Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspunlsplem Structured version   Visualization version   GIF version

Theorem fldextrspunlsplem 33758
Description: Lemma for fldextrspunlsp 33759: First direction. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
fldextrspunfld.k 𝐾 = (𝐿s 𝐹)
fldextrspunfld.i 𝐼 = (𝐿s 𝐺)
fldextrspunfld.j 𝐽 = (𝐿s 𝐻)
fldextrspunfld.2 (𝜑𝐿 ∈ Field)
fldextrspunfld.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspunfld.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspunfld.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspunfld.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspunlsp.n 𝑁 = (RingSpan‘𝐿)
fldextrspunlsp.c 𝐶 = (𝑁‘(𝐺𝐻))
fldextrspunlsp.e 𝐸 = (𝐿s 𝐶)
fldextrspunlsp.1 (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
fldextrspunlsp.2 (𝜑𝐵 ∈ Fin)
fldextrspunlsplem.2 (𝜑𝑃:𝐻𝐺)
fldextrspunlsplem.3 (𝜑𝑃 finSupp (0g𝐿))
fldextrspunlsplem.4 (𝜑𝑋 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))))
Assertion
Ref Expression
fldextrspunlsplem (𝜑 → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))))
Distinct variable groups:   𝐵,𝑎,𝑏,𝑓   𝐹,𝑎,𝑏,𝑓   𝐺,𝑎,𝑓   𝐻,𝑎,𝑏,𝑓   𝐽,𝑏   𝐾,𝑎,𝑏,𝑓   𝐿,𝑎,𝑏,𝑓   𝑃,𝑎,𝑏,𝑓   𝑋,𝑎   𝜑,𝑎,𝑏,𝑓
Allowed substitution hints:   𝐶(𝑓,𝑎,𝑏)   𝐸(𝑓,𝑎,𝑏)   𝐺(𝑏)   𝐼(𝑓,𝑎,𝑏)   𝐽(𝑓,𝑎)   𝑁(𝑓,𝑎,𝑏)   𝑋(𝑓,𝑏)

Proof of Theorem fldextrspunlsplem
Dummy variables 𝑐 𝑢 𝑒 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextrspunfld.5 . . . . 5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
21ad2antrr 726 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐺 ∈ (SubDRing‘𝐿))
3 fldextrspunlsp.1 . . . . 5 (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
43ad2antrr 726 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
5 eqid 2733 . . . . . 6 (0g𝐿) = (0g𝐿)
6 fldextrspunfld.2 . . . . . . . . . 10 (𝜑𝐿 ∈ Field)
76flddrngd 20665 . . . . . . . . 9 (𝜑𝐿 ∈ DivRing)
87drngringd 20661 . . . . . . . 8 (𝜑𝐿 ∈ Ring)
98ringcmnd 20210 . . . . . . 7 (𝜑𝐿 ∈ CMnd)
109ad3antrrr 730 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐿 ∈ CMnd)
11 fldextrspunfld.6 . . . . . . 7 (𝜑𝐻 ∈ (SubDRing‘𝐿))
1211ad3antrrr 730 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐻 ∈ (SubDRing‘𝐿))
13 sdrgsubrg 20715 . . . . . . . . 9 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
141, 13syl 17 . . . . . . . 8 (𝜑𝐺 ∈ (SubRing‘𝐿))
15 subrgsubg 20501 . . . . . . . 8 (𝐺 ∈ (SubRing‘𝐿) → 𝐺 ∈ (SubGrp‘𝐿))
16 subgsubm 19069 . . . . . . . 8 (𝐺 ∈ (SubGrp‘𝐿) → 𝐺 ∈ (SubMnd‘𝐿))
1714, 15, 163syl 18 . . . . . . 7 (𝜑𝐺 ∈ (SubMnd‘𝐿))
1817ad3antrrr 730 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐺 ∈ (SubMnd‘𝐿))
19 eqid 2733 . . . . . . . . 9 (.r𝐿) = (.r𝐿)
2014ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐺 ∈ (SubRing‘𝐿))
21 fldextrspunlsplem.2 . . . . . . . . . . 11 (𝜑𝑃:𝐻𝐺)
2221ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑃:𝐻𝐺)
23 simpr 484 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑓𝐻)
2422, 23ffvelcdmd 7027 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → (𝑃𝑓) ∈ 𝐺)
25 fldextrspunfld.3 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (SubDRing‘𝐼))
26 eqid 2733 . . . . . . . . . . . . . 14 (Base‘𝐼) = (Base‘𝐼)
2726sdrgss 20717 . . . . . . . . . . . . 13 (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ⊆ (Base‘𝐼))
2825, 27syl 17 . . . . . . . . . . . 12 (𝜑𝐹 ⊆ (Base‘𝐼))
29 eqid 2733 . . . . . . . . . . . . . . 15 (Base‘𝐿) = (Base‘𝐿)
3029sdrgss 20717 . . . . . . . . . . . . . 14 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
311, 30syl 17 . . . . . . . . . . . . 13 (𝜑𝐺 ⊆ (Base‘𝐿))
32 fldextrspunfld.i . . . . . . . . . . . . . 14 𝐼 = (𝐿s 𝐺)
3332, 29ressbas2 17156 . . . . . . . . . . . . 13 (𝐺 ⊆ (Base‘𝐿) → 𝐺 = (Base‘𝐼))
3431, 33syl 17 . . . . . . . . . . . 12 (𝜑𝐺 = (Base‘𝐼))
3528, 34sseqtrrd 3968 . . . . . . . . . . 11 (𝜑𝐹𝐺)
3635ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐹𝐺)
373ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
3825ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐹 ∈ (SubDRing‘𝐼))
3911ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐻 ∈ (SubDRing‘𝐿))
40 ovexd 7390 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → (𝐹m 𝐵) ∈ V)
41 simpllr 775 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
4239, 40, 41elmaprd 32685 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑢:𝐻⟶(𝐹m 𝐵))
4342, 23ffvelcdmd 7027 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → (𝑢𝑓) ∈ (𝐹m 𝐵))
4437, 38, 43elmaprd 32685 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → (𝑢𝑓):𝐵𝐹)
45 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑐𝐵)
4644, 45ffvelcdmd 7027 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → ((𝑢𝑓)‘𝑐) ∈ 𝐹)
4736, 46sseldd 3931 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → ((𝑢𝑓)‘𝑐) ∈ 𝐺)
4819, 20, 24, 47subrgmcld 33242 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)) ∈ 𝐺)
4948fmpttd 7057 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))):𝐻𝐺)
5049adantlr 715 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))):𝐻𝐺)
51 fveq2 6831 . . . . . . . . 9 (𝑓 = → (𝑃𝑓) = (𝑃))
52 fveq2 6831 . . . . . . . . . 10 (𝑓 = → (𝑢𝑓) = (𝑢))
5352fveq1d 6833 . . . . . . . . 9 (𝑓 = → ((𝑢𝑓)‘𝑐) = ((𝑢)‘𝑐))
5451, 53oveq12d 7373 . . . . . . . 8 (𝑓 = → ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)) = ((𝑃)(.r𝐿)((𝑢)‘𝑐)))
5554cbvmptv 5199 . . . . . . 7 (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))) = (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐)))
56 fvexd 6846 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (0g𝐿) ∈ V)
57 ssidd 3954 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐻𝐻)
58 fldextrspunfld.4 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (SubDRing‘𝐽))
59 eqid 2733 . . . . . . . . . . . . . 14 (Base‘𝐽) = (Base‘𝐽)
6059sdrgss 20717 . . . . . . . . . . . . 13 (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ⊆ (Base‘𝐽))
6158, 60syl 17 . . . . . . . . . . . 12 (𝜑𝐹 ⊆ (Base‘𝐽))
6229sdrgss 20717 . . . . . . . . . . . . . 14 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
6311, 62syl 17 . . . . . . . . . . . . 13 (𝜑𝐻 ⊆ (Base‘𝐿))
64 fldextrspunfld.j . . . . . . . . . . . . . 14 𝐽 = (𝐿s 𝐻)
6564, 29ressbas2 17156 . . . . . . . . . . . . 13 (𝐻 ⊆ (Base‘𝐿) → 𝐻 = (Base‘𝐽))
6663, 65syl 17 . . . . . . . . . . . 12 (𝜑𝐻 = (Base‘𝐽))
6761, 66sseqtrrd 3968 . . . . . . . . . . 11 (𝜑𝐹𝐻)
6867, 63sstrd 3941 . . . . . . . . . 10 (𝜑𝐹 ⊆ (Base‘𝐿))
6968ad4antr 732 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐹 ⊆ (Base‘𝐿))
703ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
7158ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐹 ∈ (SubDRing‘𝐽))
72 ovexd 7390 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐹m 𝐵) ∈ V)
73 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
7412, 72, 73elmaprd 32685 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑢:𝐻⟶(𝐹m 𝐵))
7574ffvelcdmda 7026 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (𝑢) ∈ (𝐹m 𝐵))
7670, 71, 75elmaprd 32685 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (𝑢):𝐵𝐹)
77 simplr 768 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝑐𝐵)
7876, 77ffvelcdmd 7027 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → ((𝑢)‘𝑐) ∈ 𝐹)
7969, 78sseldd 3931 . . . . . . . 8 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → ((𝑢)‘𝑐) ∈ (Base‘𝐿))
8021ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑃:𝐻𝐺)
81 fldextrspunlsplem.3 . . . . . . . . 9 (𝜑𝑃 finSupp (0g𝐿))
8281ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑃 finSupp (0g𝐿))
838ad4antr 732 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝐿 ∈ Ring)
84 simpr 484 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝑦 ∈ (Base‘𝐿))
8529, 19, 5, 83, 84ringlzd 20221 . . . . . . . 8 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝑦 ∈ (Base‘𝐿)) → ((0g𝐿)(.r𝐿)𝑦) = (0g𝐿))
8656, 56, 12, 57, 79, 80, 82, 85fisuppov1 32688 . . . . . . 7 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))) finSupp (0g𝐿))
8755, 86eqbrtrid 5130 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))) finSupp (0g𝐿))
885, 10, 12, 18, 50, 87gsumsubmcl 19839 . . . . 5 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))) ∈ 𝐺)
8988fmpttd 7057 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))):𝐵𝐺)
902, 4, 89elmapdd 8774 . . 3 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) ∈ (𝐺m 𝐵))
91 breq1 5098 . . . . . 6 (𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) → (𝑎 finSupp (0g𝐿) ↔ (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿)))
9291adantl 481 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → (𝑎 finSupp (0g𝐿) ↔ (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿)))
93 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))))
9493fveq1d 6833 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → (𝑎𝑏) = ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))‘𝑏))
95 eqid 2733 . . . . . . . . . . . 12 (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))
96 fveq2 6831 . . . . . . . . . . . . . . 15 (𝑐 = 𝑏 → ((𝑢𝑓)‘𝑐) = ((𝑢𝑓)‘𝑏))
9796oveq2d 7371 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)) = ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))
9897mpteq2dv 5189 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))) = (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))
9998oveq2d 7371 . . . . . . . . . . . 12 (𝑐 = 𝑏 → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))) = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))))
100 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑏𝐵) → 𝑏𝐵)
101 ovexd 7390 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑏𝐵) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))) ∈ V)
10295, 99, 100, 101fvmptd3 6961 . . . . . . . . . . 11 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑏𝐵) → ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))‘𝑏) = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))))
103102adantlr 715 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))‘𝑏) = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))))
10494, 103eqtrd 2768 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → (𝑎𝑏) = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))))
105104oveq1d 7370 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → ((𝑎𝑏)(.r𝐿)𝑏) = ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))
106105mpteq2dva 5188 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)) = (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏)))
107106oveq2d 7371 . . . . . 6 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))))
108107eqeq2d 2744 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → (𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏))) ↔ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏)))))
10992, 108anbi12d 632 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → ((𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))) ↔ ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))))))
110109adantlr 715 . . 3 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → ((𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))) ↔ ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))))))
111 fldextrspunlsp.2 . . . . . 6 (𝜑𝐵 ∈ Fin)
112111ad2antrr 726 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐵 ∈ Fin)
113 ovexd 7390 . . . . 5 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))) ∈ V)
114 fvexd 6846 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (0g𝐿) ∈ V)
11595, 112, 113, 114fsuppmptdm 9271 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿))
116 fldextrspunlsplem.4 . . . . . . 7 (𝜑𝑋 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))))
117116ad2antrr 726 . . . . . 6 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑋 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))))
1188ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐿 ∈ Ring)
119118adantr 480 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐿 ∈ Ring)
1203ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
12131ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐺 ⊆ (Base‘𝐿))
12221ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑃:𝐻𝐺)
123122ffvelcdmda 7026 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑃) ∈ 𝐺)
124121, 123sseldd 3931 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑃) ∈ (Base‘𝐿))
125119adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐿 ∈ Ring)
12668ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐹 ⊆ (Base‘𝐿))
1273ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
12858ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐹 ∈ (SubDRing‘𝐽))
12911ad4antr 732 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐻 ∈ (SubDRing‘𝐿))
130 ovexd 7390 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (𝐹m 𝐵) ∈ V)
131 simp-4r 783 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
132129, 130, 131elmaprd 32685 . . . . . . . . . . . . . . . 16 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝑢:𝐻⟶(𝐹m 𝐵))
133 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐻)
134132, 133ffvelcdmd 7027 . . . . . . . . . . . . . . 15 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (𝑢) ∈ (𝐹m 𝐵))
135127, 128, 134elmaprd 32685 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (𝑢):𝐵𝐹)
136 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝑐𝐵)
137135, 136ffvelcdmd 7027 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → ((𝑢)‘𝑐) ∈ 𝐹)
138126, 137sseldd 3931 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → ((𝑢)‘𝑐) ∈ (Base‘𝐿))
139 eqid 2733 . . . . . . . . . . . . . . . . . 18 (Base‘((subringAlg ‘𝐽)‘𝐹)) = (Base‘((subringAlg ‘𝐽)‘𝐹))
140 eqid 2733 . . . . . . . . . . . . . . . . . 18 (LBasis‘((subringAlg ‘𝐽)‘𝐹)) = (LBasis‘((subringAlg ‘𝐽)‘𝐹))
141139, 140lbsss 21020 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → 𝐵 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
1423, 141syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
143 eqidd 2734 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹))
144143, 61srabase 21120 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝐽) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
14566, 144eqtr2d 2769 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘((subringAlg ‘𝐽)‘𝐹)) = 𝐻)
146142, 145sseqtrd 3967 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐻)
147146, 63sstrd 3941 . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ (Base‘𝐿))
148147ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐵 ⊆ (Base‘𝐿))
149148sselda 3930 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝑐 ∈ (Base‘𝐿))
15029, 19, 125, 138, 149ringcld 20186 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (((𝑢)‘𝑐)(.r𝐿)𝑐) ∈ (Base‘𝐿))
151 fvexd 6846 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (0g𝐿) ∈ V)
152 ssidd 3954 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐵𝐵)
15358ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐹 ∈ (SubDRing‘𝐽))
15411ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐻 ∈ (SubDRing‘𝐿))
155 ovexd 7390 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐹m 𝐵) ∈ V)
156 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
157154, 155, 156elmaprd 32685 . . . . . . . . . . . . . 14 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑢:𝐻⟶(𝐹m 𝐵))
158157ffvelcdmda 7026 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑢) ∈ (𝐹m 𝐵))
159120, 153, 158elmaprd 32685 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑢):𝐵𝐹)
16052breq1d 5105 . . . . . . . . . . . . . . 15 (𝑓 = → ((𝑢𝑓) finSupp (0g𝐿) ↔ (𝑢) finSupp (0g𝐿)))
161 id 22 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑓 = )
16252fveq1d 6833 . . . . . . . . . . . . . . . . . . 19 (𝑓 = → ((𝑢𝑓)‘𝑏) = ((𝑢)‘𝑏))
163162oveq1d 7370 . . . . . . . . . . . . . . . . . 18 (𝑓 = → (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏) = (((𝑢)‘𝑏)(.r𝐿)𝑏))
164163mpteq2dv 5189 . . . . . . . . . . . . . . . . 17 (𝑓 = → (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)) = (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏)))
165164oveq2d 7371 . . . . . . . . . . . . . . . 16 (𝑓 = → (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏))))
166161, 165eqeq12d 2749 . . . . . . . . . . . . . . 15 (𝑓 = → (𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))) ↔ = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏)))))
167160, 166anbi12d 632 . . . . . . . . . . . . . 14 (𝑓 = → (((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))) ↔ ((𝑢) finSupp (0g𝐿) ∧ = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏))))))
168 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))))
169 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐻)
170167, 168, 169rspcdva 3574 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → ((𝑢) finSupp (0g𝐿) ∧ = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏)))))
171170simpld 494 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑢) finSupp (0g𝐿))
172119adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝐿 ∈ Ring)
173 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝑦 ∈ (Base‘𝐿))
17429, 19, 5, 172, 173ringlzd 20221 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑦 ∈ (Base‘𝐿)) → ((0g𝐿)(.r𝐿)𝑦) = (0g𝐿))
175151, 151, 120, 152, 149, 159, 171, 174fisuppov1 32688 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐)) finSupp (0g𝐿))
17629, 5, 19, 119, 120, 124, 150, 175gsummulc2 20243 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝐿 Σg (𝑐𝐵 ↦ ((𝑃)(.r𝐿)(((𝑢)‘𝑐)(.r𝐿)𝑐)))) = ((𝑃)(.r𝐿)(𝐿 Σg (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐)))))
177124adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (𝑃) ∈ (Base‘𝐿))
17829, 19, 125, 177, 138, 149ringassd 20183 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = ((𝑃)(.r𝐿)(((𝑢)‘𝑐)(.r𝐿)𝑐)))
179178mpteq2dva 5188 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐)) = (𝑐𝐵 ↦ ((𝑃)(.r𝐿)(((𝑢)‘𝑐)(.r𝐿)𝑐))))
180179oveq2d 7371 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))) = (𝐿 Σg (𝑐𝐵 ↦ ((𝑃)(.r𝐿)(((𝑢)‘𝑐)(.r𝐿)𝑐)))))
181170simprd 495 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏))))
182 fveq2 6831 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → ((𝑢)‘𝑏) = ((𝑢)‘𝑐))
183 id 22 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐𝑏 = 𝑐)
184182, 183oveq12d 7373 . . . . . . . . . . . . . 14 (𝑏 = 𝑐 → (((𝑢)‘𝑏)(.r𝐿)𝑏) = (((𝑢)‘𝑐)(.r𝐿)𝑐))
185184cbvmptv 5199 . . . . . . . . . . . . 13 (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏)) = (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐))
186185oveq2i 7366 . . . . . . . . . . . 12 (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏))) = (𝐿 Σg (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐)))
187181, 186eqtrdi 2784 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → = (𝐿 Σg (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐))))
188187oveq2d 7371 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → ((𝑃)(.r𝐿)) = ((𝑃)(.r𝐿)(𝐿 Σg (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐)))))
189176, 180, 1883eqtr4rd 2779 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → ((𝑃)(.r𝐿)) = (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))
190189mpteq2dva 5188 . . . . . . . 8 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐻 ↦ ((𝑃)(.r𝐿))) = (𝐻 ↦ (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐)))))
191190oveq2d 7371 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)))) = (𝐿 Σg (𝐻 ↦ (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))))
19251, 161oveq12d 7373 . . . . . . . . . 10 (𝑓 = → ((𝑃𝑓)(.r𝐿)𝑓) = ((𝑃)(.r𝐿)))
193192cbvmptv 5199 . . . . . . . . 9 (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓)) = (𝐻 ↦ ((𝑃)(.r𝐿)))
194193oveq2i 7366 . . . . . . . 8 (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿))))
195194a1i 11 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)))))
1969ad2antrr 726 . . . . . . . 8 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐿 ∈ CMnd)
1978ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐿 ∈ Ring)
19831ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐺 ⊆ (Base‘𝐿))
19980ffvelcdmda 7026 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (𝑃) ∈ 𝐺)
200198, 199sseldd 3931 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (𝑃) ∈ (Base‘𝐿))
20129, 19, 197, 200, 79ringcld 20186 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) ∈ (Base‘𝐿))
202147ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐵 ⊆ (Base‘𝐿))
203202sselda 3930 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑐 ∈ (Base‘𝐿))
204203adantr 480 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝑐 ∈ (Base‘𝐿))
20529, 19, 197, 201, 204ringcld 20186 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) ∈ (Base‘𝐿))
206205anasss 466 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ (𝑐𝐵𝐻)) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) ∈ (Base‘𝐿))
20781fsuppimpd 9264 . . . . . . . . . . . 12 (𝜑 → (𝑃 supp (0g𝐿)) ∈ Fin)
208207ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑃 supp (0g𝐿)) ∈ Fin)
209 suppssdm 8116 . . . . . . . . . . . . . . . . . 18 (𝑃 supp (0g𝐿)) ⊆ dom 𝑃
210209, 21fssdm 6678 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃 supp (0g𝐿)) ⊆ 𝐻)
211210sseld 3929 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑓 ∈ (𝑃 supp (0g𝐿)) → 𝑓𝐻))
212211adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → (𝑓 ∈ (𝑃 supp (0g𝐿)) → 𝑓𝐻))
213 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ (𝑢𝑓) finSupp (0g𝐿)) → (𝑢𝑓) finSupp (0g𝐿))
214213fsuppimpd 9264 . . . . . . . . . . . . . . . . 17 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ (𝑢𝑓) finSupp (0g𝐿)) → ((𝑢𝑓) supp (0g𝐿)) ∈ Fin)
215214ex 412 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → ((𝑢𝑓) finSupp (0g𝐿) → ((𝑢𝑓) supp (0g𝐿)) ∈ Fin))
216215adantrd 491 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → (((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))) → ((𝑢𝑓) supp (0g𝐿)) ∈ Fin))
217212, 216imim12d 81 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → ((𝑓𝐻 → ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑓 ∈ (𝑃 supp (0g𝐿)) → ((𝑢𝑓) supp (0g𝐿)) ∈ Fin)))
218217ralimdv2 3142 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → (∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))) → ∀𝑓 ∈ (𝑃 supp (0g𝐿))((𝑢𝑓) supp (0g𝐿)) ∈ Fin))
219218imp 406 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ∀𝑓 ∈ (𝑃 supp (0g𝐿))((𝑢𝑓) supp (0g𝐿)) ∈ Fin)
220 fveq2 6831 . . . . . . . . . . . . . . 15 (𝑓 = 𝑖 → (𝑢𝑓) = (𝑢𝑖))
221220oveq1d 7370 . . . . . . . . . . . . . 14 (𝑓 = 𝑖 → ((𝑢𝑓) supp (0g𝐿)) = ((𝑢𝑖) supp (0g𝐿)))
222221eleq1d 2818 . . . . . . . . . . . . 13 (𝑓 = 𝑖 → (((𝑢𝑓) supp (0g𝐿)) ∈ Fin ↔ ((𝑢𝑖) supp (0g𝐿)) ∈ Fin))
223222cbvralvw 3211 . . . . . . . . . . . 12 (∀𝑓 ∈ (𝑃 supp (0g𝐿))((𝑢𝑓) supp (0g𝐿)) ∈ Fin ↔ ∀𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin)
224219, 223sylib 218 . . . . . . . . . . 11 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ∀𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin)
225 iunfi 9238 . . . . . . . . . . 11 (((𝑃 supp (0g𝐿)) ∈ Fin ∧ ∀𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin) → 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin)
226208, 224, 225syl2anc 584 . . . . . . . . . 10 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin)
227 xpfi 9215 . . . . . . . . . 10 (( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin ∧ (𝑃 supp (0g𝐿)) ∈ Fin) → ( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) × (𝑃 supp (0g𝐿))) ∈ Fin)
228226, 208, 227syl2anc 584 . . . . . . . . 9 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) × (𝑃 supp (0g𝐿))) ∈ Fin)
229 snssi 4761 . . . . . . . . . . . 12 (𝑖 ∈ (𝑃 supp (0g𝐿)) → {𝑖} ⊆ (𝑃 supp (0g𝐿)))
230229adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑃 supp (0g𝐿))) → {𝑖} ⊆ (𝑃 supp (0g𝐿)))
231230iunxpssiun1 32569 . . . . . . . . . 10 (𝜑 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ⊆ ( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) × (𝑃 supp (0g𝐿))))
232231ad2antrr 726 . . . . . . . . 9 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ⊆ ( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) × (𝑃 supp (0g𝐿))))
233228, 232ssfid 9164 . . . . . . . 8 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ∈ Fin)
23421ffnd 6660 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 Fn 𝐻)
235234ad6antr 736 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝑃 Fn 𝐻)
23611ad6antr 736 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐻 ∈ (SubDRing‘𝐿))
237 fvexd 6846 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (0g𝐿) ∈ V)
238 simpllr 775 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐻)
239 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ¬ ∈ (𝑃 supp (0g𝐿)))
240238, 239eldifd 3909 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ∈ (𝐻 ∖ (𝑃 supp (0g𝐿))))
241235, 236, 237, 240fvdifsupp 8110 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (𝑃) = (0g𝐿))
242241oveq1d 7370 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = ((0g𝐿)(.r𝐿)((𝑢)‘𝑐)))
2438ad6antr 736 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐿 ∈ Ring)
24468ad6antr 736 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐹 ⊆ (Base‘𝐿))
2453ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
24658ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐹 ∈ (SubDRing‘𝐽))
247 ovexd 7390 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (𝐹m 𝐵) ∈ V)
248 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
249236, 247, 248elmaprd 32685 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝑢:𝐻⟶(𝐹m 𝐵))
250249, 238ffvelcdmd 7027 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (𝑢) ∈ (𝐹m 𝐵))
251245, 246, 250elmaprd 32685 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (𝑢):𝐵𝐹)
252 simp-4r 783 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝑐𝐵)
253251, 252ffvelcdmd 7027 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((𝑢)‘𝑐) ∈ 𝐹)
254244, 253sseldd 3931 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((𝑢)‘𝑐) ∈ (Base‘𝐿))
25529, 19, 5, 243, 254ringlzd 20221 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((0g𝐿)(.r𝐿)((𝑢)‘𝑐)) = (0g𝐿))
256242, 255eqtrd 2768 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = (0g𝐿))
2573ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
25858ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐹 ∈ (SubDRing‘𝐽))
25911ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐻 ∈ (SubDRing‘𝐿))
260 ovexd 7390 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝐹m 𝐵) ∈ V)
261 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
262259, 260, 261elmaprd 32685 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝑢:𝐻⟶(𝐹m 𝐵))
263 simpllr 775 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐻)
264262, 263ffvelcdmd 7027 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝑢) ∈ (𝐹m 𝐵))
265257, 258, 264elmaprd 32685 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝑢):𝐵𝐹)
266265ffnd 6660 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝑢) Fn 𝐵)
267 fvexd 6846 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (0g𝐿) ∈ V)
268 simp-4r 783 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝑐𝐵)
269 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿)))
270268, 269eldifd 3909 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝑐 ∈ (𝐵 ∖ ((𝑢) supp (0g𝐿))))
271266, 257, 267, 270fvdifsupp 8110 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ((𝑢)‘𝑐) = (0g𝐿))
272271oveq2d 7371 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = ((𝑃)(.r𝐿)(0g𝐿)))
273197ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐿 ∈ Ring)
274200ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝑃) ∈ (Base‘𝐿))
27529, 19, 5, 273, 274ringrzd 20222 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ((𝑃)(.r𝐿)(0g𝐿)) = (0g𝐿))
276272, 275eqtrd 2768 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = (0g𝐿))
277 df-br 5096 . . . . . . . . . . . . . . . . . . . 20 (𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ↔ ⟨𝑐, ⟩ ∈ 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}))
278 fveq2 6831 . . . . . . . . . . . . . . . . . . . . . . . 24 ( = 𝑖 → (𝑢) = (𝑢𝑖))
279278oveq1d 7370 . . . . . . . . . . . . . . . . . . . . . . 23 ( = 𝑖 → ((𝑢) supp (0g𝐿)) = ((𝑢𝑖) supp (0g𝐿)))
280 sneq 4587 . . . . . . . . . . . . . . . . . . . . . . 23 ( = 𝑖 → {} = {𝑖})
281279, 280xpeq12d 5652 . . . . . . . . . . . . . . . . . . . . . 22 ( = 𝑖 → (((𝑢) supp (0g𝐿)) × {}) = (((𝑢𝑖) supp (0g𝐿)) × {𝑖}))
282281cbviunv 4991 . . . . . . . . . . . . . . . . . . . . 21 ∈ (𝑃 supp (0g𝐿))(((𝑢) supp (0g𝐿)) × {}) = 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})
283282eleq2i 2825 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑐, ⟩ ∈ ∈ (𝑃 supp (0g𝐿))(((𝑢) supp (0g𝐿)) × {}) ↔ ⟨𝑐, ⟩ ∈ 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}))
284 opeliun2xp 5689 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑐, ⟩ ∈ ∈ (𝑃 supp (0g𝐿))(((𝑢) supp (0g𝐿)) × {}) ↔ ( ∈ (𝑃 supp (0g𝐿)) ∧ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
285277, 283, 2843bitr2i 299 . . . . . . . . . . . . . . . . . . 19 (𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ↔ ( ∈ (𝑃 supp (0g𝐿)) ∧ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
286285notbii 320 . . . . . . . . . . . . . . . . . 18 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ↔ ¬ ( ∈ (𝑃 supp (0g𝐿)) ∧ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
287 ianor 983 . . . . . . . . . . . . . . . . . 18 (¬ ( ∈ (𝑃 supp (0g𝐿)) ∧ 𝑐 ∈ ((𝑢) supp (0g𝐿))) ↔ (¬ ∈ (𝑃 supp (0g𝐿)) ∨ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
288286, 287sylbb 219 . . . . . . . . . . . . . . . . 17 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) → (¬ ∈ (𝑃 supp (0g𝐿)) ∨ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
289288adantl 481 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → (¬ ∈ (𝑃 supp (0g𝐿)) ∨ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
290256, 276, 289mpjaodan 960 . . . . . . . . . . . . . . 15 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = (0g𝐿))
291290oveq1d 7370 . . . . . . . . . . . . . 14 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = ((0g𝐿)(.r𝐿)𝑐))
292118ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → 𝐿 ∈ Ring)
293203ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → 𝑐 ∈ (Base‘𝐿))
29429, 19, 5, 292, 293ringlzd 20221 . . . . . . . . . . . . . 14 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → ((0g𝐿)(.r𝐿)𝑐) = (0g𝐿))
295291, 294eqtrd 2768 . . . . . . . . . . . . 13 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
296295an42ds 1491 . . . . . . . . . . . 12 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ 𝐻) ∧ 𝑐𝐵) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
297296an32s 652 . . . . . . . . . . 11 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ 𝑐𝐵) ∧ 𝐻) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
298297anasss 466 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ (𝑐𝐵𝐻)) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
299298an32s 652 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ (𝑐𝐵𝐻)) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
300299anasss 466 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ ((𝑐𝐵𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}))) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
30129, 5, 196, 4, 154, 206, 233, 300gsumcom3 19898 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝑐𝐵 ↦ (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))) = (𝐿 Σg (𝐻 ↦ (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))))
302191, 195, 3013eqtr4d 2778 . . . . . 6 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑐𝐵 ↦ (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))))
303118adantr 480 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐿 ∈ Ring)
30429, 5, 19, 303, 12, 203, 201, 86gsummulc1 20242 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))) = ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))
305304mpteq2dva 5188 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑐𝐵 ↦ (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐)))) = (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐)))
306305oveq2d 7371 . . . . . 6 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝑐𝐵 ↦ (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))) = (𝐿 Σg (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))))
307117, 302, 3063eqtrd 2772 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑋 = (𝐿 Σg (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))))
30851, 162oveq12d 7373 . . . . . . . . . . 11 (𝑓 = → ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)) = ((𝑃)(.r𝐿)((𝑢)‘𝑏)))
309308cbvmptv 5199 . . . . . . . . . 10 (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))) = (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑏)))
310182oveq2d 7371 . . . . . . . . . . 11 (𝑏 = 𝑐 → ((𝑃)(.r𝐿)((𝑢)‘𝑏)) = ((𝑃)(.r𝐿)((𝑢)‘𝑐)))
311310mpteq2dv 5189 . . . . . . . . . 10 (𝑏 = 𝑐 → (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑏))) = (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))
312309, 311eqtrid 2780 . . . . . . . . 9 (𝑏 = 𝑐 → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))) = (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))
313312oveq2d 7371 . . . . . . . 8 (𝑏 = 𝑐 → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))) = (𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐)))))
314313, 183oveq12d 7373 . . . . . . 7 (𝑏 = 𝑐 → ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏) = ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))
315314cbvmptv 5199 . . . . . 6 (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏)) = (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))
316315oveq2i 7366 . . . . 5 (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))) = (𝐿 Σg (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐)))
317307, 316eqtr4di 2786 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))))
318115, 317jca 511 . . 3 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏)))))
31990, 110, 318rspcedvd 3575 . 2 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))))
320 breq1 5098 . . . 4 (𝑒 = (𝑢𝑓) → (𝑒 finSupp (0g𝐿) ↔ (𝑢𝑓) finSupp (0g𝐿)))
321 fveq1 6830 . . . . . . . 8 (𝑒 = (𝑢𝑓) → (𝑒𝑏) = ((𝑢𝑓)‘𝑏))
322321oveq1d 7370 . . . . . . 7 (𝑒 = (𝑢𝑓) → ((𝑒𝑏)(.r𝐿)𝑏) = (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))
323322mpteq2dv 5189 . . . . . 6 (𝑒 = (𝑢𝑓) → (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)) = (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))
324323oveq2d 7371 . . . . 5 (𝑒 = (𝑢𝑓) → (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))
325324eqeq2d 2744 . . . 4 (𝑒 = (𝑢𝑓) → (𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))) ↔ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))))
326320, 325anbi12d 632 . . 3 (𝑒 = (𝑢𝑓) → ((𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)))) ↔ ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))))
327 ovexd 7390 . . 3 (𝜑 → (𝐹m 𝐵) ∈ V)
328 eqid 2733 . . . . . . . . . 10 (LSpan‘((subringAlg ‘𝐽)‘𝐹)) = (LSpan‘((subringAlg ‘𝐽)‘𝐹))
329139, 140, 328lbssp 21022 . . . . . . . . 9 (𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
3303, 329syl 17 . . . . . . . 8 (𝜑 → ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
331144, 66, 3303eqtr4rd 2779 . . . . . . 7 (𝜑 → ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) = 𝐻)
332331eleq2d 2819 . . . . . 6 (𝜑 → (𝑓 ∈ ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) ↔ 𝑓𝐻))
333 eqid 2733 . . . . . . 7 (Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = (Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹)))
334 eqid 2733 . . . . . . 7 (Scalar‘((subringAlg ‘𝐽)‘𝐹)) = (Scalar‘((subringAlg ‘𝐽)‘𝐹))
335 eqid 2733 . . . . . . 7 (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹)))
336 eqid 2733 . . . . . . 7 ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)) = ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))
337 sdrgsubrg 20715 . . . . . . . . 9 (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ∈ (SubRing‘𝐽))
33858, 337syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (SubRing‘𝐽))
339 eqid 2733 . . . . . . . . 9 ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹)
340339sralmod 21130 . . . . . . . 8 (𝐹 ∈ (SubRing‘𝐽) → ((subringAlg ‘𝐽)‘𝐹) ∈ LMod)
341338, 340syl 17 . . . . . . 7 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) ∈ LMod)
342328, 139, 333, 334, 335, 336, 341, 142ellspds 33377 . . . . . 6 (𝜑 → (𝑓 ∈ ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) ↔ ∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))))
343332, 342bitr3d 281 . . . . 5 (𝜑 → (𝑓𝐻 ↔ ∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))))
344343biimpa 476 . . . 4 ((𝜑𝑓𝐻) → ∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)))))
345 eqid 2733 . . . . . . . . . 10 (𝐽s 𝐹) = (𝐽s 𝐹)
346345, 59ressbas2 17156 . . . . . . . . 9 (𝐹 ⊆ (Base‘𝐽) → 𝐹 = (Base‘(𝐽s 𝐹)))
34761, 346syl 17 . . . . . . . 8 (𝜑𝐹 = (Base‘(𝐽s 𝐹)))
348143, 61srasca 21123 . . . . . . . . 9 (𝜑 → (𝐽s 𝐹) = (Scalar‘((subringAlg ‘𝐽)‘𝐹)))
349348fveq2d 6835 . . . . . . . 8 (𝜑 → (Base‘(𝐽s 𝐹)) = (Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))))
350347, 349eqtr2d 2769 . . . . . . 7 (𝜑 → (Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = 𝐹)
351350oveq1d 7370 . . . . . 6 (𝜑 → ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵) = (𝐹m 𝐵))
352 sdrgsubrg 20715 . . . . . . . . . . . 12 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ∈ (SubRing‘𝐿))
35311, 352syl 17 . . . . . . . . . . 11 (𝜑𝐻 ∈ (SubRing‘𝐿))
354 subrgsubg 20501 . . . . . . . . . . 11 (𝐻 ∈ (SubRing‘𝐿) → 𝐻 ∈ (SubGrp‘𝐿))
35564, 5subg0 19053 . . . . . . . . . . 11 (𝐻 ∈ (SubGrp‘𝐿) → (0g𝐿) = (0g𝐽))
356353, 354, 3553syl 18 . . . . . . . . . 10 (𝜑 → (0g𝐿) = (0g𝐽))
35764sdrgdrng 20714 . . . . . . . . . . . . . . 15 (𝐻 ∈ (SubDRing‘𝐿) → 𝐽 ∈ DivRing)
35811, 357syl 17 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ DivRing)
359358drngringd 20661 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Ring)
360359ringcmnd 20210 . . . . . . . . . . . 12 (𝜑𝐽 ∈ CMnd)
361360cmnmndd 19724 . . . . . . . . . . 11 (𝜑𝐽 ∈ Mnd)
362 subrgsubg 20501 . . . . . . . . . . . 12 (𝐹 ∈ (SubRing‘𝐽) → 𝐹 ∈ (SubGrp‘𝐽))
363 eqid 2733 . . . . . . . . . . . . 13 (0g𝐽) = (0g𝐽)
364363subg0cl 19055 . . . . . . . . . . . 12 (𝐹 ∈ (SubGrp‘𝐽) → (0g𝐽) ∈ 𝐹)
365338, 362, 3643syl 18 . . . . . . . . . . 11 (𝜑 → (0g𝐽) ∈ 𝐹)
366345, 59, 363ress0g 18678 . . . . . . . . . . 11 ((𝐽 ∈ Mnd ∧ (0g𝐽) ∈ 𝐹𝐹 ⊆ (Base‘𝐽)) → (0g𝐽) = (0g‘(𝐽s 𝐹)))
367361, 365, 61, 366syl3anc 1373 . . . . . . . . . 10 (𝜑 → (0g𝐽) = (0g‘(𝐽s 𝐹)))
368348fveq2d 6835 . . . . . . . . . 10 (𝜑 → (0g‘(𝐽s 𝐹)) = (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))))
369356, 367, 3683eqtrrd 2773 . . . . . . . . 9 (𝜑 → (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = (0g𝐿))
370369breq2d 5107 . . . . . . . 8 (𝜑 → (𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↔ 𝑒 finSupp (0g𝐿)))
371370adantr 480 . . . . . . 7 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↔ 𝑒 finSupp (0g𝐿)))
3723adantr 480 . . . . . . . . . 10 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
373 subgsubm 19069 . . . . . . . . . . . 12 (𝐻 ∈ (SubGrp‘𝐿) → 𝐻 ∈ (SubMnd‘𝐿))
374353, 354, 3733syl 18 . . . . . . . . . . 11 (𝜑𝐻 ∈ (SubMnd‘𝐿))
375374adantr 480 . . . . . . . . . 10 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐻 ∈ (SubMnd‘𝐿))
37664, 19ressmulr 17218 . . . . . . . . . . . . . . . 16 (𝐻 ∈ (SubDRing‘𝐿) → (.r𝐿) = (.r𝐽))
37711, 376syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (.r𝐿) = (.r𝐽))
378143, 61sravsca 21124 . . . . . . . . . . . . . . 15 (𝜑 → (.r𝐽) = ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)))
379377, 378eqtrd 2768 . . . . . . . . . . . . . 14 (𝜑 → (.r𝐿) = ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)))
380379ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → (.r𝐿) = ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)))
381380oveqd 7372 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → ((𝑒𝑏)(.r𝐿)𝑏) = ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))
382353ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → 𝐻 ∈ (SubRing‘𝐿))
38367ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → 𝐹𝐻)
38425adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐹 ∈ (SubDRing‘𝐼))
385351eleq2d 2819 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵) ↔ 𝑒 ∈ (𝐹m 𝐵)))
386385biimpa 476 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝑒 ∈ (𝐹m 𝐵))
387372, 384, 386elmaprd 32685 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝑒:𝐵𝐹)
388387ffvelcdmda 7026 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → (𝑒𝑏) ∈ 𝐹)
389383, 388sseldd 3931 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → (𝑒𝑏) ∈ 𝐻)
390146adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐵𝐻)
391390sselda 3930 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → 𝑏𝐻)
39219, 382, 389, 391subrgmcld 33242 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → ((𝑒𝑏)(.r𝐿)𝑏) ∈ 𝐻)
393381, 392eqeltrrd 2834 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏) ∈ 𝐻)
394393fmpttd 7057 . . . . . . . . . 10 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)):𝐵𝐻)
395372, 375, 394, 64gsumsubm 18751 . . . . . . . . 9 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (𝐽 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))
396377, 378eqtr2d 2769 . . . . . . . . . . . . 13 (𝜑 → ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)) = (.r𝐿))
397396adantr 480 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)) = (.r𝐿))
398397oveqd 7372 . . . . . . . . . . 11 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏) = ((𝑒𝑏)(.r𝐿)𝑏))
399398mpteq2dv 5189 . . . . . . . . . 10 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)) = (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)))
400399oveq2d 7371 . . . . . . . . 9 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))
4013mptexd 7167 . . . . . . . . . . 11 (𝜑 → (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)) ∈ V)
402 fvexd 6846 . . . . . . . . . . 11 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) ∈ V)
403339, 401, 358, 402, 61gsumsra 33058 . . . . . . . . . 10 (𝜑 → (𝐽 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))
404403adantr 480 . . . . . . . . 9 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝐽 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))
405395, 400, 4043eqtr3rd 2777 . . . . . . . 8 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))
406405eqeq2d 2744 . . . . . . 7 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) ↔ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)))))
407371, 406anbi12d 632 . . . . . 6 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → ((𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)))) ↔ (𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))))
408351, 407rexeqbidva 3300 . . . . 5 (𝜑 → (∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)))) ↔ ∃𝑒 ∈ (𝐹m 𝐵)(𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))))
409408adantr 480 . . . 4 ((𝜑𝑓𝐻) → (∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)))) ↔ ∃𝑒 ∈ (𝐹m 𝐵)(𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))))
410344, 409mpbid 232 . . 3 ((𝜑𝑓𝐻) → ∃𝑒 ∈ (𝐹m 𝐵)(𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)))))
411326, 11, 327, 410ac6mapd 32627 . 2 (𝜑 → ∃𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))))
412319, 411r19.29a 3141 1 (𝜑 → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wral 3048  wrex 3057  Vcvv 3437  cun 3896  wss 3898  {csn 4577  cop 4583   ciun 4943   class class class wbr 5095  cmpt 5176   × cxp 5619   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355   supp csupp 8099  m cmap 8759  Fincfn 8879   finSupp cfsupp 9256  Basecbs 17127  s cress 17148  .rcmulr 17169  Scalarcsca 17171   ·𝑠 cvsca 17172  0gc0g 17350   Σg cgsu 17351  Mndcmnd 18650  SubMndcsubmnd 18698  SubGrpcsubg 19041  CMndccmn 19700  Ringcrg 20159  SubRingcsubrg 20493  RingSpancrgspn 20534  DivRingcdr 20653  Fieldcfield 20654  SubDRingcsdrg 20710  LModclmod 20802  LSpanclspn 20913  LBasisclbs 21017  subringAlg csra 21114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-reg 9489  ax-inf2 9542  ax-ac2 10365  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-sup 9337  df-oi 9407  df-r1 9668  df-rank 9669  df-card 9843  df-ac 10018  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-fzo 13562  df-seq 13916  df-hash 14245  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-hom 17192  df-cco 17193  df-0g 17352  df-gsum 17353  df-prds 17358  df-pws 17360  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-submnd 18700  df-grp 18857  df-minusg 18858  df-sbg 18859  df-mulg 18989  df-subg 19044  df-ghm 19133  df-cntz 19237  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-nzr 20437  df-subrng 20470  df-subrg 20494  df-drng 20655  df-field 20656  df-sdrg 20711  df-lmod 20804  df-lss 20874  df-lsp 20914  df-lmhm 20965  df-lbs 21018  df-sra 21116  df-rgmod 21117  df-dsmm 21678  df-frlm 21693  df-uvc 21729
This theorem is referenced by:  fldextrspunlsp  33759
  Copyright terms: Public domain W3C validator