Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspunlsplem Structured version   Visualization version   GIF version

Theorem fldextrspunlsplem 33659
Description: Lemma for fldextrspunlsp 33660: First direction. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
fldextrspunfld.k 𝐾 = (𝐿s 𝐹)
fldextrspunfld.i 𝐼 = (𝐿s 𝐺)
fldextrspunfld.j 𝐽 = (𝐿s 𝐻)
fldextrspunfld.2 (𝜑𝐿 ∈ Field)
fldextrspunfld.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspunfld.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspunfld.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspunfld.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspunlsp.n 𝑁 = (RingSpan‘𝐿)
fldextrspunlsp.c 𝐶 = (𝑁‘(𝐺𝐻))
fldextrspunlsp.e 𝐸 = (𝐿s 𝐶)
fldextrspunlsp.1 (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
fldextrspunlsp.2 (𝜑𝐵 ∈ Fin)
fldextrspunlsplem.2 (𝜑𝑃:𝐻𝐺)
fldextrspunlsplem.3 (𝜑𝑃 finSupp (0g𝐿))
fldextrspunlsplem.4 (𝜑𝑋 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))))
Assertion
Ref Expression
fldextrspunlsplem (𝜑 → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))))
Distinct variable groups:   𝐵,𝑎,𝑏,𝑓   𝐹,𝑎,𝑏,𝑓   𝐺,𝑎,𝑓   𝐻,𝑎,𝑏,𝑓   𝐽,𝑏   𝐾,𝑎,𝑏,𝑓   𝐿,𝑎,𝑏,𝑓   𝑃,𝑎,𝑏,𝑓   𝑋,𝑎   𝜑,𝑎,𝑏,𝑓
Allowed substitution hints:   𝐶(𝑓,𝑎,𝑏)   𝐸(𝑓,𝑎,𝑏)   𝐺(𝑏)   𝐼(𝑓,𝑎,𝑏)   𝐽(𝑓,𝑎)   𝑁(𝑓,𝑎,𝑏)   𝑋(𝑓,𝑏)

Proof of Theorem fldextrspunlsplem
Dummy variables 𝑐 𝑢 𝑒 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextrspunfld.5 . . . . 5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
21ad2antrr 726 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐺 ∈ (SubDRing‘𝐿))
3 fldextrspunlsp.1 . . . . 5 (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
43ad2antrr 726 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
5 eqid 2729 . . . . . 6 (0g𝐿) = (0g𝐿)
6 fldextrspunfld.2 . . . . . . . . . 10 (𝜑𝐿 ∈ Field)
76flddrngd 20645 . . . . . . . . 9 (𝜑𝐿 ∈ DivRing)
87drngringd 20641 . . . . . . . 8 (𝜑𝐿 ∈ Ring)
98ringcmnd 20188 . . . . . . 7 (𝜑𝐿 ∈ CMnd)
109ad3antrrr 730 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐿 ∈ CMnd)
11 fldextrspunfld.6 . . . . . . 7 (𝜑𝐻 ∈ (SubDRing‘𝐿))
1211ad3antrrr 730 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐻 ∈ (SubDRing‘𝐿))
13 sdrgsubrg 20695 . . . . . . . . 9 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
141, 13syl 17 . . . . . . . 8 (𝜑𝐺 ∈ (SubRing‘𝐿))
15 subrgsubg 20481 . . . . . . . 8 (𝐺 ∈ (SubRing‘𝐿) → 𝐺 ∈ (SubGrp‘𝐿))
16 subgsubm 19046 . . . . . . . 8 (𝐺 ∈ (SubGrp‘𝐿) → 𝐺 ∈ (SubMnd‘𝐿))
1714, 15, 163syl 18 . . . . . . 7 (𝜑𝐺 ∈ (SubMnd‘𝐿))
1817ad3antrrr 730 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐺 ∈ (SubMnd‘𝐿))
19 eqid 2729 . . . . . . . . 9 (.r𝐿) = (.r𝐿)
2014ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐺 ∈ (SubRing‘𝐿))
21 fldextrspunlsplem.2 . . . . . . . . . . 11 (𝜑𝑃:𝐻𝐺)
2221ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑃:𝐻𝐺)
23 simpr 484 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑓𝐻)
2422, 23ffvelcdmd 7023 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → (𝑃𝑓) ∈ 𝐺)
25 fldextrspunfld.3 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (SubDRing‘𝐼))
26 eqid 2729 . . . . . . . . . . . . . 14 (Base‘𝐼) = (Base‘𝐼)
2726sdrgss 20697 . . . . . . . . . . . . 13 (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ⊆ (Base‘𝐼))
2825, 27syl 17 . . . . . . . . . . . 12 (𝜑𝐹 ⊆ (Base‘𝐼))
29 eqid 2729 . . . . . . . . . . . . . . 15 (Base‘𝐿) = (Base‘𝐿)
3029sdrgss 20697 . . . . . . . . . . . . . 14 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
311, 30syl 17 . . . . . . . . . . . . 13 (𝜑𝐺 ⊆ (Base‘𝐿))
32 fldextrspunfld.i . . . . . . . . . . . . . 14 𝐼 = (𝐿s 𝐺)
3332, 29ressbas2 17168 . . . . . . . . . . . . 13 (𝐺 ⊆ (Base‘𝐿) → 𝐺 = (Base‘𝐼))
3431, 33syl 17 . . . . . . . . . . . 12 (𝜑𝐺 = (Base‘𝐼))
3528, 34sseqtrrd 3975 . . . . . . . . . . 11 (𝜑𝐹𝐺)
3635ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐹𝐺)
373ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
3825ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐹 ∈ (SubDRing‘𝐼))
3911ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐻 ∈ (SubDRing‘𝐿))
40 ovexd 7388 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → (𝐹m 𝐵) ∈ V)
41 simpllr 775 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
4239, 40, 41elmaprd 32641 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑢:𝐻⟶(𝐹m 𝐵))
4342, 23ffvelcdmd 7023 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → (𝑢𝑓) ∈ (𝐹m 𝐵))
4437, 38, 43elmaprd 32641 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → (𝑢𝑓):𝐵𝐹)
45 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑐𝐵)
4644, 45ffvelcdmd 7023 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → ((𝑢𝑓)‘𝑐) ∈ 𝐹)
4736, 46sseldd 3938 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → ((𝑢𝑓)‘𝑐) ∈ 𝐺)
4819, 20, 24, 47subrgmcld 33192 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)) ∈ 𝐺)
4948fmpttd 7053 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))):𝐻𝐺)
5049adantlr 715 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))):𝐻𝐺)
51 fveq2 6826 . . . . . . . . 9 (𝑓 = → (𝑃𝑓) = (𝑃))
52 fveq2 6826 . . . . . . . . . 10 (𝑓 = → (𝑢𝑓) = (𝑢))
5352fveq1d 6828 . . . . . . . . 9 (𝑓 = → ((𝑢𝑓)‘𝑐) = ((𝑢)‘𝑐))
5451, 53oveq12d 7371 . . . . . . . 8 (𝑓 = → ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)) = ((𝑃)(.r𝐿)((𝑢)‘𝑐)))
5554cbvmptv 5199 . . . . . . 7 (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))) = (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐)))
56 fvexd 6841 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (0g𝐿) ∈ V)
57 ssidd 3961 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐻𝐻)
58 fldextrspunfld.4 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (SubDRing‘𝐽))
59 eqid 2729 . . . . . . . . . . . . . 14 (Base‘𝐽) = (Base‘𝐽)
6059sdrgss 20697 . . . . . . . . . . . . 13 (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ⊆ (Base‘𝐽))
6158, 60syl 17 . . . . . . . . . . . 12 (𝜑𝐹 ⊆ (Base‘𝐽))
6229sdrgss 20697 . . . . . . . . . . . . . 14 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
6311, 62syl 17 . . . . . . . . . . . . 13 (𝜑𝐻 ⊆ (Base‘𝐿))
64 fldextrspunfld.j . . . . . . . . . . . . . 14 𝐽 = (𝐿s 𝐻)
6564, 29ressbas2 17168 . . . . . . . . . . . . 13 (𝐻 ⊆ (Base‘𝐿) → 𝐻 = (Base‘𝐽))
6663, 65syl 17 . . . . . . . . . . . 12 (𝜑𝐻 = (Base‘𝐽))
6761, 66sseqtrrd 3975 . . . . . . . . . . 11 (𝜑𝐹𝐻)
6867, 63sstrd 3948 . . . . . . . . . 10 (𝜑𝐹 ⊆ (Base‘𝐿))
6968ad4antr 732 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐹 ⊆ (Base‘𝐿))
703ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
7158ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐹 ∈ (SubDRing‘𝐽))
72 ovexd 7388 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐹m 𝐵) ∈ V)
73 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
7412, 72, 73elmaprd 32641 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑢:𝐻⟶(𝐹m 𝐵))
7574ffvelcdmda 7022 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (𝑢) ∈ (𝐹m 𝐵))
7670, 71, 75elmaprd 32641 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (𝑢):𝐵𝐹)
77 simplr 768 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝑐𝐵)
7876, 77ffvelcdmd 7023 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → ((𝑢)‘𝑐) ∈ 𝐹)
7969, 78sseldd 3938 . . . . . . . 8 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → ((𝑢)‘𝑐) ∈ (Base‘𝐿))
8021ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑃:𝐻𝐺)
81 fldextrspunlsplem.3 . . . . . . . . 9 (𝜑𝑃 finSupp (0g𝐿))
8281ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑃 finSupp (0g𝐿))
838ad4antr 732 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝐿 ∈ Ring)
84 simpr 484 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝑦 ∈ (Base‘𝐿))
8529, 19, 5, 83, 84ringlzd 20199 . . . . . . . 8 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝑦 ∈ (Base‘𝐿)) → ((0g𝐿)(.r𝐿)𝑦) = (0g𝐿))
8656, 56, 12, 57, 79, 80, 82, 85fisuppov1 32644 . . . . . . 7 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))) finSupp (0g𝐿))
8755, 86eqbrtrid 5130 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))) finSupp (0g𝐿))
885, 10, 12, 18, 50, 87gsumsubmcl 19817 . . . . 5 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))) ∈ 𝐺)
8988fmpttd 7053 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))):𝐵𝐺)
902, 4, 89elmapdd 8775 . . 3 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) ∈ (𝐺m 𝐵))
91 breq1 5098 . . . . . 6 (𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) → (𝑎 finSupp (0g𝐿) ↔ (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿)))
9291adantl 481 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → (𝑎 finSupp (0g𝐿) ↔ (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿)))
93 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))))
9493fveq1d 6828 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → (𝑎𝑏) = ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))‘𝑏))
95 eqid 2729 . . . . . . . . . . . 12 (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))
96 fveq2 6826 . . . . . . . . . . . . . . 15 (𝑐 = 𝑏 → ((𝑢𝑓)‘𝑐) = ((𝑢𝑓)‘𝑏))
9796oveq2d 7369 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)) = ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))
9897mpteq2dv 5189 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))) = (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))
9998oveq2d 7369 . . . . . . . . . . . 12 (𝑐 = 𝑏 → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))) = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))))
100 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑏𝐵) → 𝑏𝐵)
101 ovexd 7388 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑏𝐵) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))) ∈ V)
10295, 99, 100, 101fvmptd3 6957 . . . . . . . . . . 11 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑏𝐵) → ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))‘𝑏) = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))))
103102adantlr 715 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))‘𝑏) = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))))
10494, 103eqtrd 2764 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → (𝑎𝑏) = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))))
105104oveq1d 7368 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → ((𝑎𝑏)(.r𝐿)𝑏) = ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))
106105mpteq2dva 5188 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)) = (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏)))
107106oveq2d 7369 . . . . . 6 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))))
108107eqeq2d 2740 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → (𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏))) ↔ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏)))))
10992, 108anbi12d 632 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → ((𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))) ↔ ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))))))
110109adantlr 715 . . 3 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → ((𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))) ↔ ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))))))
111 fldextrspunlsp.2 . . . . . 6 (𝜑𝐵 ∈ Fin)
112111ad2antrr 726 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐵 ∈ Fin)
113 ovexd 7388 . . . . 5 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))) ∈ V)
114 fvexd 6841 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (0g𝐿) ∈ V)
11595, 112, 113, 114fsuppmptdm 9285 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿))
116 fldextrspunlsplem.4 . . . . . . 7 (𝜑𝑋 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))))
117116ad2antrr 726 . . . . . 6 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑋 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))))
1188ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐿 ∈ Ring)
119118adantr 480 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐿 ∈ Ring)
1203ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
12131ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐺 ⊆ (Base‘𝐿))
12221ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑃:𝐻𝐺)
123122ffvelcdmda 7022 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑃) ∈ 𝐺)
124121, 123sseldd 3938 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑃) ∈ (Base‘𝐿))
125119adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐿 ∈ Ring)
12668ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐹 ⊆ (Base‘𝐿))
1273ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
12858ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐹 ∈ (SubDRing‘𝐽))
12911ad4antr 732 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐻 ∈ (SubDRing‘𝐿))
130 ovexd 7388 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (𝐹m 𝐵) ∈ V)
131 simp-4r 783 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
132129, 130, 131elmaprd 32641 . . . . . . . . . . . . . . . 16 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝑢:𝐻⟶(𝐹m 𝐵))
133 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐻)
134132, 133ffvelcdmd 7023 . . . . . . . . . . . . . . 15 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (𝑢) ∈ (𝐹m 𝐵))
135127, 128, 134elmaprd 32641 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (𝑢):𝐵𝐹)
136 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝑐𝐵)
137135, 136ffvelcdmd 7023 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → ((𝑢)‘𝑐) ∈ 𝐹)
138126, 137sseldd 3938 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → ((𝑢)‘𝑐) ∈ (Base‘𝐿))
139 eqid 2729 . . . . . . . . . . . . . . . . . 18 (Base‘((subringAlg ‘𝐽)‘𝐹)) = (Base‘((subringAlg ‘𝐽)‘𝐹))
140 eqid 2729 . . . . . . . . . . . . . . . . . 18 (LBasis‘((subringAlg ‘𝐽)‘𝐹)) = (LBasis‘((subringAlg ‘𝐽)‘𝐹))
141139, 140lbsss 21000 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → 𝐵 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
1423, 141syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
143 eqidd 2730 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹))
144143, 61srabase 21100 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝐽) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
14566, 144eqtr2d 2765 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘((subringAlg ‘𝐽)‘𝐹)) = 𝐻)
146142, 145sseqtrd 3974 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐻)
147146, 63sstrd 3948 . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ (Base‘𝐿))
148147ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐵 ⊆ (Base‘𝐿))
149148sselda 3937 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝑐 ∈ (Base‘𝐿))
15029, 19, 125, 138, 149ringcld 20164 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (((𝑢)‘𝑐)(.r𝐿)𝑐) ∈ (Base‘𝐿))
151 fvexd 6841 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (0g𝐿) ∈ V)
152 ssidd 3961 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐵𝐵)
15358ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐹 ∈ (SubDRing‘𝐽))
15411ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐻 ∈ (SubDRing‘𝐿))
155 ovexd 7388 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐹m 𝐵) ∈ V)
156 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
157154, 155, 156elmaprd 32641 . . . . . . . . . . . . . 14 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑢:𝐻⟶(𝐹m 𝐵))
158157ffvelcdmda 7022 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑢) ∈ (𝐹m 𝐵))
159120, 153, 158elmaprd 32641 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑢):𝐵𝐹)
16052breq1d 5105 . . . . . . . . . . . . . . 15 (𝑓 = → ((𝑢𝑓) finSupp (0g𝐿) ↔ (𝑢) finSupp (0g𝐿)))
161 id 22 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑓 = )
16252fveq1d 6828 . . . . . . . . . . . . . . . . . . 19 (𝑓 = → ((𝑢𝑓)‘𝑏) = ((𝑢)‘𝑏))
163162oveq1d 7368 . . . . . . . . . . . . . . . . . 18 (𝑓 = → (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏) = (((𝑢)‘𝑏)(.r𝐿)𝑏))
164163mpteq2dv 5189 . . . . . . . . . . . . . . . . 17 (𝑓 = → (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)) = (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏)))
165164oveq2d 7369 . . . . . . . . . . . . . . . 16 (𝑓 = → (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏))))
166161, 165eqeq12d 2745 . . . . . . . . . . . . . . 15 (𝑓 = → (𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))) ↔ = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏)))))
167160, 166anbi12d 632 . . . . . . . . . . . . . 14 (𝑓 = → (((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))) ↔ ((𝑢) finSupp (0g𝐿) ∧ = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏))))))
168 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))))
169 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐻)
170167, 168, 169rspcdva 3580 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → ((𝑢) finSupp (0g𝐿) ∧ = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏)))))
171170simpld 494 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑢) finSupp (0g𝐿))
172119adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝐿 ∈ Ring)
173 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝑦 ∈ (Base‘𝐿))
17429, 19, 5, 172, 173ringlzd 20199 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑦 ∈ (Base‘𝐿)) → ((0g𝐿)(.r𝐿)𝑦) = (0g𝐿))
175151, 151, 120, 152, 149, 159, 171, 174fisuppov1 32644 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐)) finSupp (0g𝐿))
17629, 5, 19, 119, 120, 124, 150, 175gsummulc2 20221 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝐿 Σg (𝑐𝐵 ↦ ((𝑃)(.r𝐿)(((𝑢)‘𝑐)(.r𝐿)𝑐)))) = ((𝑃)(.r𝐿)(𝐿 Σg (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐)))))
177124adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (𝑃) ∈ (Base‘𝐿))
17829, 19, 125, 177, 138, 149ringassd 20161 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = ((𝑃)(.r𝐿)(((𝑢)‘𝑐)(.r𝐿)𝑐)))
179178mpteq2dva 5188 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐)) = (𝑐𝐵 ↦ ((𝑃)(.r𝐿)(((𝑢)‘𝑐)(.r𝐿)𝑐))))
180179oveq2d 7369 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))) = (𝐿 Σg (𝑐𝐵 ↦ ((𝑃)(.r𝐿)(((𝑢)‘𝑐)(.r𝐿)𝑐)))))
181170simprd 495 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏))))
182 fveq2 6826 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → ((𝑢)‘𝑏) = ((𝑢)‘𝑐))
183 id 22 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐𝑏 = 𝑐)
184182, 183oveq12d 7371 . . . . . . . . . . . . . 14 (𝑏 = 𝑐 → (((𝑢)‘𝑏)(.r𝐿)𝑏) = (((𝑢)‘𝑐)(.r𝐿)𝑐))
185184cbvmptv 5199 . . . . . . . . . . . . 13 (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏)) = (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐))
186185oveq2i 7364 . . . . . . . . . . . 12 (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏))) = (𝐿 Σg (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐)))
187181, 186eqtrdi 2780 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → = (𝐿 Σg (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐))))
188187oveq2d 7369 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → ((𝑃)(.r𝐿)) = ((𝑃)(.r𝐿)(𝐿 Σg (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐)))))
189176, 180, 1883eqtr4rd 2775 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → ((𝑃)(.r𝐿)) = (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))
190189mpteq2dva 5188 . . . . . . . 8 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐻 ↦ ((𝑃)(.r𝐿))) = (𝐻 ↦ (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐)))))
191190oveq2d 7369 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)))) = (𝐿 Σg (𝐻 ↦ (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))))
19251, 161oveq12d 7371 . . . . . . . . . 10 (𝑓 = → ((𝑃𝑓)(.r𝐿)𝑓) = ((𝑃)(.r𝐿)))
193192cbvmptv 5199 . . . . . . . . 9 (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓)) = (𝐻 ↦ ((𝑃)(.r𝐿)))
194193oveq2i 7364 . . . . . . . 8 (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿))))
195194a1i 11 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)))))
1969ad2antrr 726 . . . . . . . 8 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐿 ∈ CMnd)
1978ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐿 ∈ Ring)
19831ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐺 ⊆ (Base‘𝐿))
19980ffvelcdmda 7022 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (𝑃) ∈ 𝐺)
200198, 199sseldd 3938 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (𝑃) ∈ (Base‘𝐿))
20129, 19, 197, 200, 79ringcld 20164 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) ∈ (Base‘𝐿))
202147ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐵 ⊆ (Base‘𝐿))
203202sselda 3937 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑐 ∈ (Base‘𝐿))
204203adantr 480 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝑐 ∈ (Base‘𝐿))
20529, 19, 197, 201, 204ringcld 20164 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) ∈ (Base‘𝐿))
206205anasss 466 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ (𝑐𝐵𝐻)) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) ∈ (Base‘𝐿))
20781fsuppimpd 9278 . . . . . . . . . . . 12 (𝜑 → (𝑃 supp (0g𝐿)) ∈ Fin)
208207ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑃 supp (0g𝐿)) ∈ Fin)
209 suppssdm 8117 . . . . . . . . . . . . . . . . . 18 (𝑃 supp (0g𝐿)) ⊆ dom 𝑃
210209, 21fssdm 6675 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃 supp (0g𝐿)) ⊆ 𝐻)
211210sseld 3936 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑓 ∈ (𝑃 supp (0g𝐿)) → 𝑓𝐻))
212211adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → (𝑓 ∈ (𝑃 supp (0g𝐿)) → 𝑓𝐻))
213 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ (𝑢𝑓) finSupp (0g𝐿)) → (𝑢𝑓) finSupp (0g𝐿))
214213fsuppimpd 9278 . . . . . . . . . . . . . . . . 17 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ (𝑢𝑓) finSupp (0g𝐿)) → ((𝑢𝑓) supp (0g𝐿)) ∈ Fin)
215214ex 412 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → ((𝑢𝑓) finSupp (0g𝐿) → ((𝑢𝑓) supp (0g𝐿)) ∈ Fin))
216215adantrd 491 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → (((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))) → ((𝑢𝑓) supp (0g𝐿)) ∈ Fin))
217212, 216imim12d 81 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → ((𝑓𝐻 → ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑓 ∈ (𝑃 supp (0g𝐿)) → ((𝑢𝑓) supp (0g𝐿)) ∈ Fin)))
218217ralimdv2 3138 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → (∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))) → ∀𝑓 ∈ (𝑃 supp (0g𝐿))((𝑢𝑓) supp (0g𝐿)) ∈ Fin))
219218imp 406 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ∀𝑓 ∈ (𝑃 supp (0g𝐿))((𝑢𝑓) supp (0g𝐿)) ∈ Fin)
220 fveq2 6826 . . . . . . . . . . . . . . 15 (𝑓 = 𝑖 → (𝑢𝑓) = (𝑢𝑖))
221220oveq1d 7368 . . . . . . . . . . . . . 14 (𝑓 = 𝑖 → ((𝑢𝑓) supp (0g𝐿)) = ((𝑢𝑖) supp (0g𝐿)))
222221eleq1d 2813 . . . . . . . . . . . . 13 (𝑓 = 𝑖 → (((𝑢𝑓) supp (0g𝐿)) ∈ Fin ↔ ((𝑢𝑖) supp (0g𝐿)) ∈ Fin))
223222cbvralvw 3207 . . . . . . . . . . . 12 (∀𝑓 ∈ (𝑃 supp (0g𝐿))((𝑢𝑓) supp (0g𝐿)) ∈ Fin ↔ ∀𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin)
224219, 223sylib 218 . . . . . . . . . . 11 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ∀𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin)
225 iunfi 9252 . . . . . . . . . . 11 (((𝑃 supp (0g𝐿)) ∈ Fin ∧ ∀𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin) → 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin)
226208, 224, 225syl2anc 584 . . . . . . . . . 10 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin)
227 xpfi 9227 . . . . . . . . . 10 (( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin ∧ (𝑃 supp (0g𝐿)) ∈ Fin) → ( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) × (𝑃 supp (0g𝐿))) ∈ Fin)
228226, 208, 227syl2anc 584 . . . . . . . . 9 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) × (𝑃 supp (0g𝐿))) ∈ Fin)
229 snssi 4762 . . . . . . . . . . . 12 (𝑖 ∈ (𝑃 supp (0g𝐿)) → {𝑖} ⊆ (𝑃 supp (0g𝐿)))
230229adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑃 supp (0g𝐿))) → {𝑖} ⊆ (𝑃 supp (0g𝐿)))
231230iunxpssiun1 32531 . . . . . . . . . 10 (𝜑 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ⊆ ( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) × (𝑃 supp (0g𝐿))))
232231ad2antrr 726 . . . . . . . . 9 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ⊆ ( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) × (𝑃 supp (0g𝐿))))
233228, 232ssfid 9170 . . . . . . . 8 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ∈ Fin)
23421ffnd 6657 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 Fn 𝐻)
235234ad6antr 736 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝑃 Fn 𝐻)
23611ad6antr 736 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐻 ∈ (SubDRing‘𝐿))
237 fvexd 6841 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (0g𝐿) ∈ V)
238 simpllr 775 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐻)
239 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ¬ ∈ (𝑃 supp (0g𝐿)))
240238, 239eldifd 3916 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ∈ (𝐻 ∖ (𝑃 supp (0g𝐿))))
241235, 236, 237, 240fvdifsupp 8111 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (𝑃) = (0g𝐿))
242241oveq1d 7368 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = ((0g𝐿)(.r𝐿)((𝑢)‘𝑐)))
2438ad6antr 736 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐿 ∈ Ring)
24468ad6antr 736 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐹 ⊆ (Base‘𝐿))
2453ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
24658ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐹 ∈ (SubDRing‘𝐽))
247 ovexd 7388 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (𝐹m 𝐵) ∈ V)
248 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
249236, 247, 248elmaprd 32641 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝑢:𝐻⟶(𝐹m 𝐵))
250249, 238ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (𝑢) ∈ (𝐹m 𝐵))
251245, 246, 250elmaprd 32641 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (𝑢):𝐵𝐹)
252 simp-4r 783 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝑐𝐵)
253251, 252ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((𝑢)‘𝑐) ∈ 𝐹)
254244, 253sseldd 3938 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((𝑢)‘𝑐) ∈ (Base‘𝐿))
25529, 19, 5, 243, 254ringlzd 20199 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((0g𝐿)(.r𝐿)((𝑢)‘𝑐)) = (0g𝐿))
256242, 255eqtrd 2764 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = (0g𝐿))
2573ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
25858ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐹 ∈ (SubDRing‘𝐽))
25911ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐻 ∈ (SubDRing‘𝐿))
260 ovexd 7388 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝐹m 𝐵) ∈ V)
261 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
262259, 260, 261elmaprd 32641 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝑢:𝐻⟶(𝐹m 𝐵))
263 simpllr 775 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐻)
264262, 263ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝑢) ∈ (𝐹m 𝐵))
265257, 258, 264elmaprd 32641 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝑢):𝐵𝐹)
266265ffnd 6657 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝑢) Fn 𝐵)
267 fvexd 6841 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (0g𝐿) ∈ V)
268 simp-4r 783 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝑐𝐵)
269 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿)))
270268, 269eldifd 3916 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝑐 ∈ (𝐵 ∖ ((𝑢) supp (0g𝐿))))
271266, 257, 267, 270fvdifsupp 8111 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ((𝑢)‘𝑐) = (0g𝐿))
272271oveq2d 7369 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = ((𝑃)(.r𝐿)(0g𝐿)))
273197ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐿 ∈ Ring)
274200ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝑃) ∈ (Base‘𝐿))
27529, 19, 5, 273, 274ringrzd 20200 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ((𝑃)(.r𝐿)(0g𝐿)) = (0g𝐿))
276272, 275eqtrd 2764 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = (0g𝐿))
277 df-br 5096 . . . . . . . . . . . . . . . . . . . 20 (𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ↔ ⟨𝑐, ⟩ ∈ 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}))
278 fveq2 6826 . . . . . . . . . . . . . . . . . . . . . . . 24 ( = 𝑖 → (𝑢) = (𝑢𝑖))
279278oveq1d 7368 . . . . . . . . . . . . . . . . . . . . . . 23 ( = 𝑖 → ((𝑢) supp (0g𝐿)) = ((𝑢𝑖) supp (0g𝐿)))
280 sneq 4589 . . . . . . . . . . . . . . . . . . . . . . 23 ( = 𝑖 → {} = {𝑖})
281279, 280xpeq12d 5654 . . . . . . . . . . . . . . . . . . . . . 22 ( = 𝑖 → (((𝑢) supp (0g𝐿)) × {}) = (((𝑢𝑖) supp (0g𝐿)) × {𝑖}))
282281cbviunv 4992 . . . . . . . . . . . . . . . . . . . . 21 ∈ (𝑃 supp (0g𝐿))(((𝑢) supp (0g𝐿)) × {}) = 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})
283282eleq2i 2820 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑐, ⟩ ∈ ∈ (𝑃 supp (0g𝐿))(((𝑢) supp (0g𝐿)) × {}) ↔ ⟨𝑐, ⟩ ∈ 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}))
284 opeliun2xp 5691 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑐, ⟩ ∈ ∈ (𝑃 supp (0g𝐿))(((𝑢) supp (0g𝐿)) × {}) ↔ ( ∈ (𝑃 supp (0g𝐿)) ∧ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
285277, 283, 2843bitr2i 299 . . . . . . . . . . . . . . . . . . 19 (𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ↔ ( ∈ (𝑃 supp (0g𝐿)) ∧ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
286285notbii 320 . . . . . . . . . . . . . . . . . 18 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ↔ ¬ ( ∈ (𝑃 supp (0g𝐿)) ∧ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
287 ianor 983 . . . . . . . . . . . . . . . . . 18 (¬ ( ∈ (𝑃 supp (0g𝐿)) ∧ 𝑐 ∈ ((𝑢) supp (0g𝐿))) ↔ (¬ ∈ (𝑃 supp (0g𝐿)) ∨ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
288286, 287sylbb 219 . . . . . . . . . . . . . . . . 17 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) → (¬ ∈ (𝑃 supp (0g𝐿)) ∨ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
289288adantl 481 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → (¬ ∈ (𝑃 supp (0g𝐿)) ∨ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
290256, 276, 289mpjaodan 960 . . . . . . . . . . . . . . 15 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = (0g𝐿))
291290oveq1d 7368 . . . . . . . . . . . . . 14 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = ((0g𝐿)(.r𝐿)𝑐))
292118ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → 𝐿 ∈ Ring)
293203ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → 𝑐 ∈ (Base‘𝐿))
29429, 19, 5, 292, 293ringlzd 20199 . . . . . . . . . . . . . 14 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → ((0g𝐿)(.r𝐿)𝑐) = (0g𝐿))
295291, 294eqtrd 2764 . . . . . . . . . . . . 13 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
296295an42ds 32413 . . . . . . . . . . . 12 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ 𝐻) ∧ 𝑐𝐵) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
297296an32s 652 . . . . . . . . . . 11 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ 𝑐𝐵) ∧ 𝐻) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
298297anasss 466 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ (𝑐𝐵𝐻)) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
299298an32s 652 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ (𝑐𝐵𝐻)) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
300299anasss 466 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ ((𝑐𝐵𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}))) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
30129, 5, 196, 4, 154, 206, 233, 300gsumcom3 19876 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝑐𝐵 ↦ (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))) = (𝐿 Σg (𝐻 ↦ (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))))
302191, 195, 3013eqtr4d 2774 . . . . . 6 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑐𝐵 ↦ (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))))
303118adantr 480 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐿 ∈ Ring)
30429, 5, 19, 303, 12, 203, 201, 86gsummulc1 20220 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))) = ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))
305304mpteq2dva 5188 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑐𝐵 ↦ (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐)))) = (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐)))
306305oveq2d 7369 . . . . . 6 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝑐𝐵 ↦ (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))) = (𝐿 Σg (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))))
307117, 302, 3063eqtrd 2768 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑋 = (𝐿 Σg (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))))
30851, 162oveq12d 7371 . . . . . . . . . . 11 (𝑓 = → ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)) = ((𝑃)(.r𝐿)((𝑢)‘𝑏)))
309308cbvmptv 5199 . . . . . . . . . 10 (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))) = (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑏)))
310182oveq2d 7369 . . . . . . . . . . 11 (𝑏 = 𝑐 → ((𝑃)(.r𝐿)((𝑢)‘𝑏)) = ((𝑃)(.r𝐿)((𝑢)‘𝑐)))
311310mpteq2dv 5189 . . . . . . . . . 10 (𝑏 = 𝑐 → (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑏))) = (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))
312309, 311eqtrid 2776 . . . . . . . . 9 (𝑏 = 𝑐 → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))) = (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))
313312oveq2d 7369 . . . . . . . 8 (𝑏 = 𝑐 → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))) = (𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐)))))
314313, 183oveq12d 7371 . . . . . . 7 (𝑏 = 𝑐 → ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏) = ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))
315314cbvmptv 5199 . . . . . 6 (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏)) = (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))
316315oveq2i 7364 . . . . 5 (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))) = (𝐿 Σg (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐)))
317307, 316eqtr4di 2782 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))))
318115, 317jca 511 . . 3 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏)))))
31990, 110, 318rspcedvd 3581 . 2 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))))
320 breq1 5098 . . . 4 (𝑒 = (𝑢𝑓) → (𝑒 finSupp (0g𝐿) ↔ (𝑢𝑓) finSupp (0g𝐿)))
321 fveq1 6825 . . . . . . . 8 (𝑒 = (𝑢𝑓) → (𝑒𝑏) = ((𝑢𝑓)‘𝑏))
322321oveq1d 7368 . . . . . . 7 (𝑒 = (𝑢𝑓) → ((𝑒𝑏)(.r𝐿)𝑏) = (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))
323322mpteq2dv 5189 . . . . . 6 (𝑒 = (𝑢𝑓) → (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)) = (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))
324323oveq2d 7369 . . . . 5 (𝑒 = (𝑢𝑓) → (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))
325324eqeq2d 2740 . . . 4 (𝑒 = (𝑢𝑓) → (𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))) ↔ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))))
326320, 325anbi12d 632 . . 3 (𝑒 = (𝑢𝑓) → ((𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)))) ↔ ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))))
327 ovexd 7388 . . 3 (𝜑 → (𝐹m 𝐵) ∈ V)
328 eqid 2729 . . . . . . . . . 10 (LSpan‘((subringAlg ‘𝐽)‘𝐹)) = (LSpan‘((subringAlg ‘𝐽)‘𝐹))
329139, 140, 328lbssp 21002 . . . . . . . . 9 (𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
3303, 329syl 17 . . . . . . . 8 (𝜑 → ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
331144, 66, 3303eqtr4rd 2775 . . . . . . 7 (𝜑 → ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) = 𝐻)
332331eleq2d 2814 . . . . . 6 (𝜑 → (𝑓 ∈ ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) ↔ 𝑓𝐻))
333 eqid 2729 . . . . . . 7 (Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = (Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹)))
334 eqid 2729 . . . . . . 7 (Scalar‘((subringAlg ‘𝐽)‘𝐹)) = (Scalar‘((subringAlg ‘𝐽)‘𝐹))
335 eqid 2729 . . . . . . 7 (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹)))
336 eqid 2729 . . . . . . 7 ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)) = ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))
337 sdrgsubrg 20695 . . . . . . . . 9 (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ∈ (SubRing‘𝐽))
33858, 337syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (SubRing‘𝐽))
339 eqid 2729 . . . . . . . . 9 ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹)
340339sralmod 21110 . . . . . . . 8 (𝐹 ∈ (SubRing‘𝐽) → ((subringAlg ‘𝐽)‘𝐹) ∈ LMod)
341338, 340syl 17 . . . . . . 7 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) ∈ LMod)
342328, 139, 333, 334, 335, 336, 341, 142ellspds 33324 . . . . . 6 (𝜑 → (𝑓 ∈ ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) ↔ ∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))))
343332, 342bitr3d 281 . . . . 5 (𝜑 → (𝑓𝐻 ↔ ∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))))
344343biimpa 476 . . . 4 ((𝜑𝑓𝐻) → ∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)))))
345 eqid 2729 . . . . . . . . . 10 (𝐽s 𝐹) = (𝐽s 𝐹)
346345, 59ressbas2 17168 . . . . . . . . 9 (𝐹 ⊆ (Base‘𝐽) → 𝐹 = (Base‘(𝐽s 𝐹)))
34761, 346syl 17 . . . . . . . 8 (𝜑𝐹 = (Base‘(𝐽s 𝐹)))
348143, 61srasca 21103 . . . . . . . . 9 (𝜑 → (𝐽s 𝐹) = (Scalar‘((subringAlg ‘𝐽)‘𝐹)))
349348fveq2d 6830 . . . . . . . 8 (𝜑 → (Base‘(𝐽s 𝐹)) = (Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))))
350347, 349eqtr2d 2765 . . . . . . 7 (𝜑 → (Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = 𝐹)
351350oveq1d 7368 . . . . . 6 (𝜑 → ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵) = (𝐹m 𝐵))
352 sdrgsubrg 20695 . . . . . . . . . . . 12 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ∈ (SubRing‘𝐿))
35311, 352syl 17 . . . . . . . . . . 11 (𝜑𝐻 ∈ (SubRing‘𝐿))
354 subrgsubg 20481 . . . . . . . . . . 11 (𝐻 ∈ (SubRing‘𝐿) → 𝐻 ∈ (SubGrp‘𝐿))
35564, 5subg0 19030 . . . . . . . . . . 11 (𝐻 ∈ (SubGrp‘𝐿) → (0g𝐿) = (0g𝐽))
356353, 354, 3553syl 18 . . . . . . . . . 10 (𝜑 → (0g𝐿) = (0g𝐽))
35764sdrgdrng 20694 . . . . . . . . . . . . . . 15 (𝐻 ∈ (SubDRing‘𝐿) → 𝐽 ∈ DivRing)
35811, 357syl 17 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ DivRing)
359358drngringd 20641 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Ring)
360359ringcmnd 20188 . . . . . . . . . . . 12 (𝜑𝐽 ∈ CMnd)
361360cmnmndd 19702 . . . . . . . . . . 11 (𝜑𝐽 ∈ Mnd)
362 subrgsubg 20481 . . . . . . . . . . . 12 (𝐹 ∈ (SubRing‘𝐽) → 𝐹 ∈ (SubGrp‘𝐽))
363 eqid 2729 . . . . . . . . . . . . 13 (0g𝐽) = (0g𝐽)
364363subg0cl 19032 . . . . . . . . . . . 12 (𝐹 ∈ (SubGrp‘𝐽) → (0g𝐽) ∈ 𝐹)
365338, 362, 3643syl 18 . . . . . . . . . . 11 (𝜑 → (0g𝐽) ∈ 𝐹)
366345, 59, 363ress0g 18655 . . . . . . . . . . 11 ((𝐽 ∈ Mnd ∧ (0g𝐽) ∈ 𝐹𝐹 ⊆ (Base‘𝐽)) → (0g𝐽) = (0g‘(𝐽s 𝐹)))
367361, 365, 61, 366syl3anc 1373 . . . . . . . . . 10 (𝜑 → (0g𝐽) = (0g‘(𝐽s 𝐹)))
368348fveq2d 6830 . . . . . . . . . 10 (𝜑 → (0g‘(𝐽s 𝐹)) = (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))))
369356, 367, 3683eqtrrd 2769 . . . . . . . . 9 (𝜑 → (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = (0g𝐿))
370369breq2d 5107 . . . . . . . 8 (𝜑 → (𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↔ 𝑒 finSupp (0g𝐿)))
371370adantr 480 . . . . . . 7 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↔ 𝑒 finSupp (0g𝐿)))
3723adantr 480 . . . . . . . . . 10 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
373 subgsubm 19046 . . . . . . . . . . . 12 (𝐻 ∈ (SubGrp‘𝐿) → 𝐻 ∈ (SubMnd‘𝐿))
374353, 354, 3733syl 18 . . . . . . . . . . 11 (𝜑𝐻 ∈ (SubMnd‘𝐿))
375374adantr 480 . . . . . . . . . 10 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐻 ∈ (SubMnd‘𝐿))
37664, 19ressmulr 17230 . . . . . . . . . . . . . . . 16 (𝐻 ∈ (SubDRing‘𝐿) → (.r𝐿) = (.r𝐽))
37711, 376syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (.r𝐿) = (.r𝐽))
378143, 61sravsca 21104 . . . . . . . . . . . . . . 15 (𝜑 → (.r𝐽) = ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)))
379377, 378eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑 → (.r𝐿) = ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)))
380379ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → (.r𝐿) = ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)))
381380oveqd 7370 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → ((𝑒𝑏)(.r𝐿)𝑏) = ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))
382353ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → 𝐻 ∈ (SubRing‘𝐿))
38367ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → 𝐹𝐻)
38425adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐹 ∈ (SubDRing‘𝐼))
385351eleq2d 2814 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵) ↔ 𝑒 ∈ (𝐹m 𝐵)))
386385biimpa 476 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝑒 ∈ (𝐹m 𝐵))
387372, 384, 386elmaprd 32641 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝑒:𝐵𝐹)
388387ffvelcdmda 7022 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → (𝑒𝑏) ∈ 𝐹)
389383, 388sseldd 3938 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → (𝑒𝑏) ∈ 𝐻)
390146adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐵𝐻)
391390sselda 3937 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → 𝑏𝐻)
39219, 382, 389, 391subrgmcld 33192 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → ((𝑒𝑏)(.r𝐿)𝑏) ∈ 𝐻)
393381, 392eqeltrrd 2829 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏) ∈ 𝐻)
394393fmpttd 7053 . . . . . . . . . 10 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)):𝐵𝐻)
395372, 375, 394, 64gsumsubm 18728 . . . . . . . . 9 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (𝐽 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))
396377, 378eqtr2d 2765 . . . . . . . . . . . . 13 (𝜑 → ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)) = (.r𝐿))
397396adantr 480 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)) = (.r𝐿))
398397oveqd 7370 . . . . . . . . . . 11 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏) = ((𝑒𝑏)(.r𝐿)𝑏))
399398mpteq2dv 5189 . . . . . . . . . 10 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)) = (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)))
400399oveq2d 7369 . . . . . . . . 9 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))
4013mptexd 7164 . . . . . . . . . . 11 (𝜑 → (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)) ∈ V)
402 fvexd 6841 . . . . . . . . . . 11 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) ∈ V)
403339, 401, 358, 402, 61gsumsra 33019 . . . . . . . . . 10 (𝜑 → (𝐽 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))
404403adantr 480 . . . . . . . . 9 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝐽 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))
405395, 400, 4043eqtr3rd 2773 . . . . . . . 8 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))
406405eqeq2d 2740 . . . . . . 7 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) ↔ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)))))
407371, 406anbi12d 632 . . . . . 6 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → ((𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)))) ↔ (𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))))
408351, 407rexeqbidva 3297 . . . . 5 (𝜑 → (∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)))) ↔ ∃𝑒 ∈ (𝐹m 𝐵)(𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))))
409408adantr 480 . . . 4 ((𝜑𝑓𝐻) → (∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)))) ↔ ∃𝑒 ∈ (𝐹m 𝐵)(𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))))
410344, 409mpbid 232 . . 3 ((𝜑𝑓𝐻) → ∃𝑒 ∈ (𝐹m 𝐵)(𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)))))
411326, 11, 327, 410ac6mapd 32586 . 2 (𝜑 → ∃𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))))
412319, 411r19.29a 3137 1 (𝜑 → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  cun 3903  wss 3905  {csn 4579  cop 4585   ciun 4944   class class class wbr 5095  cmpt 5176   × cxp 5621   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353   supp csupp 8100  m cmap 8760  Fincfn 8879   finSupp cfsupp 9270  Basecbs 17139  s cress 17160  .rcmulr 17181  Scalarcsca 17183   ·𝑠 cvsca 17184  0gc0g 17362   Σg cgsu 17363  Mndcmnd 18627  SubMndcsubmnd 18675  SubGrpcsubg 19018  CMndccmn 19678  Ringcrg 20137  SubRingcsubrg 20473  RingSpancrgspn 20514  DivRingcdr 20633  Fieldcfield 20634  SubDRingcsdrg 20690  LModclmod 20782  LSpanclspn 20893  LBasisclbs 20997  subringAlg csra 21094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-reg 9503  ax-inf2 9556  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-r1 9679  df-rank 9680  df-card 9854  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-fzo 13577  df-seq 13928  df-hash 14257  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-hom 17204  df-cco 17205  df-0g 17364  df-gsum 17365  df-prds 17370  df-pws 17372  df-mre 17507  df-mrc 17508  df-acs 17510  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-mhm 18676  df-submnd 18677  df-grp 18834  df-minusg 18835  df-sbg 18836  df-mulg 18966  df-subg 19021  df-ghm 19111  df-cntz 19215  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-ring 20139  df-nzr 20417  df-subrng 20450  df-subrg 20474  df-drng 20635  df-field 20636  df-sdrg 20691  df-lmod 20784  df-lss 20854  df-lsp 20894  df-lmhm 20945  df-lbs 20998  df-sra 21096  df-rgmod 21097  df-dsmm 21658  df-frlm 21673  df-uvc 21709
This theorem is referenced by:  fldextrspunlsp  33660
  Copyright terms: Public domain W3C validator