Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspunlsplem Structured version   Visualization version   GIF version

Theorem fldextrspunlsplem 33708
Description: Lemma for fldextrspunlsp 33709: First direction. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
fldextrspunfld.k 𝐾 = (𝐿s 𝐹)
fldextrspunfld.i 𝐼 = (𝐿s 𝐺)
fldextrspunfld.j 𝐽 = (𝐿s 𝐻)
fldextrspunfld.2 (𝜑𝐿 ∈ Field)
fldextrspunfld.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspunfld.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspunfld.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspunfld.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspunlsp.n 𝑁 = (RingSpan‘𝐿)
fldextrspunlsp.c 𝐶 = (𝑁‘(𝐺𝐻))
fldextrspunlsp.e 𝐸 = (𝐿s 𝐶)
fldextrspunlsp.1 (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
fldextrspunlsp.2 (𝜑𝐵 ∈ Fin)
fldextrspunlsplem.2 (𝜑𝑃:𝐻𝐺)
fldextrspunlsplem.3 (𝜑𝑃 finSupp (0g𝐿))
fldextrspunlsplem.4 (𝜑𝑋 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))))
Assertion
Ref Expression
fldextrspunlsplem (𝜑 → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))))
Distinct variable groups:   𝐵,𝑎,𝑏,𝑓   𝐹,𝑎,𝑏,𝑓   𝐺,𝑎,𝑓   𝐻,𝑎,𝑏,𝑓   𝐽,𝑏   𝐾,𝑎,𝑏,𝑓   𝐿,𝑎,𝑏,𝑓   𝑃,𝑎,𝑏,𝑓   𝑋,𝑎   𝜑,𝑎,𝑏,𝑓
Allowed substitution hints:   𝐶(𝑓,𝑎,𝑏)   𝐸(𝑓,𝑎,𝑏)   𝐺(𝑏)   𝐼(𝑓,𝑎,𝑏)   𝐽(𝑓,𝑎)   𝑁(𝑓,𝑎,𝑏)   𝑋(𝑓,𝑏)

Proof of Theorem fldextrspunlsplem
Dummy variables 𝑐 𝑢 𝑒 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextrspunfld.5 . . . . 5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
21ad2antrr 726 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐺 ∈ (SubDRing‘𝐿))
3 fldextrspunlsp.1 . . . . 5 (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
43ad2antrr 726 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
5 eqid 2736 . . . . . 6 (0g𝐿) = (0g𝐿)
6 fldextrspunfld.2 . . . . . . . . . 10 (𝜑𝐿 ∈ Field)
76flddrngd 20733 . . . . . . . . 9 (𝜑𝐿 ∈ DivRing)
87drngringd 20729 . . . . . . . 8 (𝜑𝐿 ∈ Ring)
98ringcmnd 20273 . . . . . . 7 (𝜑𝐿 ∈ CMnd)
109ad3antrrr 730 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐿 ∈ CMnd)
11 fldextrspunfld.6 . . . . . . 7 (𝜑𝐻 ∈ (SubDRing‘𝐿))
1211ad3antrrr 730 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐻 ∈ (SubDRing‘𝐿))
13 sdrgsubrg 20784 . . . . . . . . 9 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
141, 13syl 17 . . . . . . . 8 (𝜑𝐺 ∈ (SubRing‘𝐿))
15 subrgsubg 20569 . . . . . . . 8 (𝐺 ∈ (SubRing‘𝐿) → 𝐺 ∈ (SubGrp‘𝐿))
16 subgsubm 19162 . . . . . . . 8 (𝐺 ∈ (SubGrp‘𝐿) → 𝐺 ∈ (SubMnd‘𝐿))
1714, 15, 163syl 18 . . . . . . 7 (𝜑𝐺 ∈ (SubMnd‘𝐿))
1817ad3antrrr 730 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐺 ∈ (SubMnd‘𝐿))
19 eqid 2736 . . . . . . . . 9 (.r𝐿) = (.r𝐿)
2014ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐺 ∈ (SubRing‘𝐿))
21 fldextrspunlsplem.2 . . . . . . . . . . 11 (𝜑𝑃:𝐻𝐺)
2221ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑃:𝐻𝐺)
23 simpr 484 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑓𝐻)
2422, 23ffvelcdmd 7103 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → (𝑃𝑓) ∈ 𝐺)
25 fldextrspunfld.3 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (SubDRing‘𝐼))
26 eqid 2736 . . . . . . . . . . . . . 14 (Base‘𝐼) = (Base‘𝐼)
2726sdrgss 20786 . . . . . . . . . . . . 13 (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ⊆ (Base‘𝐼))
2825, 27syl 17 . . . . . . . . . . . 12 (𝜑𝐹 ⊆ (Base‘𝐼))
29 eqid 2736 . . . . . . . . . . . . . . 15 (Base‘𝐿) = (Base‘𝐿)
3029sdrgss 20786 . . . . . . . . . . . . . 14 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
311, 30syl 17 . . . . . . . . . . . . 13 (𝜑𝐺 ⊆ (Base‘𝐿))
32 fldextrspunfld.i . . . . . . . . . . . . . 14 𝐼 = (𝐿s 𝐺)
3332, 29ressbas2 17279 . . . . . . . . . . . . 13 (𝐺 ⊆ (Base‘𝐿) → 𝐺 = (Base‘𝐼))
3431, 33syl 17 . . . . . . . . . . . 12 (𝜑𝐺 = (Base‘𝐼))
3528, 34sseqtrrd 4020 . . . . . . . . . . 11 (𝜑𝐹𝐺)
3635ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐹𝐺)
373ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
3825ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐹 ∈ (SubDRing‘𝐼))
3911ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐻 ∈ (SubDRing‘𝐿))
40 ovexd 7464 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → (𝐹m 𝐵) ∈ V)
41 simpllr 776 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
4239, 40, 41elmaprd 32678 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑢:𝐻⟶(𝐹m 𝐵))
4342, 23ffvelcdmd 7103 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → (𝑢𝑓) ∈ (𝐹m 𝐵))
4437, 38, 43elmaprd 32678 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → (𝑢𝑓):𝐵𝐹)
45 simplr 769 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑐𝐵)
4644, 45ffvelcdmd 7103 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → ((𝑢𝑓)‘𝑐) ∈ 𝐹)
4736, 46sseldd 3983 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → ((𝑢𝑓)‘𝑐) ∈ 𝐺)
4819, 20, 24, 47subrgmcld 33225 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)) ∈ 𝐺)
4948fmpttd 7133 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))):𝐻𝐺)
5049adantlr 715 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))):𝐻𝐺)
51 fveq2 6904 . . . . . . . . 9 (𝑓 = → (𝑃𝑓) = (𝑃))
52 fveq2 6904 . . . . . . . . . 10 (𝑓 = → (𝑢𝑓) = (𝑢))
5352fveq1d 6906 . . . . . . . . 9 (𝑓 = → ((𝑢𝑓)‘𝑐) = ((𝑢)‘𝑐))
5451, 53oveq12d 7447 . . . . . . . 8 (𝑓 = → ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)) = ((𝑃)(.r𝐿)((𝑢)‘𝑐)))
5554cbvmptv 5253 . . . . . . 7 (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))) = (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐)))
56 fvexd 6919 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (0g𝐿) ∈ V)
57 ssidd 4006 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐻𝐻)
58 fldextrspunfld.4 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (SubDRing‘𝐽))
59 eqid 2736 . . . . . . . . . . . . . 14 (Base‘𝐽) = (Base‘𝐽)
6059sdrgss 20786 . . . . . . . . . . . . 13 (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ⊆ (Base‘𝐽))
6158, 60syl 17 . . . . . . . . . . . 12 (𝜑𝐹 ⊆ (Base‘𝐽))
6229sdrgss 20786 . . . . . . . . . . . . . 14 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
6311, 62syl 17 . . . . . . . . . . . . 13 (𝜑𝐻 ⊆ (Base‘𝐿))
64 fldextrspunfld.j . . . . . . . . . . . . . 14 𝐽 = (𝐿s 𝐻)
6564, 29ressbas2 17279 . . . . . . . . . . . . 13 (𝐻 ⊆ (Base‘𝐿) → 𝐻 = (Base‘𝐽))
6663, 65syl 17 . . . . . . . . . . . 12 (𝜑𝐻 = (Base‘𝐽))
6761, 66sseqtrrd 4020 . . . . . . . . . . 11 (𝜑𝐹𝐻)
6867, 63sstrd 3993 . . . . . . . . . 10 (𝜑𝐹 ⊆ (Base‘𝐿))
6968ad4antr 732 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐹 ⊆ (Base‘𝐿))
703ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
7158ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐹 ∈ (SubDRing‘𝐽))
72 ovexd 7464 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐹m 𝐵) ∈ V)
73 simpllr 776 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
7412, 72, 73elmaprd 32678 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑢:𝐻⟶(𝐹m 𝐵))
7574ffvelcdmda 7102 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (𝑢) ∈ (𝐹m 𝐵))
7670, 71, 75elmaprd 32678 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (𝑢):𝐵𝐹)
77 simplr 769 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝑐𝐵)
7876, 77ffvelcdmd 7103 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → ((𝑢)‘𝑐) ∈ 𝐹)
7969, 78sseldd 3983 . . . . . . . 8 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → ((𝑢)‘𝑐) ∈ (Base‘𝐿))
8021ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑃:𝐻𝐺)
81 fldextrspunlsplem.3 . . . . . . . . 9 (𝜑𝑃 finSupp (0g𝐿))
8281ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑃 finSupp (0g𝐿))
838ad4antr 732 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝐿 ∈ Ring)
84 simpr 484 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝑦 ∈ (Base‘𝐿))
8529, 19, 5, 83, 84ringlzd 20284 . . . . . . . 8 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝑦 ∈ (Base‘𝐿)) → ((0g𝐿)(.r𝐿)𝑦) = (0g𝐿))
8656, 56, 12, 57, 79, 80, 82, 85fisuppov1 32681 . . . . . . 7 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))) finSupp (0g𝐿))
8755, 86eqbrtrid 5176 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))) finSupp (0g𝐿))
885, 10, 12, 18, 50, 87gsumsubmcl 19933 . . . . 5 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))) ∈ 𝐺)
8988fmpttd 7133 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))):𝐵𝐺)
902, 4, 89elmapdd 8877 . . 3 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) ∈ (𝐺m 𝐵))
91 breq1 5144 . . . . . 6 (𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) → (𝑎 finSupp (0g𝐿) ↔ (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿)))
9291adantl 481 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → (𝑎 finSupp (0g𝐿) ↔ (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿)))
93 simplr 769 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))))
9493fveq1d 6906 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → (𝑎𝑏) = ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))‘𝑏))
95 eqid 2736 . . . . . . . . . . . 12 (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))
96 fveq2 6904 . . . . . . . . . . . . . . 15 (𝑐 = 𝑏 → ((𝑢𝑓)‘𝑐) = ((𝑢𝑓)‘𝑏))
9796oveq2d 7445 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)) = ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))
9897mpteq2dv 5242 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))) = (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))
9998oveq2d 7445 . . . . . . . . . . . 12 (𝑐 = 𝑏 → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))) = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))))
100 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑏𝐵) → 𝑏𝐵)
101 ovexd 7464 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑏𝐵) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))) ∈ V)
10295, 99, 100, 101fvmptd3 7037 . . . . . . . . . . 11 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑏𝐵) → ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))‘𝑏) = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))))
103102adantlr 715 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))‘𝑏) = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))))
10494, 103eqtrd 2776 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → (𝑎𝑏) = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))))
105104oveq1d 7444 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → ((𝑎𝑏)(.r𝐿)𝑏) = ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))
106105mpteq2dva 5240 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)) = (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏)))
107106oveq2d 7445 . . . . . 6 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))))
108107eqeq2d 2747 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → (𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏))) ↔ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏)))))
10992, 108anbi12d 632 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → ((𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))) ↔ ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))))))
110109adantlr 715 . . 3 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → ((𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))) ↔ ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))))))
111 fldextrspunlsp.2 . . . . . 6 (𝜑𝐵 ∈ Fin)
112111ad2antrr 726 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐵 ∈ Fin)
113 ovexd 7464 . . . . 5 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))) ∈ V)
114 fvexd 6919 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (0g𝐿) ∈ V)
11595, 112, 113, 114fsuppmptdm 9412 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿))
116 fldextrspunlsplem.4 . . . . . . 7 (𝜑𝑋 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))))
117116ad2antrr 726 . . . . . 6 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑋 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))))
1188ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐿 ∈ Ring)
119118adantr 480 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐿 ∈ Ring)
1203ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
12131ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐺 ⊆ (Base‘𝐿))
12221ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑃:𝐻𝐺)
123122ffvelcdmda 7102 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑃) ∈ 𝐺)
124121, 123sseldd 3983 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑃) ∈ (Base‘𝐿))
125119adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐿 ∈ Ring)
12668ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐹 ⊆ (Base‘𝐿))
1273ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
12858ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐹 ∈ (SubDRing‘𝐽))
12911ad4antr 732 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐻 ∈ (SubDRing‘𝐿))
130 ovexd 7464 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (𝐹m 𝐵) ∈ V)
131 simp-4r 784 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
132129, 130, 131elmaprd 32678 . . . . . . . . . . . . . . . 16 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝑢:𝐻⟶(𝐹m 𝐵))
133 simplr 769 . . . . . . . . . . . . . . . 16 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐻)
134132, 133ffvelcdmd 7103 . . . . . . . . . . . . . . 15 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (𝑢) ∈ (𝐹m 𝐵))
135127, 128, 134elmaprd 32678 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (𝑢):𝐵𝐹)
136 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝑐𝐵)
137135, 136ffvelcdmd 7103 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → ((𝑢)‘𝑐) ∈ 𝐹)
138126, 137sseldd 3983 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → ((𝑢)‘𝑐) ∈ (Base‘𝐿))
139 eqid 2736 . . . . . . . . . . . . . . . . . 18 (Base‘((subringAlg ‘𝐽)‘𝐹)) = (Base‘((subringAlg ‘𝐽)‘𝐹))
140 eqid 2736 . . . . . . . . . . . . . . . . . 18 (LBasis‘((subringAlg ‘𝐽)‘𝐹)) = (LBasis‘((subringAlg ‘𝐽)‘𝐹))
141139, 140lbsss 21068 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → 𝐵 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
1423, 141syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
143 eqidd 2737 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹))
144143, 61srabase 21169 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝐽) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
14566, 144eqtr2d 2777 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘((subringAlg ‘𝐽)‘𝐹)) = 𝐻)
146142, 145sseqtrd 4019 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐻)
147146, 63sstrd 3993 . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ (Base‘𝐿))
148147ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐵 ⊆ (Base‘𝐿))
149148sselda 3982 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝑐 ∈ (Base‘𝐿))
15029, 19, 125, 138, 149ringcld 20252 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (((𝑢)‘𝑐)(.r𝐿)𝑐) ∈ (Base‘𝐿))
151 fvexd 6919 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (0g𝐿) ∈ V)
152 ssidd 4006 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐵𝐵)
15358ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐹 ∈ (SubDRing‘𝐽))
15411ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐻 ∈ (SubDRing‘𝐿))
155 ovexd 7464 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐹m 𝐵) ∈ V)
156 simplr 769 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
157154, 155, 156elmaprd 32678 . . . . . . . . . . . . . 14 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑢:𝐻⟶(𝐹m 𝐵))
158157ffvelcdmda 7102 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑢) ∈ (𝐹m 𝐵))
159120, 153, 158elmaprd 32678 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑢):𝐵𝐹)
16052breq1d 5151 . . . . . . . . . . . . . . 15 (𝑓 = → ((𝑢𝑓) finSupp (0g𝐿) ↔ (𝑢) finSupp (0g𝐿)))
161 id 22 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑓 = )
16252fveq1d 6906 . . . . . . . . . . . . . . . . . . 19 (𝑓 = → ((𝑢𝑓)‘𝑏) = ((𝑢)‘𝑏))
163162oveq1d 7444 . . . . . . . . . . . . . . . . . 18 (𝑓 = → (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏) = (((𝑢)‘𝑏)(.r𝐿)𝑏))
164163mpteq2dv 5242 . . . . . . . . . . . . . . . . 17 (𝑓 = → (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)) = (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏)))
165164oveq2d 7445 . . . . . . . . . . . . . . . 16 (𝑓 = → (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏))))
166161, 165eqeq12d 2752 . . . . . . . . . . . . . . 15 (𝑓 = → (𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))) ↔ = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏)))))
167160, 166anbi12d 632 . . . . . . . . . . . . . 14 (𝑓 = → (((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))) ↔ ((𝑢) finSupp (0g𝐿) ∧ = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏))))))
168 simplr 769 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))))
169 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐻)
170167, 168, 169rspcdva 3622 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → ((𝑢) finSupp (0g𝐿) ∧ = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏)))))
171170simpld 494 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑢) finSupp (0g𝐿))
172119adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝐿 ∈ Ring)
173 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝑦 ∈ (Base‘𝐿))
17429, 19, 5, 172, 173ringlzd 20284 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑦 ∈ (Base‘𝐿)) → ((0g𝐿)(.r𝐿)𝑦) = (0g𝐿))
175151, 151, 120, 152, 149, 159, 171, 174fisuppov1 32681 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐)) finSupp (0g𝐿))
17629, 5, 19, 119, 120, 124, 150, 175gsummulc2 20306 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝐿 Σg (𝑐𝐵 ↦ ((𝑃)(.r𝐿)(((𝑢)‘𝑐)(.r𝐿)𝑐)))) = ((𝑃)(.r𝐿)(𝐿 Σg (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐)))))
177124adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (𝑃) ∈ (Base‘𝐿))
17829, 19, 125, 177, 138, 149ringassd 20250 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = ((𝑃)(.r𝐿)(((𝑢)‘𝑐)(.r𝐿)𝑐)))
179178mpteq2dva 5240 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐)) = (𝑐𝐵 ↦ ((𝑃)(.r𝐿)(((𝑢)‘𝑐)(.r𝐿)𝑐))))
180179oveq2d 7445 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))) = (𝐿 Σg (𝑐𝐵 ↦ ((𝑃)(.r𝐿)(((𝑢)‘𝑐)(.r𝐿)𝑐)))))
181170simprd 495 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏))))
182 fveq2 6904 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → ((𝑢)‘𝑏) = ((𝑢)‘𝑐))
183 id 22 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐𝑏 = 𝑐)
184182, 183oveq12d 7447 . . . . . . . . . . . . . 14 (𝑏 = 𝑐 → (((𝑢)‘𝑏)(.r𝐿)𝑏) = (((𝑢)‘𝑐)(.r𝐿)𝑐))
185184cbvmptv 5253 . . . . . . . . . . . . 13 (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏)) = (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐))
186185oveq2i 7440 . . . . . . . . . . . 12 (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏))) = (𝐿 Σg (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐)))
187181, 186eqtrdi 2792 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → = (𝐿 Σg (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐))))
188187oveq2d 7445 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → ((𝑃)(.r𝐿)) = ((𝑃)(.r𝐿)(𝐿 Σg (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐)))))
189176, 180, 1883eqtr4rd 2787 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → ((𝑃)(.r𝐿)) = (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))
190189mpteq2dva 5240 . . . . . . . 8 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐻 ↦ ((𝑃)(.r𝐿))) = (𝐻 ↦ (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐)))))
191190oveq2d 7445 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)))) = (𝐿 Σg (𝐻 ↦ (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))))
19251, 161oveq12d 7447 . . . . . . . . . 10 (𝑓 = → ((𝑃𝑓)(.r𝐿)𝑓) = ((𝑃)(.r𝐿)))
193192cbvmptv 5253 . . . . . . . . 9 (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓)) = (𝐻 ↦ ((𝑃)(.r𝐿)))
194193oveq2i 7440 . . . . . . . 8 (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿))))
195194a1i 11 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)))))
1969ad2antrr 726 . . . . . . . 8 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐿 ∈ CMnd)
1978ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐿 ∈ Ring)
19831ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐺 ⊆ (Base‘𝐿))
19980ffvelcdmda 7102 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (𝑃) ∈ 𝐺)
200198, 199sseldd 3983 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (𝑃) ∈ (Base‘𝐿))
20129, 19, 197, 200, 79ringcld 20252 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) ∈ (Base‘𝐿))
202147ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐵 ⊆ (Base‘𝐿))
203202sselda 3982 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑐 ∈ (Base‘𝐿))
204203adantr 480 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝑐 ∈ (Base‘𝐿))
20529, 19, 197, 201, 204ringcld 20252 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) ∈ (Base‘𝐿))
206205anasss 466 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ (𝑐𝐵𝐻)) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) ∈ (Base‘𝐿))
20781fsuppimpd 9405 . . . . . . . . . . . 12 (𝜑 → (𝑃 supp (0g𝐿)) ∈ Fin)
208207ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑃 supp (0g𝐿)) ∈ Fin)
209 suppssdm 8198 . . . . . . . . . . . . . . . . . 18 (𝑃 supp (0g𝐿)) ⊆ dom 𝑃
210209, 21fssdm 6753 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃 supp (0g𝐿)) ⊆ 𝐻)
211210sseld 3981 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑓 ∈ (𝑃 supp (0g𝐿)) → 𝑓𝐻))
212211adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → (𝑓 ∈ (𝑃 supp (0g𝐿)) → 𝑓𝐻))
213 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ (𝑢𝑓) finSupp (0g𝐿)) → (𝑢𝑓) finSupp (0g𝐿))
214213fsuppimpd 9405 . . . . . . . . . . . . . . . . 17 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ (𝑢𝑓) finSupp (0g𝐿)) → ((𝑢𝑓) supp (0g𝐿)) ∈ Fin)
215214ex 412 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → ((𝑢𝑓) finSupp (0g𝐿) → ((𝑢𝑓) supp (0g𝐿)) ∈ Fin))
216215adantrd 491 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → (((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))) → ((𝑢𝑓) supp (0g𝐿)) ∈ Fin))
217212, 216imim12d 81 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → ((𝑓𝐻 → ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑓 ∈ (𝑃 supp (0g𝐿)) → ((𝑢𝑓) supp (0g𝐿)) ∈ Fin)))
218217ralimdv2 3162 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → (∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))) → ∀𝑓 ∈ (𝑃 supp (0g𝐿))((𝑢𝑓) supp (0g𝐿)) ∈ Fin))
219218imp 406 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ∀𝑓 ∈ (𝑃 supp (0g𝐿))((𝑢𝑓) supp (0g𝐿)) ∈ Fin)
220 fveq2 6904 . . . . . . . . . . . . . . 15 (𝑓 = 𝑖 → (𝑢𝑓) = (𝑢𝑖))
221220oveq1d 7444 . . . . . . . . . . . . . 14 (𝑓 = 𝑖 → ((𝑢𝑓) supp (0g𝐿)) = ((𝑢𝑖) supp (0g𝐿)))
222221eleq1d 2825 . . . . . . . . . . . . 13 (𝑓 = 𝑖 → (((𝑢𝑓) supp (0g𝐿)) ∈ Fin ↔ ((𝑢𝑖) supp (0g𝐿)) ∈ Fin))
223222cbvralvw 3236 . . . . . . . . . . . 12 (∀𝑓 ∈ (𝑃 supp (0g𝐿))((𝑢𝑓) supp (0g𝐿)) ∈ Fin ↔ ∀𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin)
224219, 223sylib 218 . . . . . . . . . . 11 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ∀𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin)
225 iunfi 9379 . . . . . . . . . . 11 (((𝑃 supp (0g𝐿)) ∈ Fin ∧ ∀𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin) → 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin)
226208, 224, 225syl2anc 584 . . . . . . . . . 10 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin)
227 xpfi 9354 . . . . . . . . . 10 (( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin ∧ (𝑃 supp (0g𝐿)) ∈ Fin) → ( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) × (𝑃 supp (0g𝐿))) ∈ Fin)
228226, 208, 227syl2anc 584 . . . . . . . . 9 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) × (𝑃 supp (0g𝐿))) ∈ Fin)
229 snssi 4806 . . . . . . . . . . . 12 (𝑖 ∈ (𝑃 supp (0g𝐿)) → {𝑖} ⊆ (𝑃 supp (0g𝐿)))
230229adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑃 supp (0g𝐿))) → {𝑖} ⊆ (𝑃 supp (0g𝐿)))
231230iunxpssiun1 32570 . . . . . . . . . 10 (𝜑 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ⊆ ( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) × (𝑃 supp (0g𝐿))))
232231ad2antrr 726 . . . . . . . . 9 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ⊆ ( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) × (𝑃 supp (0g𝐿))))
233228, 232ssfid 9297 . . . . . . . 8 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ∈ Fin)
23421ffnd 6735 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 Fn 𝐻)
235234ad6antr 736 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝑃 Fn 𝐻)
23611ad6antr 736 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐻 ∈ (SubDRing‘𝐿))
237 fvexd 6919 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (0g𝐿) ∈ V)
238 simpllr 776 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐻)
239 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ¬ ∈ (𝑃 supp (0g𝐿)))
240238, 239eldifd 3961 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ∈ (𝐻 ∖ (𝑃 supp (0g𝐿))))
241235, 236, 237, 240fvdifsupp 8192 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (𝑃) = (0g𝐿))
242241oveq1d 7444 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = ((0g𝐿)(.r𝐿)((𝑢)‘𝑐)))
2438ad6antr 736 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐿 ∈ Ring)
24468ad6antr 736 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐹 ⊆ (Base‘𝐿))
2453ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
24658ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐹 ∈ (SubDRing‘𝐽))
247 ovexd 7464 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (𝐹m 𝐵) ∈ V)
248 simp-6r 788 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
249236, 247, 248elmaprd 32678 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝑢:𝐻⟶(𝐹m 𝐵))
250249, 238ffvelcdmd 7103 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (𝑢) ∈ (𝐹m 𝐵))
251245, 246, 250elmaprd 32678 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (𝑢):𝐵𝐹)
252 simp-4r 784 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝑐𝐵)
253251, 252ffvelcdmd 7103 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((𝑢)‘𝑐) ∈ 𝐹)
254244, 253sseldd 3983 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((𝑢)‘𝑐) ∈ (Base‘𝐿))
25529, 19, 5, 243, 254ringlzd 20284 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((0g𝐿)(.r𝐿)((𝑢)‘𝑐)) = (0g𝐿))
256242, 255eqtrd 2776 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = (0g𝐿))
2573ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
25858ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐹 ∈ (SubDRing‘𝐽))
25911ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐻 ∈ (SubDRing‘𝐿))
260 ovexd 7464 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝐹m 𝐵) ∈ V)
261 simp-6r 788 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
262259, 260, 261elmaprd 32678 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝑢:𝐻⟶(𝐹m 𝐵))
263 simpllr 776 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐻)
264262, 263ffvelcdmd 7103 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝑢) ∈ (𝐹m 𝐵))
265257, 258, 264elmaprd 32678 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝑢):𝐵𝐹)
266265ffnd 6735 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝑢) Fn 𝐵)
267 fvexd 6919 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (0g𝐿) ∈ V)
268 simp-4r 784 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝑐𝐵)
269 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿)))
270268, 269eldifd 3961 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝑐 ∈ (𝐵 ∖ ((𝑢) supp (0g𝐿))))
271266, 257, 267, 270fvdifsupp 8192 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ((𝑢)‘𝑐) = (0g𝐿))
272271oveq2d 7445 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = ((𝑃)(.r𝐿)(0g𝐿)))
273197ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐿 ∈ Ring)
274200ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝑃) ∈ (Base‘𝐿))
27529, 19, 5, 273, 274ringrzd 20285 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ((𝑃)(.r𝐿)(0g𝐿)) = (0g𝐿))
276272, 275eqtrd 2776 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = (0g𝐿))
277 df-br 5142 . . . . . . . . . . . . . . . . . . . 20 (𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ↔ ⟨𝑐, ⟩ ∈ 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}))
278 fveq2 6904 . . . . . . . . . . . . . . . . . . . . . . . 24 ( = 𝑖 → (𝑢) = (𝑢𝑖))
279278oveq1d 7444 . . . . . . . . . . . . . . . . . . . . . . 23 ( = 𝑖 → ((𝑢) supp (0g𝐿)) = ((𝑢𝑖) supp (0g𝐿)))
280 sneq 4634 . . . . . . . . . . . . . . . . . . . . . . 23 ( = 𝑖 → {} = {𝑖})
281279, 280xpeq12d 5714 . . . . . . . . . . . . . . . . . . . . . 22 ( = 𝑖 → (((𝑢) supp (0g𝐿)) × {}) = (((𝑢𝑖) supp (0g𝐿)) × {𝑖}))
282281cbviunv 5038 . . . . . . . . . . . . . . . . . . . . 21 ∈ (𝑃 supp (0g𝐿))(((𝑢) supp (0g𝐿)) × {}) = 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})
283282eleq2i 2832 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑐, ⟩ ∈ ∈ (𝑃 supp (0g𝐿))(((𝑢) supp (0g𝐿)) × {}) ↔ ⟨𝑐, ⟩ ∈ 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}))
284 opeliun2xp 5751 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑐, ⟩ ∈ ∈ (𝑃 supp (0g𝐿))(((𝑢) supp (0g𝐿)) × {}) ↔ ( ∈ (𝑃 supp (0g𝐿)) ∧ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
285277, 283, 2843bitr2i 299 . . . . . . . . . . . . . . . . . . 19 (𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ↔ ( ∈ (𝑃 supp (0g𝐿)) ∧ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
286285notbii 320 . . . . . . . . . . . . . . . . . 18 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ↔ ¬ ( ∈ (𝑃 supp (0g𝐿)) ∧ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
287 ianor 984 . . . . . . . . . . . . . . . . . 18 (¬ ( ∈ (𝑃 supp (0g𝐿)) ∧ 𝑐 ∈ ((𝑢) supp (0g𝐿))) ↔ (¬ ∈ (𝑃 supp (0g𝐿)) ∨ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
288286, 287sylbb 219 . . . . . . . . . . . . . . . . 17 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) → (¬ ∈ (𝑃 supp (0g𝐿)) ∨ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
289288adantl 481 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → (¬ ∈ (𝑃 supp (0g𝐿)) ∨ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
290256, 276, 289mpjaodan 961 . . . . . . . . . . . . . . 15 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = (0g𝐿))
291290oveq1d 7444 . . . . . . . . . . . . . 14 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = ((0g𝐿)(.r𝐿)𝑐))
292118ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → 𝐿 ∈ Ring)
293203ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → 𝑐 ∈ (Base‘𝐿))
29429, 19, 5, 292, 293ringlzd 20284 . . . . . . . . . . . . . 14 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → ((0g𝐿)(.r𝐿)𝑐) = (0g𝐿))
295291, 294eqtrd 2776 . . . . . . . . . . . . 13 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
296295an42ds 32459 . . . . . . . . . . . 12 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ 𝐻) ∧ 𝑐𝐵) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
297296an32s 652 . . . . . . . . . . 11 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ 𝑐𝐵) ∧ 𝐻) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
298297anasss 466 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ (𝑐𝐵𝐻)) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
299298an32s 652 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ (𝑐𝐵𝐻)) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
300299anasss 466 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ ((𝑐𝐵𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}))) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
30129, 5, 196, 4, 154, 206, 233, 300gsumcom3 19992 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝑐𝐵 ↦ (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))) = (𝐿 Σg (𝐻 ↦ (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))))
302191, 195, 3013eqtr4d 2786 . . . . . 6 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑐𝐵 ↦ (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))))
303118adantr 480 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐿 ∈ Ring)
30429, 5, 19, 303, 12, 203, 201, 86gsummulc1 20305 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))) = ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))
305304mpteq2dva 5240 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑐𝐵 ↦ (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐)))) = (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐)))
306305oveq2d 7445 . . . . . 6 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝑐𝐵 ↦ (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))) = (𝐿 Σg (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))))
307117, 302, 3063eqtrd 2780 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑋 = (𝐿 Σg (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))))
30851, 162oveq12d 7447 . . . . . . . . . . 11 (𝑓 = → ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)) = ((𝑃)(.r𝐿)((𝑢)‘𝑏)))
309308cbvmptv 5253 . . . . . . . . . 10 (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))) = (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑏)))
310182oveq2d 7445 . . . . . . . . . . 11 (𝑏 = 𝑐 → ((𝑃)(.r𝐿)((𝑢)‘𝑏)) = ((𝑃)(.r𝐿)((𝑢)‘𝑐)))
311310mpteq2dv 5242 . . . . . . . . . 10 (𝑏 = 𝑐 → (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑏))) = (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))
312309, 311eqtrid 2788 . . . . . . . . 9 (𝑏 = 𝑐 → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))) = (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))
313312oveq2d 7445 . . . . . . . 8 (𝑏 = 𝑐 → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))) = (𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐)))))
314313, 183oveq12d 7447 . . . . . . 7 (𝑏 = 𝑐 → ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏) = ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))
315314cbvmptv 5253 . . . . . 6 (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏)) = (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))
316315oveq2i 7440 . . . . 5 (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))) = (𝐿 Σg (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐)))
317307, 316eqtr4di 2794 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))))
318115, 317jca 511 . . 3 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏)))))
31990, 110, 318rspcedvd 3623 . 2 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))))
320 breq1 5144 . . . 4 (𝑒 = (𝑢𝑓) → (𝑒 finSupp (0g𝐿) ↔ (𝑢𝑓) finSupp (0g𝐿)))
321 fveq1 6903 . . . . . . . 8 (𝑒 = (𝑢𝑓) → (𝑒𝑏) = ((𝑢𝑓)‘𝑏))
322321oveq1d 7444 . . . . . . 7 (𝑒 = (𝑢𝑓) → ((𝑒𝑏)(.r𝐿)𝑏) = (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))
323322mpteq2dv 5242 . . . . . 6 (𝑒 = (𝑢𝑓) → (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)) = (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))
324323oveq2d 7445 . . . . 5 (𝑒 = (𝑢𝑓) → (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))
325324eqeq2d 2747 . . . 4 (𝑒 = (𝑢𝑓) → (𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))) ↔ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))))
326320, 325anbi12d 632 . . 3 (𝑒 = (𝑢𝑓) → ((𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)))) ↔ ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))))
327 ovexd 7464 . . 3 (𝜑 → (𝐹m 𝐵) ∈ V)
328 eqid 2736 . . . . . . . . . 10 (LSpan‘((subringAlg ‘𝐽)‘𝐹)) = (LSpan‘((subringAlg ‘𝐽)‘𝐹))
329139, 140, 328lbssp 21070 . . . . . . . . 9 (𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
3303, 329syl 17 . . . . . . . 8 (𝜑 → ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
331144, 66, 3303eqtr4rd 2787 . . . . . . 7 (𝜑 → ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) = 𝐻)
332331eleq2d 2826 . . . . . 6 (𝜑 → (𝑓 ∈ ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) ↔ 𝑓𝐻))
333 eqid 2736 . . . . . . 7 (Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = (Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹)))
334 eqid 2736 . . . . . . 7 (Scalar‘((subringAlg ‘𝐽)‘𝐹)) = (Scalar‘((subringAlg ‘𝐽)‘𝐹))
335 eqid 2736 . . . . . . 7 (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹)))
336 eqid 2736 . . . . . . 7 ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)) = ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))
337 sdrgsubrg 20784 . . . . . . . . 9 (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ∈ (SubRing‘𝐽))
33858, 337syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (SubRing‘𝐽))
339 eqid 2736 . . . . . . . . 9 ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹)
340339sralmod 21186 . . . . . . . 8 (𝐹 ∈ (SubRing‘𝐽) → ((subringAlg ‘𝐽)‘𝐹) ∈ LMod)
341338, 340syl 17 . . . . . . 7 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) ∈ LMod)
342328, 139, 333, 334, 335, 336, 341, 142ellspds 33383 . . . . . 6 (𝜑 → (𝑓 ∈ ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) ↔ ∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))))
343332, 342bitr3d 281 . . . . 5 (𝜑 → (𝑓𝐻 ↔ ∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))))
344343biimpa 476 . . . 4 ((𝜑𝑓𝐻) → ∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)))))
345 eqid 2736 . . . . . . . . . 10 (𝐽s 𝐹) = (𝐽s 𝐹)
346345, 59ressbas2 17279 . . . . . . . . 9 (𝐹 ⊆ (Base‘𝐽) → 𝐹 = (Base‘(𝐽s 𝐹)))
34761, 346syl 17 . . . . . . . 8 (𝜑𝐹 = (Base‘(𝐽s 𝐹)))
348143, 61srasca 21175 . . . . . . . . 9 (𝜑 → (𝐽s 𝐹) = (Scalar‘((subringAlg ‘𝐽)‘𝐹)))
349348fveq2d 6908 . . . . . . . 8 (𝜑 → (Base‘(𝐽s 𝐹)) = (Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))))
350347, 349eqtr2d 2777 . . . . . . 7 (𝜑 → (Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = 𝐹)
351350oveq1d 7444 . . . . . 6 (𝜑 → ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵) = (𝐹m 𝐵))
352 sdrgsubrg 20784 . . . . . . . . . . . 12 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ∈ (SubRing‘𝐿))
35311, 352syl 17 . . . . . . . . . . 11 (𝜑𝐻 ∈ (SubRing‘𝐿))
354 subrgsubg 20569 . . . . . . . . . . 11 (𝐻 ∈ (SubRing‘𝐿) → 𝐻 ∈ (SubGrp‘𝐿))
35564, 5subg0 19146 . . . . . . . . . . 11 (𝐻 ∈ (SubGrp‘𝐿) → (0g𝐿) = (0g𝐽))
356353, 354, 3553syl 18 . . . . . . . . . 10 (𝜑 → (0g𝐿) = (0g𝐽))
35764sdrgdrng 20783 . . . . . . . . . . . . . . 15 (𝐻 ∈ (SubDRing‘𝐿) → 𝐽 ∈ DivRing)
35811, 357syl 17 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ DivRing)
359358drngringd 20729 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Ring)
360359ringcmnd 20273 . . . . . . . . . . . 12 (𝜑𝐽 ∈ CMnd)
361360cmnmndd 19818 . . . . . . . . . . 11 (𝜑𝐽 ∈ Mnd)
362 subrgsubg 20569 . . . . . . . . . . . 12 (𝐹 ∈ (SubRing‘𝐽) → 𝐹 ∈ (SubGrp‘𝐽))
363 eqid 2736 . . . . . . . . . . . . 13 (0g𝐽) = (0g𝐽)
364363subg0cl 19148 . . . . . . . . . . . 12 (𝐹 ∈ (SubGrp‘𝐽) → (0g𝐽) ∈ 𝐹)
365338, 362, 3643syl 18 . . . . . . . . . . 11 (𝜑 → (0g𝐽) ∈ 𝐹)
366345, 59, 363ress0g 18771 . . . . . . . . . . 11 ((𝐽 ∈ Mnd ∧ (0g𝐽) ∈ 𝐹𝐹 ⊆ (Base‘𝐽)) → (0g𝐽) = (0g‘(𝐽s 𝐹)))
367361, 365, 61, 366syl3anc 1373 . . . . . . . . . 10 (𝜑 → (0g𝐽) = (0g‘(𝐽s 𝐹)))
368348fveq2d 6908 . . . . . . . . . 10 (𝜑 → (0g‘(𝐽s 𝐹)) = (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))))
369356, 367, 3683eqtrrd 2781 . . . . . . . . 9 (𝜑 → (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = (0g𝐿))
370369breq2d 5153 . . . . . . . 8 (𝜑 → (𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↔ 𝑒 finSupp (0g𝐿)))
371370adantr 480 . . . . . . 7 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↔ 𝑒 finSupp (0g𝐿)))
3723adantr 480 . . . . . . . . . 10 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
373 subgsubm 19162 . . . . . . . . . . . 12 (𝐻 ∈ (SubGrp‘𝐿) → 𝐻 ∈ (SubMnd‘𝐿))
374353, 354, 3733syl 18 . . . . . . . . . . 11 (𝜑𝐻 ∈ (SubMnd‘𝐿))
375374adantr 480 . . . . . . . . . 10 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐻 ∈ (SubMnd‘𝐿))
37664, 19ressmulr 17347 . . . . . . . . . . . . . . . 16 (𝐻 ∈ (SubDRing‘𝐿) → (.r𝐿) = (.r𝐽))
37711, 376syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (.r𝐿) = (.r𝐽))
378143, 61sravsca 21177 . . . . . . . . . . . . . . 15 (𝜑 → (.r𝐽) = ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)))
379377, 378eqtrd 2776 . . . . . . . . . . . . . 14 (𝜑 → (.r𝐿) = ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)))
380379ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → (.r𝐿) = ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)))
381380oveqd 7446 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → ((𝑒𝑏)(.r𝐿)𝑏) = ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))
382353ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → 𝐻 ∈ (SubRing‘𝐿))
38367ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → 𝐹𝐻)
38425adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐹 ∈ (SubDRing‘𝐼))
385351eleq2d 2826 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵) ↔ 𝑒 ∈ (𝐹m 𝐵)))
386385biimpa 476 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝑒 ∈ (𝐹m 𝐵))
387372, 384, 386elmaprd 32678 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝑒:𝐵𝐹)
388387ffvelcdmda 7102 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → (𝑒𝑏) ∈ 𝐹)
389383, 388sseldd 3983 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → (𝑒𝑏) ∈ 𝐻)
390146adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐵𝐻)
391390sselda 3982 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → 𝑏𝐻)
39219, 382, 389, 391subrgmcld 33225 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → ((𝑒𝑏)(.r𝐿)𝑏) ∈ 𝐻)
393381, 392eqeltrrd 2841 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏) ∈ 𝐻)
394393fmpttd 7133 . . . . . . . . . 10 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)):𝐵𝐻)
395372, 375, 394, 64gsumsubm 18844 . . . . . . . . 9 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (𝐽 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))
396377, 378eqtr2d 2777 . . . . . . . . . . . . 13 (𝜑 → ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)) = (.r𝐿))
397396adantr 480 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)) = (.r𝐿))
398397oveqd 7446 . . . . . . . . . . 11 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏) = ((𝑒𝑏)(.r𝐿)𝑏))
399398mpteq2dv 5242 . . . . . . . . . 10 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)) = (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)))
400399oveq2d 7445 . . . . . . . . 9 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))
4013mptexd 7242 . . . . . . . . . . 11 (𝜑 → (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)) ∈ V)
402 fvexd 6919 . . . . . . . . . . 11 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) ∈ V)
403339, 401, 358, 402, 61gsumsra 33035 . . . . . . . . . 10 (𝜑 → (𝐽 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))
404403adantr 480 . . . . . . . . 9 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝐽 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))
405395, 400, 4043eqtr3rd 2785 . . . . . . . 8 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))
406405eqeq2d 2747 . . . . . . 7 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) ↔ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)))))
407371, 406anbi12d 632 . . . . . 6 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → ((𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)))) ↔ (𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))))
408351, 407rexeqbidva 3332 . . . . 5 (𝜑 → (∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)))) ↔ ∃𝑒 ∈ (𝐹m 𝐵)(𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))))
409408adantr 480 . . . 4 ((𝜑𝑓𝐻) → (∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)))) ↔ ∃𝑒 ∈ (𝐹m 𝐵)(𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))))
410344, 409mpbid 232 . . 3 ((𝜑𝑓𝐻) → ∃𝑒 ∈ (𝐹m 𝐵)(𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)))))
411326, 11, 327, 410ac6mapd 32624 . 2 (𝜑 → ∃𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))))
412319, 411r19.29a 3161 1 (𝜑 → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wral 3060  wrex 3069  Vcvv 3479  cun 3948  wss 3950  {csn 4624  cop 4630   ciun 4989   class class class wbr 5141  cmpt 5223   × cxp 5681   Fn wfn 6554  wf 6555  cfv 6559  (class class class)co 7429   supp csupp 8181  m cmap 8862  Fincfn 8981   finSupp cfsupp 9397  Basecbs 17243  s cress 17270  .rcmulr 17294  Scalarcsca 17296   ·𝑠 cvsca 17297  0gc0g 17480   Σg cgsu 17481  Mndcmnd 18743  SubMndcsubmnd 18791  SubGrpcsubg 19134  CMndccmn 19794  Ringcrg 20226  SubRingcsubrg 20561  RingSpancrgspn 20602  DivRingcdr 20721  Fieldcfield 20722  SubDRingcsdrg 20779  LModclmod 20850  LSpanclspn 20961  LBasisclbs 21065  subringAlg csra 21162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-reg 9628  ax-inf2 9677  ax-ac2 10499  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4906  df-int 4945  df-iun 4991  df-iin 4992  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-se 5636  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-isom 6568  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-of 7694  df-om 7884  df-1st 8010  df-2nd 8011  df-supp 8182  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-1o 8502  df-2o 8503  df-er 8741  df-map 8864  df-ixp 8934  df-en 8982  df-dom 8983  df-sdom 8984  df-fin 8985  df-fsupp 9398  df-sup 9478  df-oi 9546  df-r1 9800  df-rank 9801  df-card 9975  df-ac 10152  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-nn 12263  df-2 12325  df-3 12326  df-4 12327  df-5 12328  df-6 12329  df-7 12330  df-8 12331  df-9 12332  df-n0 12523  df-z 12610  df-dec 12730  df-uz 12875  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17244  df-ress 17271  df-plusg 17306  df-mulr 17307  df-sca 17309  df-vsca 17310  df-ip 17311  df-tset 17312  df-ple 17313  df-ds 17315  df-hom 17317  df-cco 17318  df-0g 17482  df-gsum 17483  df-prds 17488  df-pws 17490  df-mre 17625  df-mrc 17626  df-acs 17628  df-mgm 18649  df-sgrp 18728  df-mnd 18744  df-mhm 18792  df-submnd 18793  df-grp 18950  df-minusg 18951  df-sbg 18952  df-mulg 19082  df-subg 19137  df-ghm 19227  df-cntz 19331  df-cmn 19796  df-abl 19797  df-mgp 20134  df-rng 20146  df-ur 20175  df-ring 20228  df-nzr 20505  df-subrng 20538  df-subrg 20562  df-drng 20723  df-field 20724  df-sdrg 20780  df-lmod 20852  df-lss 20922  df-lsp 20962  df-lmhm 21013  df-lbs 21066  df-sra 21164  df-rgmod 21165  df-dsmm 21744  df-frlm 21759  df-uvc 21795
This theorem is referenced by:  fldextrspunlsp  33709
  Copyright terms: Public domain W3C validator