Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndlrinvb Structured version   Visualization version   GIF version

Theorem mndlrinvb 32973
Description: In a monoid, if an element has both a left-inverse and a right-inverse, they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
mndlrinv.b 𝐵 = (Base‘𝐸)
mndlrinv.z 0 = (0g𝐸)
mndlrinv.p + = (+g𝐸)
mndlrinv.e (𝜑𝐸 ∈ Mnd)
mndlrinv.x (𝜑𝑋𝐵)
Assertion
Ref Expression
mndlrinvb (𝜑 → ((∃𝑢𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣𝐵 (𝑣 + 𝑋) = 0 ) ↔ ∃𝑦𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 )))
Distinct variable groups:   𝑢, + ,𝑣   𝑦, +   𝑢, 0 ,𝑣   𝑦, 0   𝑢,𝐵,𝑣   𝑦,𝐵   𝑢,𝑋,𝑣   𝑦,𝑋   𝜑,𝑢,𝑣   𝜑,𝑦
Allowed substitution hints:   𝐸(𝑦,𝑣,𝑢)

Proof of Theorem mndlrinvb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7398 . . . . . . . . . 10 (𝑧 = 𝑢 → (𝑋 + 𝑧) = (𝑋 + 𝑢))
21eqeq1d 2732 . . . . . . . . 9 (𝑧 = 𝑢 → ((𝑋 + 𝑧) = 0 ↔ (𝑋 + 𝑢) = 0 ))
3 oveq1 7397 . . . . . . . . . 10 (𝑧 = 𝑢 → (𝑧 + 𝑋) = (𝑢 + 𝑋))
43eqeq1d 2732 . . . . . . . . 9 (𝑧 = 𝑢 → ((𝑧 + 𝑋) = 0 ↔ (𝑢 + 𝑋) = 0 ))
52, 4anbi12d 632 . . . . . . . 8 (𝑧 = 𝑢 → (((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 ) ↔ ((𝑋 + 𝑢) = 0 ∧ (𝑢 + 𝑋) = 0 )))
6 simplr 768 . . . . . . . 8 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → 𝑢𝐵)
7 simpr 484 . . . . . . . . 9 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → (𝑋 + 𝑢) = 0 )
8 mndlrinv.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐸)
9 mndlrinv.z . . . . . . . . . . . 12 0 = (0g𝐸)
10 mndlrinv.p . . . . . . . . . . . 12 + = (+g𝐸)
11 mndlrinv.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ Mnd)
1211ad4antr 732 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → 𝐸 ∈ Mnd)
13 mndlrinv.x . . . . . . . . . . . . 13 (𝜑𝑋𝐵)
1413ad4antr 732 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → 𝑋𝐵)
15 simpllr 775 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → 𝑣𝐵)
16 simp-4r 783 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → (𝑣 + 𝑋) = 0 )
178, 9, 10, 12, 14, 15, 6, 16, 7mndlrinv 32972 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → 𝑣 = 𝑢)
1817oveq1d 7405 . . . . . . . . . 10 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → (𝑣 + 𝑋) = (𝑢 + 𝑋))
1918, 16eqtr3d 2767 . . . . . . . . 9 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → (𝑢 + 𝑋) = 0 )
207, 19jca 511 . . . . . . . 8 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → ((𝑋 + 𝑢) = 0 ∧ (𝑢 + 𝑋) = 0 ))
215, 6, 20rspcedvdw 3594 . . . . . . 7 (((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ 𝑢𝐵) ∧ (𝑋 + 𝑢) = 0 ) → ∃𝑧𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 ))
2221r19.29an 3138 . . . . . 6 ((((𝜑 ∧ (𝑣 + 𝑋) = 0 ) ∧ 𝑣𝐵) ∧ ∃𝑢𝐵 (𝑋 + 𝑢) = 0 ) → ∃𝑧𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 ))
2322an42ds 32386 . . . . 5 ((((𝜑 ∧ ∃𝑢𝐵 (𝑋 + 𝑢) = 0 ) ∧ 𝑣𝐵) ∧ (𝑣 + 𝑋) = 0 ) → ∃𝑧𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 ))
2423r19.29an 3138 . . . 4 (((𝜑 ∧ ∃𝑢𝐵 (𝑋 + 𝑢) = 0 ) ∧ ∃𝑣𝐵 (𝑣 + 𝑋) = 0 ) → ∃𝑧𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 ))
2524anasss 466 . . 3 ((𝜑 ∧ (∃𝑢𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣𝐵 (𝑣 + 𝑋) = 0 )) → ∃𝑧𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 ))
26 oveq2 7398 . . . . . . 7 (𝑢 = 𝑧 → (𝑋 + 𝑢) = (𝑋 + 𝑧))
2726eqeq1d 2732 . . . . . 6 (𝑢 = 𝑧 → ((𝑋 + 𝑢) = 0 ↔ (𝑋 + 𝑧) = 0 ))
28 simplr 768 . . . . . 6 (((𝜑𝑧𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → 𝑧𝐵)
29 simprl 770 . . . . . 6 (((𝜑𝑧𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → (𝑋 + 𝑧) = 0 )
3027, 28, 29rspcedvdw 3594 . . . . 5 (((𝜑𝑧𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → ∃𝑢𝐵 (𝑋 + 𝑢) = 0 )
31 oveq1 7397 . . . . . . 7 (𝑣 = 𝑧 → (𝑣 + 𝑋) = (𝑧 + 𝑋))
3231eqeq1d 2732 . . . . . 6 (𝑣 = 𝑧 → ((𝑣 + 𝑋) = 0 ↔ (𝑧 + 𝑋) = 0 ))
33 simprr 772 . . . . . 6 (((𝜑𝑧𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → (𝑧 + 𝑋) = 0 )
3432, 28, 33rspcedvdw 3594 . . . . 5 (((𝜑𝑧𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → ∃𝑣𝐵 (𝑣 + 𝑋) = 0 )
3530, 34jca 511 . . . 4 (((𝜑𝑧𝐵) ∧ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → (∃𝑢𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣𝐵 (𝑣 + 𝑋) = 0 ))
3635r19.29an 3138 . . 3 ((𝜑 ∧ ∃𝑧𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )) → (∃𝑢𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣𝐵 (𝑣 + 𝑋) = 0 ))
3725, 36impbida 800 . 2 (𝜑 → ((∃𝑢𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣𝐵 (𝑣 + 𝑋) = 0 ) ↔ ∃𝑧𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )))
38 oveq2 7398 . . . . 5 (𝑦 = 𝑧 → (𝑋 + 𝑦) = (𝑋 + 𝑧))
3938eqeq1d 2732 . . . 4 (𝑦 = 𝑧 → ((𝑋 + 𝑦) = 0 ↔ (𝑋 + 𝑧) = 0 ))
40 oveq1 7397 . . . . 5 (𝑦 = 𝑧 → (𝑦 + 𝑋) = (𝑧 + 𝑋))
4140eqeq1d 2732 . . . 4 (𝑦 = 𝑧 → ((𝑦 + 𝑋) = 0 ↔ (𝑧 + 𝑋) = 0 ))
4239, 41anbi12d 632 . . 3 (𝑦 = 𝑧 → (((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ) ↔ ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 )))
4342cbvrexvw 3217 . 2 (∃𝑦𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ) ↔ ∃𝑧𝐵 ((𝑋 + 𝑧) = 0 ∧ (𝑧 + 𝑋) = 0 ))
4437, 43bitr4di 289 1 (𝜑 → ((∃𝑢𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣𝐵 (𝑣 + 𝑋) = 0 ) ↔ ∃𝑦𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Mndcmnd 18668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-riota 7347  df-ov 7393  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669
This theorem is referenced by:  mndractf1o  32979  isunit3  33199
  Copyright terms: Public domain W3C validator