜑 ∧ ∀𝑖 ∈ (dom ∅ ∖ {0})(∅‘(𝑖 − 1)) < (∅‘𝑖)) → 𝜒)
45 simpllr 775 . . . . . . . . 9 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) ∧ 𝜃) → 𝜑)
46 simp-4l 782 . . . . . . . . . 10 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) ∧ 𝜃) → 𝑑 ∈ Word 𝐴)
47 simpll 766 . . . . . . . . . . . . . . . . . . . 20 (((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) → 𝑑 ∈ Word 𝐴)
48 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 (((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) → 𝑥𝐴)
4948s1cld 14575 . . . . . . . . . . . . . . . . . . . 20 (((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) → ⟨“𝑥”⟩ ∈ Word 𝐴)
5047, 49ccatdmss 32878 . . . . . . . . . . . . . . . . . . 19 (((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) → dom 𝑑 ⊆ dom (𝑑 ++ ⟨“𝑥”⟩))
5150ssdifd 4111 . . . . . . . . . . . . . . . . . 18 (((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) → (dom 𝑑 ∖ {0}) ⊆ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0}))
5251sselda 3949 . . . . . . . . . . . . . . . . 17 ((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) → 𝑗 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0}))
53 fvoveq1 7413 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → ((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) = ((𝑑 ++ ⟨“𝑥”⟩)‘(𝑗 − 1)))
54 fveq2 6861 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖) = ((𝑑 ++ ⟨“𝑥”⟩)‘𝑗))
5553, 54breq12d 5123 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → (((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖) ↔ ((𝑑 ++ ⟨“𝑥”⟩)‘(𝑗 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑗)))
5655adantl 481 . . . . . . . . . . . . . . . . 17 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) ∧ 𝑖 = 𝑗) → (((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖) ↔ ((𝑑 ++ ⟨“𝑥”⟩)‘(𝑗 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑗)))
5752, 56rspcdv 3583 . . . . . . . . . . . . . . . 16 ((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) → (∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖) → ((𝑑 ++ ⟨“𝑥”⟩)‘(𝑗 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑗)))
5857imp 406 . . . . . . . . . . . . . . 15 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → ((𝑑 ++ ⟨“𝑥”⟩)‘(𝑗 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑗))
59 simp-4l 782 . . . . . . . . . . . . . . . 16 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → 𝑑 ∈ Word 𝐴)
6049ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → ⟨“𝑥”⟩ ∈ Word 𝐴)
61 lencl 14505 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ Word 𝐴 → (♯‘𝑑) ∈ ℕ0)
6259, 61syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → (♯‘𝑑) ∈ ℕ0)
6362nn0zd 12562 . . . . . . . . . . . . . . . . . 18 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → (♯‘𝑑) ∈ ℤ)
64 fzossrbm1 13656 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑑) ∈ ℤ → (0..^((♯‘𝑑) − 1)) ⊆ (0..^(♯‘𝑑)))
6563, 64syl 17 . . . . . . . . . . . . . . . . 17 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → (0..^((♯‘𝑑) − 1)) ⊆ (0..^(♯‘𝑑)))
66 fzossz 13647 . . . . . . . . . . . . . . . . . . 19 (0..^(♯‘𝑑)) ⊆ ℤ
67 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → 𝑗 ∈ (dom 𝑑 ∖ {0}))
6867eldifad 3929 . . . . . . . . . . . . . . . . . . . 20 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → 𝑗 ∈ dom 𝑑)
69 eqidd 2731 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → (♯‘𝑑) = (♯‘𝑑))
7069, 59wrdfd 14491 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → 𝑑:(0..^(♯‘𝑑))⟶𝐴)
7170fdmd 6701 . . . . . . . . . . . . . . . . . . . 20 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → dom 𝑑 = (0..^(♯‘𝑑)))
7268, 71eleqtrd 2831 . . . . . . . . . . . . . . . . . . 19 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → 𝑗 ∈ (0..^(♯‘𝑑)))
7366, 72sselid 3947 . . . . . . . . . . . . . . . . . 18 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → 𝑗 ∈ ℤ)
74 eldifsni 4757 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (dom 𝑑 ∖ {0}) → 𝑗 ≠ 0)
7567, 74syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → 𝑗 ≠ 0)
76 fzo1fzo0n0 13683 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1..^(♯‘𝑑)) ↔ (𝑗 ∈ (0..^(♯‘𝑑)) ∧ 𝑗 ≠ 0))
7772, 75, 76sylanbrc 583 . . . . . . . . . . . . . . . . . 18 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → 𝑗 ∈ (1..^(♯‘𝑑)))
78 elfzom1b 13734 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℤ ∧ (♯‘𝑑) ∈ ℤ) → (𝑗 ∈ (1..^(♯‘𝑑)) ↔ (𝑗 − 1) ∈ (0..^((♯‘𝑑) − 1))))
7978biimpa 476 . . . . . . . . . . . . . . . . . 18 (((𝑗 ∈ ℤ ∧ (♯‘𝑑) ∈ ℤ) ∧ 𝑗 ∈ (1..^(♯‘𝑑))) → (𝑗 − 1) ∈ (0..^((♯‘𝑑) − 1)))
8073, 63, 77, 79syl21anc 837 . . . . . . . . . . . . . . . . 17 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → (𝑗 − 1) ∈ (0..^((♯‘𝑑) − 1)))
8165, 80sseldd 3950 . . . . . . . . . . . . . . . 16 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → (𝑗 − 1) ∈ (0..^(♯‘𝑑)))
82 ccatval1 14549 . . . . . . . . . . . . . . . 16 ((𝑑 ∈ Word 𝐴 ∧ ⟨“𝑥”⟩ ∈ Word 𝐴 ∧ (𝑗 − 1) ∈ (0..^(♯‘𝑑))) → ((𝑑 ++ ⟨“𝑥”⟩)‘(𝑗 − 1)) = (𝑑‘(𝑗 − 1)))
8359, 60, 81, 82syl3anc 1373 . . . . . . . . . . . . . . 15 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → ((𝑑 ++ ⟨“𝑥”⟩)‘(𝑗 − 1)) = (𝑑‘(𝑗 − 1)))
84 ccatval1 14549 . . . . . . . . . . . . . . . 16 ((𝑑 ∈ Word 𝐴 ∧ ⟨“𝑥”⟩ ∈ Word 𝐴𝑗 ∈ (0..^(♯‘𝑑))) → ((𝑑 ++ ⟨“𝑥”⟩)‘𝑗) = (𝑑𝑗))
8559, 60, 72, 84syl3anc 1373 . . . . . . . . . . . . . . 15 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → ((𝑑 ++ ⟨“𝑥”⟩)‘𝑗) = (𝑑𝑗))
8658, 83, 853brtr3d 5141 . . . . . . . . . . . . . 14 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → (𝑑‘(𝑗 − 1)) < (𝑑𝑗))
8786an32s 652 . . . . . . . . . . . . 13 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) → (𝑑‘(𝑗 − 1)) < (𝑑𝑗))
8887adantllr 719 . . . . . . . . . . . 12 ((((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝜃) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) ∧ 𝑗 ∈ (dom 𝑑 ∖ {0})) → (𝑑‘(𝑗 − 1)) < (𝑑𝑗))
8988ralrimiva 3126 . . . . . . . . . . 11 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ 𝜃) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → ∀𝑗 ∈ (dom 𝑑 ∖ {0})(𝑑‘(𝑗 − 1)) < (𝑑𝑗))
9089an32s 652 . . . . . . . . . 10 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) ∧ 𝜃) → ∀𝑗 ∈ (dom 𝑑 ∖ {0})(𝑑‘(𝑗 − 1)) < (𝑑𝑗))
91 ischn 32939 . . . . . . . . . 10 (𝑑 ∈ ( < Chain𝐴) ↔ (𝑑 ∈ Word 𝐴 ∧ ∀𝑗 ∈ (dom 𝑑 ∖ {0})(𝑑‘(𝑗 − 1)) < (𝑑𝑗)))
9246, 90, 91sylanbrc 583 . . . . . . . . 9 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) ∧ 𝜃) → 𝑑 ∈ ( < Chain𝐴))
9345, 92jca 511 . . . . . . . 8 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) ∧ 𝜃) → (𝜑𝑑 ∈ ( < Chain𝐴)))
94 simp-4r 783 . . . . . . . 8 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) ∧ 𝜃) → 𝑥𝐴)
95 lsw 14536 . . . . . . . . . . . . 13 (𝑑 ∈ Word 𝐴 → (lastS‘𝑑) = (𝑑‘((♯‘𝑑) − 1)))
9695ad5antr 734 . . . . . . . . . . . 12 ((((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → (lastS‘𝑑) = (𝑑‘((♯‘𝑑) − 1)))
97 simp-4l 782 . . . . . . . . . . . . . . . . . 18 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) → 𝑑 ∈ Word 𝐴)
98 fzonn0p1 13710 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑑) ∈ ℕ0 → (♯‘𝑑) ∈ (0..^((♯‘𝑑) + 1)))
9997, 61, 983syl 18 . . . . . . . . . . . . . . . . 17 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) → (♯‘𝑑) ∈ (0..^((♯‘𝑑) + 1)))
100 ccatws1len 14592 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ Word 𝐴 → (♯‘(𝑑 ++ ⟨“𝑥”⟩)) = ((♯‘𝑑) + 1))
101100ad4antr 732 . . . . . . . . . . . . . . . . . . . 20 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) → (♯‘(𝑑 ++ ⟨“𝑥”⟩)) = ((♯‘𝑑) + 1))
102101eqcomd 2736 . . . . . . . . . . . . . . . . . . 19 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) → ((♯‘𝑑) + 1) = (♯‘(𝑑 ++ ⟨“𝑥”⟩)))
103 ccatws1cl 14588 . . . . . . . . . . . . . . . . . . . 20 ((𝑑 ∈ Word 𝐴𝑥𝐴) → (𝑑 ++ ⟨“𝑥”⟩) ∈ Word 𝐴)
104103ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) → (𝑑 ++ ⟨“𝑥”⟩) ∈ Word 𝐴)
105102, 104wrdfd 14491 . . . . . . . . . . . . . . . . . 18 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) → (𝑑 ++ ⟨“𝑥”⟩):(0..^((♯‘𝑑) + 1))⟶𝐴)
106105fdmd 6701 . . . . . . . . . . . . . . . . 17 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) → dom (𝑑 ++ ⟨“𝑥”⟩) = (0..^((♯‘𝑑) + 1)))
10799, 106eleqtrrd 2832 . . . . . . . . . . . . . . . 16 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) → (♯‘𝑑) ∈ dom (𝑑 ++ ⟨“𝑥”⟩))
108 simplr 768 . . . . . . . . . . . . . . . . . 18 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) → ¬ 𝑑 = ∅)
109108neqned 2933 . . . . . . . . . . . . . . . . 17 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) → 𝑑 ≠ ∅)
110 hasheq0 14335 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ Word 𝐴 → ((♯‘𝑑) = 0 ↔ 𝑑 = ∅))
111110necon3bid 2970 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ Word 𝐴 → ((♯‘𝑑) ≠ 0 ↔ 𝑑 ≠ ∅))
112111biimpar 477 . . . . . . . . . . . . . . . . 17 ((𝑑 ∈ Word 𝐴𝑑 ≠ ∅) → (♯‘𝑑) ≠ 0)
11397, 109, 112syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) → (♯‘𝑑) ≠ 0)
114107, 113eldifsnd 4754 . . . . . . . . . . . . . . 15 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) → (♯‘𝑑) ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0}))
115 fvoveq1 7413 . . . . . . . . . . . . . . . . 17 (𝑖 = (♯‘𝑑) → ((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) = ((𝑑 ++ ⟨“𝑥”⟩)‘((♯‘𝑑) − 1)))
116 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑖 = (♯‘𝑑) → ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖) = ((𝑑 ++ ⟨“𝑥”⟩)‘(♯‘𝑑)))
117115, 116breq12d 5123 . . . . . . . . . . . . . . . 16 (𝑖 = (♯‘𝑑) → (((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖) ↔ ((𝑑 ++ ⟨“𝑥”⟩)‘((♯‘𝑑) − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘(♯‘𝑑))))
118117adantl 481 . . . . . . . . . . . . . . 15 ((((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) ∧ 𝑖 = (♯‘𝑑)) → (((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖) ↔ ((𝑑 ++ ⟨“𝑥”⟩)‘((♯‘𝑑) − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘(♯‘𝑑))))
119114, 118rspcdv 3583 . . . . . . . . . . . . . 14 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) → (∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖) → ((𝑑 ++ ⟨“𝑥”⟩)‘((♯‘𝑑) − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘(♯‘𝑑))))
120119imp 406 . . . . . . . . . . . . 13 ((((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → ((𝑑 ++ ⟨“𝑥”⟩)‘((♯‘𝑑) − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘(♯‘𝑑)))
12147ad3antrrr 730 . . . . . . . . . . . . . 14 ((((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → 𝑑 ∈ Word 𝐴)
12249ad3antrrr 730 . . . . . . . . . . . . . 14 ((((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → ⟨“𝑥”⟩ ∈ Word 𝐴)
123121, 61syl 17 . . . . . . . . . . . . . . . 16 ((((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → (♯‘𝑑) ∈ ℕ0)
124113adantr 480 . . . . . . . . . . . . . . . 16 ((((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → (♯‘𝑑) ≠ 0)
125 elnnne0 12463 . . . . . . . . . . . . . . . 16 ((♯‘𝑑) ∈ ℕ ↔ ((♯‘𝑑) ∈ ℕ0 ∧ (♯‘𝑑) ≠ 0))
126123, 124, 125sylanbrc 583 . . . . . . . . . . . . . . 15 ((((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → (♯‘𝑑) ∈ ℕ)
127 fzo0end 13726 . . . . . . . . . . . . . . 15 ((♯‘𝑑) ∈ ℕ → ((♯‘𝑑) − 1) ∈ (0..^(♯‘𝑑)))
128126, 127syl 17 . . . . . . . . . . . . . 14 ((((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → ((♯‘𝑑) − 1) ∈ (0..^(♯‘𝑑)))
129 ccatval1 14549 . . . . . . . . . . . . . 14 ((𝑑 ∈ Word 𝐴 ∧ ⟨“𝑥”⟩ ∈ Word 𝐴 ∧ ((♯‘𝑑) − 1) ∈ (0..^(♯‘𝑑))) → ((𝑑 ++ ⟨“𝑥”⟩)‘((♯‘𝑑) − 1)) = (𝑑‘((♯‘𝑑) − 1)))
130121, 122, 128, 129syl3anc 1373 . . . . . . . . . . . . 13 ((((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → ((𝑑 ++ ⟨“𝑥”⟩)‘((♯‘𝑑) − 1)) = (𝑑‘((♯‘𝑑) − 1)))
13148ad3antrrr 730 . . . . . . . . . . . . . 14 ((((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → 𝑥𝐴)
132 eqidd 2731 . . . . . . . . . . . . . 14 ((((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → (♯‘𝑑) = (♯‘𝑑))
133 ccats1val2 14599 . . . . . . . . . . . . . 14 ((𝑑 ∈ Word 𝐴𝑥𝐴 ∧ (♯‘𝑑) = (♯‘𝑑)) → ((𝑑 ++ ⟨“𝑥”⟩)‘(♯‘𝑑)) = 𝑥)
134121, 131, 132, 133syl3anc 1373 . . . . . . . . . . . . 13 ((((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → ((𝑑 ++ ⟨“𝑥”⟩)‘(♯‘𝑑)) = 𝑥)
135120, 130, 1343brtr3d 5141 . . . . . . . . . . . 12 ((((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → (𝑑‘((♯‘𝑑) − 1)) < 𝑥)
13696, 135eqbrtrd 5132 . . . . . . . . . . 11 ((((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ¬ 𝑑 = ∅) ∧ 𝜃) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → (lastS‘𝑑) < 𝑥)
137136an42ds 32386 . . . . . . . . . 10 ((((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) ∧ 𝜃) ∧ ¬ 𝑑 = ∅) → (lastS‘𝑑) < 𝑥)
138137ex 412 . . . . . . . . 9 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) ∧ 𝜃) → (¬ 𝑑 = ∅ → (lastS‘𝑑) < 𝑥))
139138orrd 863 . . . . . . . 8 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) ∧ 𝜃) → (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥))
140 simpr 484 . . . . . . . 8 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) ∧ 𝜃) → 𝜃)
141 chnind.8 . . . . . . . 8 (((((𝜑𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ 𝜃) → 𝜏)
14293, 94, 139, 140, 141syl1111anc 840 . . . . . . 7 (((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) ∧ 𝜃) → 𝜏)
143142ex 412 . . . . . 6 ((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → (𝜃𝜏))
144143expl 457 . . . . 5 ((𝑑 ∈ Word 𝐴𝑥𝐴) → ((𝜑 ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → (𝜃𝜏)))
14587ralrimiva 3126 . . . . . . 7 ((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → ∀𝑗 ∈ (dom 𝑑 ∖ {0})(𝑑‘(𝑗 − 1)) < (𝑑𝑗))
146 fvoveq1 7413 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑑‘(𝑖 − 1)) = (𝑑‘(𝑗 − 1)))
147 fveq2 6861 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑑𝑖) = (𝑑𝑗))
148146, 147breq12d 5123 . . . . . . . 8 (𝑖 = 𝑗 → ((𝑑‘(𝑖 − 1)) < (𝑑𝑖) ↔ (𝑑‘(𝑗 − 1)) < (𝑑𝑗)))
149148cbvralvw 3216 . . . . . . 7 (∀𝑖 ∈ (dom 𝑑 ∖ {0})(𝑑‘(𝑖 − 1)) < (𝑑𝑖) ↔ ∀𝑗 ∈ (dom 𝑑 ∖ {0})(𝑑‘(𝑗 − 1)) < (𝑑𝑗))
150145, 149sylibr 234 . . . . . 6 ((((𝑑 ∈ Word 𝐴𝑥𝐴) ∧ 𝜑) ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → ∀𝑖 ∈ (dom 𝑑 ∖ {0})(𝑑‘(𝑖 − 1)) < (𝑑𝑖))
151150expl 457 . . . . 5 ((𝑑 ∈ Word 𝐴𝑥𝐴) → ((𝜑 ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → ∀𝑖 ∈ (dom 𝑑 ∖ {0})(𝑑‘(𝑖 − 1)) < (𝑑𝑖)))
152144, 151a2and 845 . . . 4 ((𝑑 ∈ Word 𝐴𝑥𝐴) → (((𝜑 ∧ ∀𝑖 ∈ (dom 𝑑 ∖ {0})(𝑑‘(𝑖 − 1)) < (𝑑𝑖)) → 𝜃) → ((𝜑 ∧ ∀𝑖 ∈ (dom (𝑑 ++ ⟨“𝑥”⟩) ∖ {0})((𝑑 ++ ⟨“𝑥”⟩)‘(𝑖 − 1)) < ((𝑑 ++ ⟨“𝑥”⟩)‘𝑖)) → 𝜏)))
15315, 24, 33, 42, 44, 152wrdind 14694 . . 3 (𝐶 ∈ Word 𝐴 → ((𝜑 ∧ ∀𝑖 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑖 − 1)) < (𝐶𝑖)) → 𝜂))
154153imp 406 . 2 ((𝐶 ∈ Word 𝐴 ∧ (𝜑 ∧ ∀𝑖 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑖 − 1)) < (𝐶𝑖))) → 𝜂)
1552, 3, 6, 154syl12anc 836 1 (𝜑𝜂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wral 3045  cdif 3914  wss 3917  c0 4299  {csn 4592   class class class wbr 5110  dom cdm 5641  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078  cmin 11412  cn 12193  0cn0 12449  cz 12536  ..^cfzo 13622  chash 14302  Word cword 14485  lastSclsw 14534   ++ cconcat 14542  ⟨“cs1 14567  Chaincchn 32937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-chn 32938
This theorem is referenced by:  chnub  32945  fldext2chn  33725
  Copyright terms: Public domain W3C validator