Step | Hyp | Ref
| Expression |
1 | | oveq2 7451 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑢 → (𝑋 + 𝑧) = (𝑋 + 𝑢)) |
2 | 1 | eqeq1d 2742 |
. . . . . . . . 9
⊢ (𝑧 = 𝑢 → ((𝑋 + 𝑧) = 0 ↔ (𝑋 + 𝑢) = 0 )) |
3 | | oveq1 7450 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑢 → (𝑧 + 𝑋) = (𝑢 + 𝑋)) |
4 | 3 | eqeq1d 2742 |
. . . . . . . . 9
⊢ (𝑧 = 𝑢 → ((𝑧 + 𝑋) = 0 ↔ (𝑢 + 𝑋) = 0 )) |
5 | 2, 4 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑧 = 𝑢 → (((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 ) ↔ ((𝑋 + 𝑢) = 0 ∧ (𝑢 + 𝑋) = 0 ))) |
6 | | simplr 768 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → 𝑢 ∈ 𝐵) |
7 | | simpr 484 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → (𝑋 + 𝑢) = 0 ) |
8 | | mndlrinv.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝐸) |
9 | | mndlrinv.z |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝐸) |
10 | | mndlrinv.p |
. . . . . . . . . . . 12
⊢ + =
(+g‘𝐸) |
11 | | mndlrinv.e |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐸 ∈ Mnd) |
12 | 11 | ad4antr 731 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → 𝐸 ∈ Mnd) |
13 | | mndlrinv.x |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
14 | 13 | ad4antr 731 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → 𝑋 ∈ 𝐵) |
15 | | simpllr 775 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → 𝑣 ∈ 𝐵) |
16 | | simp-4r 783 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → (𝑣 + 𝑋) = 0 ) |
17 | 8, 9, 10, 12, 14, 15, 6, 16, 7 | mndlrinv 33002 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → 𝑣 = 𝑢) |
18 | 17 | oveq1d 7458 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → (𝑣 + 𝑋) = (𝑢 + 𝑋)) |
19 | 18, 16 | eqtr3d 2782 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → (𝑢 + 𝑋) = 0 ) |
20 | 7, 19 | jca 511 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → ((𝑋 + 𝑢) = 0 ∧ (𝑢 + 𝑋) = 0 )) |
21 | 5, 6, 20 | rspcedvdw 3638 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑋 + 𝑢) = 0 ) → ∃𝑧 ∈ 𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) |
22 | 21 | r19.29an 3164 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ ∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ) → ∃𝑧 ∈ 𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) |
23 | 22 | an42ds 32471 |
. . . . 5
⊢ ((((𝜑 ∧ ∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ) ∧ 𝑣 ∈ 𝐵) ∧ (𝑣 + 𝑋) = 0 ) → ∃𝑧 ∈ 𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) |
24 | 23 | r19.29an 3164 |
. . . 4
⊢ (((𝜑 ∧ ∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ) ∧ ∃𝑣 ∈ 𝐵 (𝑣 + 𝑋) = 0 ) → ∃𝑧 ∈ 𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) |
25 | 24 | anasss 466 |
. . 3
⊢ ((𝜑 ∧ (∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣 ∈ 𝐵 (𝑣 + 𝑋) = 0 )) → ∃𝑧 ∈ 𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) |
26 | | oveq2 7451 |
. . . . . . 7
⊢ (𝑢 = 𝑧 → (𝑋 + 𝑢) = (𝑋 + 𝑧)) |
27 | 26 | eqeq1d 2742 |
. . . . . 6
⊢ (𝑢 = 𝑧 → ((𝑋 + 𝑢) = 0 ↔ (𝑋 + 𝑧) = 0 )) |
28 | | simplr 768 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → 𝑧 ∈ 𝐵) |
29 | | simprl 770 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → (𝑋 + 𝑧) = 0 ) |
30 | 27, 28, 29 | rspcedvdw 3638 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → ∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ) |
31 | | oveq1 7450 |
. . . . . . 7
⊢ (𝑣 = 𝑧 → (𝑣 + 𝑋) = (𝑧 + 𝑋)) |
32 | 31 | eqeq1d 2742 |
. . . . . 6
⊢ (𝑣 = 𝑧 → ((𝑣 + 𝑋) = 0 ↔ (𝑧 + 𝑋) = 0 )) |
33 | | simprr 772 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → (𝑧 + 𝑋) = 0 ) |
34 | 32, 28, 33 | rspcedvdw 3638 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → ∃𝑣 ∈ 𝐵 (𝑣 + 𝑋) = 0 ) |
35 | 30, 34 | jca 511 |
. . . 4
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → (∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣 ∈ 𝐵 (𝑣 + 𝑋) = 0 )) |
36 | 35 | r19.29an 3164 |
. . 3
⊢ ((𝜑 ∧ ∃𝑧 ∈ 𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → (∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣 ∈ 𝐵 (𝑣 + 𝑋) = 0 )) |
37 | 25, 36 | impbida 800 |
. 2
⊢ (𝜑 → ((∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣 ∈ 𝐵 (𝑣 + 𝑋) = 0 ) ↔ ∃𝑧 ∈ 𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 ))) |
38 | | oveq2 7451 |
. . . . 5
⊢ (𝑦 = 𝑧 → (𝑋 + 𝑦) = (𝑋 + 𝑧)) |
39 | 38 | eqeq1d 2742 |
. . . 4
⊢ (𝑦 = 𝑧 → ((𝑋 + 𝑦) = 0 ↔ (𝑋 + 𝑧) = 0 )) |
40 | | oveq1 7450 |
. . . . 5
⊢ (𝑦 = 𝑧 → (𝑦 + 𝑋) = (𝑧 + 𝑋)) |
41 | 40 | eqeq1d 2742 |
. . . 4
⊢ (𝑦 = 𝑧 → ((𝑦 + 𝑋) = 0 ↔ (𝑧 + 𝑋) = 0 )) |
42 | 39, 41 | anbi12d 631 |
. . 3
⊢ (𝑦 = 𝑧 → (((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ) ↔ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 ))) |
43 | 42 | cbvrexvw 3244 |
. 2
⊢
(∃𝑦 ∈
𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ) ↔ ∃𝑧 ∈ 𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) |
44 | 37, 43 | bitr4di 289 |
1
⊢ (𝜑 → ((∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣 ∈ 𝐵 (𝑣 + 𝑋) = 0 ) ↔ ∃𝑦 ∈ 𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ))) |