| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7437 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑢 → (𝑋 + 𝑧) = (𝑋 + 𝑢)) |
| 2 | 1 | eqeq1d 2738 |
. . . . . . . . 9
⊢ (𝑧 = 𝑢 → ((𝑋 + 𝑧) = 0 ↔ (𝑋 + 𝑢) = 0 )) |
| 3 | | oveq1 7436 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑢 → (𝑧 + 𝑋) = (𝑢 + 𝑋)) |
| 4 | 3 | eqeq1d 2738 |
. . . . . . . . 9
⊢ (𝑧 = 𝑢 → ((𝑧 + 𝑋) = 0 ↔ (𝑢 + 𝑋) = 0 )) |
| 5 | 2, 4 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑧 = 𝑢 → (((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 ) ↔ ((𝑋 + 𝑢) = 0 ∧ (𝑢 + 𝑋) = 0 ))) |
| 6 | | simplr 769 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → 𝑢 ∈ 𝐵) |
| 7 | | simpr 484 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → (𝑋 + 𝑢) = 0 ) |
| 8 | | mndlrinv.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝐸) |
| 9 | | mndlrinv.z |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝐸) |
| 10 | | mndlrinv.p |
. . . . . . . . . . . 12
⊢ + =
(+g‘𝐸) |
| 11 | | mndlrinv.e |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐸 ∈ Mnd) |
| 12 | 11 | ad4antr 732 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → 𝐸 ∈ Mnd) |
| 13 | | mndlrinv.x |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 14 | 13 | ad4antr 732 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → 𝑋 ∈ 𝐵) |
| 15 | | simpllr 776 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → 𝑣 ∈ 𝐵) |
| 16 | | simp-4r 784 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → (𝑣 + 𝑋) = 0 ) |
| 17 | 8, 9, 10, 12, 14, 15, 6, 16, 7 | mndlrinv 33014 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → 𝑣 = 𝑢) |
| 18 | 17 | oveq1d 7444 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → (𝑣 + 𝑋) = (𝑢 + 𝑋)) |
| 19 | 18, 16 | eqtr3d 2778 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → (𝑢 + 𝑋) = 0 ) |
| 20 | 7, 19 | jca 511 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → ((𝑋 + 𝑢) = 0 ∧ (𝑢 + 𝑋) = 0 )) |
| 21 | 5, 6, 20 | rspcedvdw 3624 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → ∃𝑧 ∈ 𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) |
| 22 | 21 | r19.29an 3157 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ ∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ) → ∃𝑧 ∈ 𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) |
| 23 | 22 | an42ds 32459 |
. . . . 5
⊢ ((((𝜑 ∧ ∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ (𝑣 + 𝑋) = 0 ) → ∃𝑧 ∈ 𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) |
| 24 | 23 | r19.29an 3157 |
. . . 4
⊢ (((𝜑 ∧ ∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ) ∧ ∃𝑣 ∈ 𝐵 (𝑣 + 𝑋) = 0 ) → ∃𝑧 ∈ 𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) |
| 25 | 24 | anasss 466 |
. . 3
⊢ ((𝜑 ∧ (∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣 ∈ 𝐵 (𝑣 + 𝑋) = 0 )) → ∃𝑧 ∈ 𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) |
| 26 | | oveq2 7437 |
. . . . . . 7
⊢ (𝑢 = 𝑧 → (𝑋 + 𝑢) = (𝑋 + 𝑧)) |
| 27 | 26 | eqeq1d 2738 |
. . . . . 6
⊢ (𝑢 = 𝑧 → ((𝑋 + 𝑢) = 0 ↔ (𝑋 + 𝑧) = 0 )) |
| 28 | | simplr 769 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → 𝑧 ∈ 𝐵) |
| 29 | | simprl 771 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → (𝑋 + 𝑧) = 0 ) |
| 30 | 27, 28, 29 | rspcedvdw 3624 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → ∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ) |
| 31 | | oveq1 7436 |
. . . . . . 7
⊢ (𝑣 = 𝑧 → (𝑣 + 𝑋) = (𝑧 + 𝑋)) |
| 32 | 31 | eqeq1d 2738 |
. . . . . 6
⊢ (𝑣 = 𝑧 → ((𝑣 + 𝑋) = 0 ↔ (𝑧 + 𝑋) = 0 )) |
| 33 | | simprr 773 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → (𝑧 + 𝑋) = 0 ) |
| 34 | 32, 28, 33 | rspcedvdw 3624 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → ∃𝑣 ∈ 𝐵 (𝑣 + 𝑋) = 0 ) |
| 35 | 30, 34 | jca 511 |
. . . 4
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → (∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣 ∈ 𝐵 (𝑣 + 𝑋) = 0 )) |
| 36 | 35 | r19.29an 3157 |
. . 3
⊢ ((𝜑 ∧ ∃𝑧 ∈ 𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → (∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣 ∈ 𝐵 (𝑣 + 𝑋) = 0 )) |
| 37 | 25, 36 | impbida 801 |
. 2
⊢ (𝜑 → ((∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣 ∈ 𝐵 (𝑣 + 𝑋) = 0 ) ↔ ∃𝑧 ∈ 𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 ))) |
| 38 | | oveq2 7437 |
. . . . 5
⊢ (𝑦 = 𝑧 → (𝑋 + 𝑦) = (𝑋 + 𝑧)) |
| 39 | 38 | eqeq1d 2738 |
. . . 4
⊢ (𝑦 = 𝑧 → ((𝑋 + 𝑦) = 0 ↔ (𝑋 + 𝑧) = 0 )) |
| 40 | | oveq1 7436 |
. . . . 5
⊢ (𝑦 = 𝑧 → (𝑦 + 𝑋) = (𝑧 + 𝑋)) |
| 41 | 40 | eqeq1d 2738 |
. . . 4
⊢ (𝑦 = 𝑧 → ((𝑦 + 𝑋) = 0 ↔ (𝑧 + 𝑋) = 0 )) |
| 42 | 39, 41 | anbi12d 632 |
. . 3
⊢ (𝑦 = 𝑧 → (((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ) ↔ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 ))) |
| 43 | 42 | cbvrexvw 3237 |
. 2
⊢
(∃𝑦 ∈
𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ) ↔ ∃𝑧 ∈ 𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) |
| 44 | 37, 43 | bitr4di 289 |
1
⊢ (𝜑 → ((∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣 ∈ 𝐵 (𝑣 + 𝑋) = 0 ) ↔ ∃𝑦 ∈ 𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ))) |