Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndlrinvb Structured version   Visualization version   GIF version

Theorem mndlrinvb 33015
Description: In a monoid, if an element has both a left-inverse and a right-inverse, they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
mndlrinv.b 𝐵 = (Base‘𝐸)
mndlrinv.z 0 = (0g𝐸)
mndlrinv.p + = (+g𝐸)
mndlrinv.e (𝜑𝐸 ∈ Mnd)
mndlrinv.x (𝜑𝑋𝐵)
Assertion
Ref Expression
mndlrinvb (𝜑 → ((∃𝑢𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣𝐵 (𝑣 + 𝑋) = 0 ) ↔ ∃𝑦𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 )))
Distinct variable groups:   𝑢, + ,𝑣   𝑦, +   𝑢, 0 ,𝑣   𝑦, 0   𝑢,𝐵,𝑣   𝑦,𝐵   𝑢,𝑋,𝑣   𝑦,𝑋   𝜑,𝑢,𝑣   𝜑,𝑦
Allowed substitution hints:   𝐸(𝑦,𝑣,𝑢)

Proof of Theorem mndlrinvb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7437 . . . . . . . . . 10 (𝑧 = 𝑢 → (𝑋 + 𝑧) = (𝑋 + 𝑢))
21eqeq1d 2738 . . . . . . . . 9 (𝑧 = 𝑢 → ((𝑋 + 𝑧) = 0 ↔ (𝑋 + 𝑢) = 0 ))
3 oveq1 7436 . . . . . . . . . 10 (𝑧 = 𝑢 → (𝑧 + 𝑋) = (𝑢 + 𝑋))
43eqeq1d 2738 . . . . . . . . 9 (𝑧 = 𝑢 → ((𝑧 + 𝑋) = 0 ↔ (𝑢 + 𝑋) = 0 ))
52, 4anbi12d 632 . . . . . . . 8 (𝑧 = 𝑢 → (((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 ) ↔ ((𝑋 + 𝑢) = 0 ∧ (𝑢 + 𝑋) = 0 )))
6 simplr 769 . . . . . . . 8 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → 𝑢𝐵)
7 simpr 484 . . . . . . . . 9 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → (𝑋 + 𝑢) = 0 )
8 mndlrinv.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐸)
9 mndlrinv.z . . . . . . . . . . . 12 0 = (0g𝐸)
10 mndlrinv.p . . . . . . . . . . . 12 + = (+g𝐸)
11 mndlrinv.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ Mnd)
1211ad4antr 732 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → 𝐸 ∈ Mnd)
13 mndlrinv.x . . . . . . . . . . . . 13 (𝜑𝑋𝐵)
1413ad4antr 732 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → 𝑋𝐵)
15 simpllr 776 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → 𝑣𝐵)
16 simp-4r 784 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → (𝑣 + 𝑋) = 0 )
178, 9, 10, 12, 14, 15, 6, 16, 7mndlrinv 33014 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → 𝑣 = 𝑢)
1817oveq1d 7444 . . . . . . . . . 10 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → (𝑣 + 𝑋) = (𝑢 + 𝑋))
1918, 16eqtr3d 2778 . . . . . . . . 9 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → (𝑢 + 𝑋) = 0 )
207, 19jca 511 . . . . . . . 8 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → ((𝑋 + 𝑢) = 0 ∧ (𝑢 + 𝑋) = 0 ))
215, 6, 20rspcedvdw 3624 . . . . . . 7 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → ∃𝑧𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 ))
2221r19.29an 3157 . . . . . 6 ((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ ∃𝑢𝐵 (𝑋 + 𝑢) = 0 ) → ∃𝑧𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 ))
2322an42ds 32459 . . . . 5 ((((𝜑 ∧ ∃𝑢𝐵 (𝑋 + 𝑢) = 0 ) ∧ 𝑣𝐵) ∧ (𝑣 + 𝑋) = 0 ) → ∃𝑧𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 ))
2423r19.29an 3157 . . . 4 (((𝜑 ∧ ∃𝑢𝐵 (𝑋 + 𝑢) = 0 ) ∧ ∃𝑣𝐵 (𝑣 + 𝑋) = 0 ) → ∃𝑧𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 ))
2524anasss 466 . . 3 ((𝜑 ∧ (∃𝑢𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣𝐵 (𝑣 + 𝑋) = 0 )) → ∃𝑧𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 ))
26 oveq2 7437 . . . . . . 7 (𝑢 = 𝑧 → (𝑋 + 𝑢) = (𝑋 + 𝑧))
2726eqeq1d 2738 . . . . . 6 (𝑢 = 𝑧 → ((𝑋 + 𝑢) = 0 ↔ (𝑋 + 𝑧) = 0 ))
28 simplr 769 . . . . . 6 (((𝜑𝑧𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → 𝑧𝐵)
29 simprl 771 . . . . . 6 (((𝜑𝑧𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → (𝑋 + 𝑧) = 0 )
3027, 28, 29rspcedvdw 3624 . . . . 5 (((𝜑𝑧𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → ∃𝑢𝐵 (𝑋 + 𝑢) = 0 )
31 oveq1 7436 . . . . . . 7 (𝑣 = 𝑧 → (𝑣 + 𝑋) = (𝑧 + 𝑋))
3231eqeq1d 2738 . . . . . 6 (𝑣 = 𝑧 → ((𝑣 + 𝑋) = 0 ↔ (𝑧 + 𝑋) = 0 ))
33 simprr 773 . . . . . 6 (((𝜑𝑧𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → (𝑧 + 𝑋) = 0 )
3432, 28, 33rspcedvdw 3624 . . . . 5 (((𝜑𝑧𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → ∃𝑣𝐵 (𝑣 + 𝑋) = 0 )
3530, 34jca 511 . . . 4 (((𝜑𝑧𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → (∃𝑢𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣𝐵 (𝑣 + 𝑋) = 0 ))
3635r19.29an 3157 . . 3 ((𝜑 ∧ ∃𝑧𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → (∃𝑢𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣𝐵 (𝑣 + 𝑋) = 0 ))
3725, 36impbida 801 . 2 (𝜑 → ((∃𝑢𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣𝐵 (𝑣 + 𝑋) = 0 ) ↔ ∃𝑧𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )))
38 oveq2 7437 . . . . 5 (𝑦 = 𝑧 → (𝑋 + 𝑦) = (𝑋 + 𝑧))
3938eqeq1d 2738 . . . 4 (𝑦 = 𝑧 → ((𝑋 + 𝑦) = 0 ↔ (𝑋 + 𝑧) = 0 ))
40 oveq1 7436 . . . . 5 (𝑦 = 𝑧 → (𝑦 + 𝑋) = (𝑧 + 𝑋))
4140eqeq1d 2738 . . . 4 (𝑦 = 𝑧 → ((𝑦 + 𝑋) = 0 ↔ (𝑧 + 𝑋) = 0 ))
4239, 41anbi12d 632 . . 3 (𝑦 = 𝑧 → (((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ) ↔ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )))
4342cbvrexvw 3237 . 2 (∃𝑦𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ) ↔ ∃𝑧𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 ))
4437, 43bitr4di 289 1 (𝜑 → ((∃𝑢𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣𝐵 (𝑣 + 𝑋) = 0 ) ↔ ∃𝑦𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3069  cfv 6559  (class class class)co 7429  Basecbs 17243  +gcplusg 17293  0gc0g 17480  Mndcmnd 18743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pr 5430
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-iota 6512  df-fun 6561  df-fv 6567  df-riota 7386  df-ov 7432  df-0g 17482  df-mgm 18649  df-sgrp 18728  df-mnd 18744
This theorem is referenced by:  mndractf1o  33021  isunit3  33233
  Copyright terms: Public domain W3C validator