Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspunlsplem Structured version   Visualization version   GIF version

Theorem fldextrspunlsplem 33674
Description: Lemma for fldextrspunlsp 33675: First direction. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
fldextrspunfld.k 𝐾 = (𝐿s 𝐹)
fldextrspunfld.i 𝐼 = (𝐿s 𝐺)
fldextrspunfld.j 𝐽 = (𝐿s 𝐻)
fldextrspunfld.2 (𝜑𝐿 ∈ Field)
fldextrspunfld.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspunfld.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspunfld.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspunfld.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspunlsp.n 𝑁 = (RingSpan‘𝐿)
fldextrspunlsp.c 𝐶 = (𝑁‘(𝐺𝐻))
fldextrspunlsp.e 𝐸 = (𝐿s 𝐶)
fldextrspunlsp.1 (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
fldextrspunlsp.2 (𝜑𝐵 ∈ Fin)
fldextrspunlsplem.2 (𝜑𝑃:𝐻𝐺)
fldextrspunlsplem.3 (𝜑𝑃 finSupp (0g𝐿))
fldextrspunlsplem.4 (𝜑𝑋 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))))
Assertion
Ref Expression
fldextrspunlsplem (𝜑 → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))))
Distinct variable groups:   𝐵,𝑎,𝑏,𝑓   𝐹,𝑎,𝑏,𝑓   𝐺,𝑎,𝑓   𝐻,𝑎,𝑏,𝑓   𝐽,𝑏   𝐾,𝑎,𝑏,𝑓   𝐿,𝑎,𝑏,𝑓   𝑃,𝑎,𝑏,𝑓   𝑋,𝑎   𝜑,𝑎,𝑏,𝑓
Allowed substitution hints:   𝐶(𝑓,𝑎,𝑏)   𝐸(𝑓,𝑎,𝑏)   𝐺(𝑏)   𝐼(𝑓,𝑎,𝑏)   𝐽(𝑓,𝑎)   𝑁(𝑓,𝑎,𝑏)   𝑋(𝑓,𝑏)

Proof of Theorem fldextrspunlsplem
Dummy variables 𝑐 𝑢 𝑒 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextrspunfld.5 . . . . 5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
21ad2antrr 726 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐺 ∈ (SubDRing‘𝐿))
3 fldextrspunlsp.1 . . . . 5 (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
43ad2antrr 726 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
5 eqid 2730 . . . . . 6 (0g𝐿) = (0g𝐿)
6 fldextrspunfld.2 . . . . . . . . . 10 (𝜑𝐿 ∈ Field)
76flddrngd 20656 . . . . . . . . 9 (𝜑𝐿 ∈ DivRing)
87drngringd 20652 . . . . . . . 8 (𝜑𝐿 ∈ Ring)
98ringcmnd 20199 . . . . . . 7 (𝜑𝐿 ∈ CMnd)
109ad3antrrr 730 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐿 ∈ CMnd)
11 fldextrspunfld.6 . . . . . . 7 (𝜑𝐻 ∈ (SubDRing‘𝐿))
1211ad3antrrr 730 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐻 ∈ (SubDRing‘𝐿))
13 sdrgsubrg 20706 . . . . . . . . 9 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
141, 13syl 17 . . . . . . . 8 (𝜑𝐺 ∈ (SubRing‘𝐿))
15 subrgsubg 20492 . . . . . . . 8 (𝐺 ∈ (SubRing‘𝐿) → 𝐺 ∈ (SubGrp‘𝐿))
16 subgsubm 19086 . . . . . . . 8 (𝐺 ∈ (SubGrp‘𝐿) → 𝐺 ∈ (SubMnd‘𝐿))
1714, 15, 163syl 18 . . . . . . 7 (𝜑𝐺 ∈ (SubMnd‘𝐿))
1817ad3antrrr 730 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐺 ∈ (SubMnd‘𝐿))
19 eqid 2730 . . . . . . . . 9 (.r𝐿) = (.r𝐿)
2014ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐺 ∈ (SubRing‘𝐿))
21 fldextrspunlsplem.2 . . . . . . . . . . 11 (𝜑𝑃:𝐻𝐺)
2221ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑃:𝐻𝐺)
23 simpr 484 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑓𝐻)
2422, 23ffvelcdmd 7059 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → (𝑃𝑓) ∈ 𝐺)
25 fldextrspunfld.3 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (SubDRing‘𝐼))
26 eqid 2730 . . . . . . . . . . . . . 14 (Base‘𝐼) = (Base‘𝐼)
2726sdrgss 20708 . . . . . . . . . . . . 13 (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ⊆ (Base‘𝐼))
2825, 27syl 17 . . . . . . . . . . . 12 (𝜑𝐹 ⊆ (Base‘𝐼))
29 eqid 2730 . . . . . . . . . . . . . . 15 (Base‘𝐿) = (Base‘𝐿)
3029sdrgss 20708 . . . . . . . . . . . . . 14 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
311, 30syl 17 . . . . . . . . . . . . 13 (𝜑𝐺 ⊆ (Base‘𝐿))
32 fldextrspunfld.i . . . . . . . . . . . . . 14 𝐼 = (𝐿s 𝐺)
3332, 29ressbas2 17214 . . . . . . . . . . . . 13 (𝐺 ⊆ (Base‘𝐿) → 𝐺 = (Base‘𝐼))
3431, 33syl 17 . . . . . . . . . . . 12 (𝜑𝐺 = (Base‘𝐼))
3528, 34sseqtrrd 3986 . . . . . . . . . . 11 (𝜑𝐹𝐺)
3635ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐹𝐺)
373ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
3825ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐹 ∈ (SubDRing‘𝐼))
3911ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐻 ∈ (SubDRing‘𝐿))
40 ovexd 7424 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → (𝐹m 𝐵) ∈ V)
41 simpllr 775 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
4239, 40, 41elmaprd 32609 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑢:𝐻⟶(𝐹m 𝐵))
4342, 23ffvelcdmd 7059 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → (𝑢𝑓) ∈ (𝐹m 𝐵))
4437, 38, 43elmaprd 32609 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → (𝑢𝑓):𝐵𝐹)
45 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑐𝐵)
4644, 45ffvelcdmd 7059 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → ((𝑢𝑓)‘𝑐) ∈ 𝐹)
4736, 46sseldd 3949 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → ((𝑢𝑓)‘𝑐) ∈ 𝐺)
4819, 20, 24, 47subrgmcld 33190 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)) ∈ 𝐺)
4948fmpttd 7089 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))):𝐻𝐺)
5049adantlr 715 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))):𝐻𝐺)
51 fveq2 6860 . . . . . . . . 9 (𝑓 = → (𝑃𝑓) = (𝑃))
52 fveq2 6860 . . . . . . . . . 10 (𝑓 = → (𝑢𝑓) = (𝑢))
5352fveq1d 6862 . . . . . . . . 9 (𝑓 = → ((𝑢𝑓)‘𝑐) = ((𝑢)‘𝑐))
5451, 53oveq12d 7407 . . . . . . . 8 (𝑓 = → ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)) = ((𝑃)(.r𝐿)((𝑢)‘𝑐)))
5554cbvmptv 5213 . . . . . . 7 (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))) = (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐)))
56 fvexd 6875 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (0g𝐿) ∈ V)
57 ssidd 3972 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐻𝐻)
58 fldextrspunfld.4 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (SubDRing‘𝐽))
59 eqid 2730 . . . . . . . . . . . . . 14 (Base‘𝐽) = (Base‘𝐽)
6059sdrgss 20708 . . . . . . . . . . . . 13 (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ⊆ (Base‘𝐽))
6158, 60syl 17 . . . . . . . . . . . 12 (𝜑𝐹 ⊆ (Base‘𝐽))
6229sdrgss 20708 . . . . . . . . . . . . . 14 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
6311, 62syl 17 . . . . . . . . . . . . 13 (𝜑𝐻 ⊆ (Base‘𝐿))
64 fldextrspunfld.j . . . . . . . . . . . . . 14 𝐽 = (𝐿s 𝐻)
6564, 29ressbas2 17214 . . . . . . . . . . . . 13 (𝐻 ⊆ (Base‘𝐿) → 𝐻 = (Base‘𝐽))
6663, 65syl 17 . . . . . . . . . . . 12 (𝜑𝐻 = (Base‘𝐽))
6761, 66sseqtrrd 3986 . . . . . . . . . . 11 (𝜑𝐹𝐻)
6867, 63sstrd 3959 . . . . . . . . . 10 (𝜑𝐹 ⊆ (Base‘𝐿))
6968ad4antr 732 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐹 ⊆ (Base‘𝐿))
703ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
7158ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐹 ∈ (SubDRing‘𝐽))
72 ovexd 7424 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐹m 𝐵) ∈ V)
73 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
7412, 72, 73elmaprd 32609 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑢:𝐻⟶(𝐹m 𝐵))
7574ffvelcdmda 7058 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (𝑢) ∈ (𝐹m 𝐵))
7670, 71, 75elmaprd 32609 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (𝑢):𝐵𝐹)
77 simplr 768 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝑐𝐵)
7876, 77ffvelcdmd 7059 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → ((𝑢)‘𝑐) ∈ 𝐹)
7969, 78sseldd 3949 . . . . . . . 8 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → ((𝑢)‘𝑐) ∈ (Base‘𝐿))
8021ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑃:𝐻𝐺)
81 fldextrspunlsplem.3 . . . . . . . . 9 (𝜑𝑃 finSupp (0g𝐿))
8281ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑃 finSupp (0g𝐿))
838ad4antr 732 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝐿 ∈ Ring)
84 simpr 484 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝑦 ∈ (Base‘𝐿))
8529, 19, 5, 83, 84ringlzd 20210 . . . . . . . 8 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝑦 ∈ (Base‘𝐿)) → ((0g𝐿)(.r𝐿)𝑦) = (0g𝐿))
8656, 56, 12, 57, 79, 80, 82, 85fisuppov1 32612 . . . . . . 7 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))) finSupp (0g𝐿))
8755, 86eqbrtrid 5144 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))) finSupp (0g𝐿))
885, 10, 12, 18, 50, 87gsumsubmcl 19855 . . . . 5 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))) ∈ 𝐺)
8988fmpttd 7089 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))):𝐵𝐺)
902, 4, 89elmapdd 8816 . . 3 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) ∈ (𝐺m 𝐵))
91 breq1 5112 . . . . . 6 (𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) → (𝑎 finSupp (0g𝐿) ↔ (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿)))
9291adantl 481 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → (𝑎 finSupp (0g𝐿) ↔ (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿)))
93 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))))
9493fveq1d 6862 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → (𝑎𝑏) = ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))‘𝑏))
95 eqid 2730 . . . . . . . . . . . 12 (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))
96 fveq2 6860 . . . . . . . . . . . . . . 15 (𝑐 = 𝑏 → ((𝑢𝑓)‘𝑐) = ((𝑢𝑓)‘𝑏))
9796oveq2d 7405 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)) = ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))
9897mpteq2dv 5203 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))) = (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))
9998oveq2d 7405 . . . . . . . . . . . 12 (𝑐 = 𝑏 → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))) = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))))
100 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑏𝐵) → 𝑏𝐵)
101 ovexd 7424 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑏𝐵) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))) ∈ V)
10295, 99, 100, 101fvmptd3 6993 . . . . . . . . . . 11 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑏𝐵) → ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))‘𝑏) = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))))
103102adantlr 715 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))‘𝑏) = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))))
10494, 103eqtrd 2765 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → (𝑎𝑏) = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))))
105104oveq1d 7404 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → ((𝑎𝑏)(.r𝐿)𝑏) = ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))
106105mpteq2dva 5202 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)) = (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏)))
107106oveq2d 7405 . . . . . 6 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))))
108107eqeq2d 2741 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → (𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏))) ↔ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏)))))
10992, 108anbi12d 632 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → ((𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))) ↔ ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))))))
110109adantlr 715 . . 3 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → ((𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))) ↔ ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))))))
111 fldextrspunlsp.2 . . . . . 6 (𝜑𝐵 ∈ Fin)
112111ad2antrr 726 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐵 ∈ Fin)
113 ovexd 7424 . . . . 5 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))) ∈ V)
114 fvexd 6875 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (0g𝐿) ∈ V)
11595, 112, 113, 114fsuppmptdm 9333 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿))
116 fldextrspunlsplem.4 . . . . . . 7 (𝜑𝑋 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))))
117116ad2antrr 726 . . . . . 6 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑋 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))))
1188ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐿 ∈ Ring)
119118adantr 480 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐿 ∈ Ring)
1203ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
12131ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐺 ⊆ (Base‘𝐿))
12221ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑃:𝐻𝐺)
123122ffvelcdmda 7058 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑃) ∈ 𝐺)
124121, 123sseldd 3949 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑃) ∈ (Base‘𝐿))
125119adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐿 ∈ Ring)
12668ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐹 ⊆ (Base‘𝐿))
1273ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
12858ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐹 ∈ (SubDRing‘𝐽))
12911ad4antr 732 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐻 ∈ (SubDRing‘𝐿))
130 ovexd 7424 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (𝐹m 𝐵) ∈ V)
131 simp-4r 783 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
132129, 130, 131elmaprd 32609 . . . . . . . . . . . . . . . 16 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝑢:𝐻⟶(𝐹m 𝐵))
133 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐻)
134132, 133ffvelcdmd 7059 . . . . . . . . . . . . . . 15 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (𝑢) ∈ (𝐹m 𝐵))
135127, 128, 134elmaprd 32609 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (𝑢):𝐵𝐹)
136 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝑐𝐵)
137135, 136ffvelcdmd 7059 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → ((𝑢)‘𝑐) ∈ 𝐹)
138126, 137sseldd 3949 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → ((𝑢)‘𝑐) ∈ (Base‘𝐿))
139 eqid 2730 . . . . . . . . . . . . . . . . . 18 (Base‘((subringAlg ‘𝐽)‘𝐹)) = (Base‘((subringAlg ‘𝐽)‘𝐹))
140 eqid 2730 . . . . . . . . . . . . . . . . . 18 (LBasis‘((subringAlg ‘𝐽)‘𝐹)) = (LBasis‘((subringAlg ‘𝐽)‘𝐹))
141139, 140lbsss 20990 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → 𝐵 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
1423, 141syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
143 eqidd 2731 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹))
144143, 61srabase 21090 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝐽) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
14566, 144eqtr2d 2766 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘((subringAlg ‘𝐽)‘𝐹)) = 𝐻)
146142, 145sseqtrd 3985 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐻)
147146, 63sstrd 3959 . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ (Base‘𝐿))
148147ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐵 ⊆ (Base‘𝐿))
149148sselda 3948 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝑐 ∈ (Base‘𝐿))
15029, 19, 125, 138, 149ringcld 20175 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (((𝑢)‘𝑐)(.r𝐿)𝑐) ∈ (Base‘𝐿))
151 fvexd 6875 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (0g𝐿) ∈ V)
152 ssidd 3972 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐵𝐵)
15358ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐹 ∈ (SubDRing‘𝐽))
15411ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐻 ∈ (SubDRing‘𝐿))
155 ovexd 7424 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐹m 𝐵) ∈ V)
156 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
157154, 155, 156elmaprd 32609 . . . . . . . . . . . . . 14 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑢:𝐻⟶(𝐹m 𝐵))
158157ffvelcdmda 7058 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑢) ∈ (𝐹m 𝐵))
159120, 153, 158elmaprd 32609 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑢):𝐵𝐹)
16052breq1d 5119 . . . . . . . . . . . . . . 15 (𝑓 = → ((𝑢𝑓) finSupp (0g𝐿) ↔ (𝑢) finSupp (0g𝐿)))
161 id 22 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑓 = )
16252fveq1d 6862 . . . . . . . . . . . . . . . . . . 19 (𝑓 = → ((𝑢𝑓)‘𝑏) = ((𝑢)‘𝑏))
163162oveq1d 7404 . . . . . . . . . . . . . . . . . 18 (𝑓 = → (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏) = (((𝑢)‘𝑏)(.r𝐿)𝑏))
164163mpteq2dv 5203 . . . . . . . . . . . . . . . . 17 (𝑓 = → (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)) = (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏)))
165164oveq2d 7405 . . . . . . . . . . . . . . . 16 (𝑓 = → (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏))))
166161, 165eqeq12d 2746 . . . . . . . . . . . . . . 15 (𝑓 = → (𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))) ↔ = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏)))))
167160, 166anbi12d 632 . . . . . . . . . . . . . 14 (𝑓 = → (((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))) ↔ ((𝑢) finSupp (0g𝐿) ∧ = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏))))))
168 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))))
169 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐻)
170167, 168, 169rspcdva 3592 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → ((𝑢) finSupp (0g𝐿) ∧ = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏)))))
171170simpld 494 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑢) finSupp (0g𝐿))
172119adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝐿 ∈ Ring)
173 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝑦 ∈ (Base‘𝐿))
17429, 19, 5, 172, 173ringlzd 20210 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑦 ∈ (Base‘𝐿)) → ((0g𝐿)(.r𝐿)𝑦) = (0g𝐿))
175151, 151, 120, 152, 149, 159, 171, 174fisuppov1 32612 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐)) finSupp (0g𝐿))
17629, 5, 19, 119, 120, 124, 150, 175gsummulc2 20232 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝐿 Σg (𝑐𝐵 ↦ ((𝑃)(.r𝐿)(((𝑢)‘𝑐)(.r𝐿)𝑐)))) = ((𝑃)(.r𝐿)(𝐿 Σg (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐)))))
177124adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (𝑃) ∈ (Base‘𝐿))
17829, 19, 125, 177, 138, 149ringassd 20172 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = ((𝑃)(.r𝐿)(((𝑢)‘𝑐)(.r𝐿)𝑐)))
179178mpteq2dva 5202 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐)) = (𝑐𝐵 ↦ ((𝑃)(.r𝐿)(((𝑢)‘𝑐)(.r𝐿)𝑐))))
180179oveq2d 7405 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))) = (𝐿 Σg (𝑐𝐵 ↦ ((𝑃)(.r𝐿)(((𝑢)‘𝑐)(.r𝐿)𝑐)))))
181170simprd 495 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏))))
182 fveq2 6860 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → ((𝑢)‘𝑏) = ((𝑢)‘𝑐))
183 id 22 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐𝑏 = 𝑐)
184182, 183oveq12d 7407 . . . . . . . . . . . . . 14 (𝑏 = 𝑐 → (((𝑢)‘𝑏)(.r𝐿)𝑏) = (((𝑢)‘𝑐)(.r𝐿)𝑐))
185184cbvmptv 5213 . . . . . . . . . . . . 13 (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏)) = (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐))
186185oveq2i 7400 . . . . . . . . . . . 12 (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏))) = (𝐿 Σg (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐)))
187181, 186eqtrdi 2781 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → = (𝐿 Σg (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐))))
188187oveq2d 7405 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → ((𝑃)(.r𝐿)) = ((𝑃)(.r𝐿)(𝐿 Σg (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐)))))
189176, 180, 1883eqtr4rd 2776 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → ((𝑃)(.r𝐿)) = (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))
190189mpteq2dva 5202 . . . . . . . 8 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐻 ↦ ((𝑃)(.r𝐿))) = (𝐻 ↦ (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐)))))
191190oveq2d 7405 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)))) = (𝐿 Σg (𝐻 ↦ (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))))
19251, 161oveq12d 7407 . . . . . . . . . 10 (𝑓 = → ((𝑃𝑓)(.r𝐿)𝑓) = ((𝑃)(.r𝐿)))
193192cbvmptv 5213 . . . . . . . . 9 (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓)) = (𝐻 ↦ ((𝑃)(.r𝐿)))
194193oveq2i 7400 . . . . . . . 8 (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿))))
195194a1i 11 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)))))
1969ad2antrr 726 . . . . . . . 8 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐿 ∈ CMnd)
1978ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐿 ∈ Ring)
19831ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐺 ⊆ (Base‘𝐿))
19980ffvelcdmda 7058 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (𝑃) ∈ 𝐺)
200198, 199sseldd 3949 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (𝑃) ∈ (Base‘𝐿))
20129, 19, 197, 200, 79ringcld 20175 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) ∈ (Base‘𝐿))
202147ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐵 ⊆ (Base‘𝐿))
203202sselda 3948 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑐 ∈ (Base‘𝐿))
204203adantr 480 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝑐 ∈ (Base‘𝐿))
20529, 19, 197, 201, 204ringcld 20175 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) ∈ (Base‘𝐿))
206205anasss 466 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ (𝑐𝐵𝐻)) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) ∈ (Base‘𝐿))
20781fsuppimpd 9326 . . . . . . . . . . . 12 (𝜑 → (𝑃 supp (0g𝐿)) ∈ Fin)
208207ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑃 supp (0g𝐿)) ∈ Fin)
209 suppssdm 8158 . . . . . . . . . . . . . . . . . 18 (𝑃 supp (0g𝐿)) ⊆ dom 𝑃
210209, 21fssdm 6709 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃 supp (0g𝐿)) ⊆ 𝐻)
211210sseld 3947 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑓 ∈ (𝑃 supp (0g𝐿)) → 𝑓𝐻))
212211adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → (𝑓 ∈ (𝑃 supp (0g𝐿)) → 𝑓𝐻))
213 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ (𝑢𝑓) finSupp (0g𝐿)) → (𝑢𝑓) finSupp (0g𝐿))
214213fsuppimpd 9326 . . . . . . . . . . . . . . . . 17 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ (𝑢𝑓) finSupp (0g𝐿)) → ((𝑢𝑓) supp (0g𝐿)) ∈ Fin)
215214ex 412 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → ((𝑢𝑓) finSupp (0g𝐿) → ((𝑢𝑓) supp (0g𝐿)) ∈ Fin))
216215adantrd 491 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → (((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))) → ((𝑢𝑓) supp (0g𝐿)) ∈ Fin))
217212, 216imim12d 81 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → ((𝑓𝐻 → ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑓 ∈ (𝑃 supp (0g𝐿)) → ((𝑢𝑓) supp (0g𝐿)) ∈ Fin)))
218217ralimdv2 3143 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → (∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))) → ∀𝑓 ∈ (𝑃 supp (0g𝐿))((𝑢𝑓) supp (0g𝐿)) ∈ Fin))
219218imp 406 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ∀𝑓 ∈ (𝑃 supp (0g𝐿))((𝑢𝑓) supp (0g𝐿)) ∈ Fin)
220 fveq2 6860 . . . . . . . . . . . . . . 15 (𝑓 = 𝑖 → (𝑢𝑓) = (𝑢𝑖))
221220oveq1d 7404 . . . . . . . . . . . . . 14 (𝑓 = 𝑖 → ((𝑢𝑓) supp (0g𝐿)) = ((𝑢𝑖) supp (0g𝐿)))
222221eleq1d 2814 . . . . . . . . . . . . 13 (𝑓 = 𝑖 → (((𝑢𝑓) supp (0g𝐿)) ∈ Fin ↔ ((𝑢𝑖) supp (0g𝐿)) ∈ Fin))
223222cbvralvw 3216 . . . . . . . . . . . 12 (∀𝑓 ∈ (𝑃 supp (0g𝐿))((𝑢𝑓) supp (0g𝐿)) ∈ Fin ↔ ∀𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin)
224219, 223sylib 218 . . . . . . . . . . 11 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ∀𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin)
225 iunfi 9300 . . . . . . . . . . 11 (((𝑃 supp (0g𝐿)) ∈ Fin ∧ ∀𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin) → 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin)
226208, 224, 225syl2anc 584 . . . . . . . . . 10 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin)
227 xpfi 9275 . . . . . . . . . 10 (( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin ∧ (𝑃 supp (0g𝐿)) ∈ Fin) → ( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) × (𝑃 supp (0g𝐿))) ∈ Fin)
228226, 208, 227syl2anc 584 . . . . . . . . 9 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) × (𝑃 supp (0g𝐿))) ∈ Fin)
229 snssi 4774 . . . . . . . . . . . 12 (𝑖 ∈ (𝑃 supp (0g𝐿)) → {𝑖} ⊆ (𝑃 supp (0g𝐿)))
230229adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑃 supp (0g𝐿))) → {𝑖} ⊆ (𝑃 supp (0g𝐿)))
231230iunxpssiun1 32503 . . . . . . . . . 10 (𝜑 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ⊆ ( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) × (𝑃 supp (0g𝐿))))
232231ad2antrr 726 . . . . . . . . 9 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ⊆ ( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) × (𝑃 supp (0g𝐿))))
233228, 232ssfid 9218 . . . . . . . 8 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ∈ Fin)
23421ffnd 6691 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 Fn 𝐻)
235234ad6antr 736 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝑃 Fn 𝐻)
23611ad6antr 736 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐻 ∈ (SubDRing‘𝐿))
237 fvexd 6875 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (0g𝐿) ∈ V)
238 simpllr 775 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐻)
239 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ¬ ∈ (𝑃 supp (0g𝐿)))
240238, 239eldifd 3927 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ∈ (𝐻 ∖ (𝑃 supp (0g𝐿))))
241235, 236, 237, 240fvdifsupp 8152 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (𝑃) = (0g𝐿))
242241oveq1d 7404 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = ((0g𝐿)(.r𝐿)((𝑢)‘𝑐)))
2438ad6antr 736 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐿 ∈ Ring)
24468ad6antr 736 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐹 ⊆ (Base‘𝐿))
2453ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
24658ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐹 ∈ (SubDRing‘𝐽))
247 ovexd 7424 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (𝐹m 𝐵) ∈ V)
248 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
249236, 247, 248elmaprd 32609 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝑢:𝐻⟶(𝐹m 𝐵))
250249, 238ffvelcdmd 7059 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (𝑢) ∈ (𝐹m 𝐵))
251245, 246, 250elmaprd 32609 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (𝑢):𝐵𝐹)
252 simp-4r 783 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝑐𝐵)
253251, 252ffvelcdmd 7059 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((𝑢)‘𝑐) ∈ 𝐹)
254244, 253sseldd 3949 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((𝑢)‘𝑐) ∈ (Base‘𝐿))
25529, 19, 5, 243, 254ringlzd 20210 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((0g𝐿)(.r𝐿)((𝑢)‘𝑐)) = (0g𝐿))
256242, 255eqtrd 2765 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = (0g𝐿))
2573ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
25858ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐹 ∈ (SubDRing‘𝐽))
25911ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐻 ∈ (SubDRing‘𝐿))
260 ovexd 7424 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝐹m 𝐵) ∈ V)
261 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
262259, 260, 261elmaprd 32609 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝑢:𝐻⟶(𝐹m 𝐵))
263 simpllr 775 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐻)
264262, 263ffvelcdmd 7059 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝑢) ∈ (𝐹m 𝐵))
265257, 258, 264elmaprd 32609 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝑢):𝐵𝐹)
266265ffnd 6691 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝑢) Fn 𝐵)
267 fvexd 6875 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (0g𝐿) ∈ V)
268 simp-4r 783 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝑐𝐵)
269 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿)))
270268, 269eldifd 3927 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝑐 ∈ (𝐵 ∖ ((𝑢) supp (0g𝐿))))
271266, 257, 267, 270fvdifsupp 8152 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ((𝑢)‘𝑐) = (0g𝐿))
272271oveq2d 7405 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = ((𝑃)(.r𝐿)(0g𝐿)))
273197ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐿 ∈ Ring)
274200ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝑃) ∈ (Base‘𝐿))
27529, 19, 5, 273, 274ringrzd 20211 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ((𝑃)(.r𝐿)(0g𝐿)) = (0g𝐿))
276272, 275eqtrd 2765 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = (0g𝐿))
277 df-br 5110 . . . . . . . . . . . . . . . . . . . 20 (𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ↔ ⟨𝑐, ⟩ ∈ 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}))
278 fveq2 6860 . . . . . . . . . . . . . . . . . . . . . . . 24 ( = 𝑖 → (𝑢) = (𝑢𝑖))
279278oveq1d 7404 . . . . . . . . . . . . . . . . . . . . . . 23 ( = 𝑖 → ((𝑢) supp (0g𝐿)) = ((𝑢𝑖) supp (0g𝐿)))
280 sneq 4601 . . . . . . . . . . . . . . . . . . . . . . 23 ( = 𝑖 → {} = {𝑖})
281279, 280xpeq12d 5671 . . . . . . . . . . . . . . . . . . . . . 22 ( = 𝑖 → (((𝑢) supp (0g𝐿)) × {}) = (((𝑢𝑖) supp (0g𝐿)) × {𝑖}))
282281cbviunv 5006 . . . . . . . . . . . . . . . . . . . . 21 ∈ (𝑃 supp (0g𝐿))(((𝑢) supp (0g𝐿)) × {}) = 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})
283282eleq2i 2821 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑐, ⟩ ∈ ∈ (𝑃 supp (0g𝐿))(((𝑢) supp (0g𝐿)) × {}) ↔ ⟨𝑐, ⟩ ∈ 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}))
284 opeliun2xp 5708 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑐, ⟩ ∈ ∈ (𝑃 supp (0g𝐿))(((𝑢) supp (0g𝐿)) × {}) ↔ ( ∈ (𝑃 supp (0g𝐿)) ∧ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
285277, 283, 2843bitr2i 299 . . . . . . . . . . . . . . . . . . 19 (𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ↔ ( ∈ (𝑃 supp (0g𝐿)) ∧ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
286285notbii 320 . . . . . . . . . . . . . . . . . 18 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ↔ ¬ ( ∈ (𝑃 supp (0g𝐿)) ∧ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
287 ianor 983 . . . . . . . . . . . . . . . . . 18 (¬ ( ∈ (𝑃 supp (0g𝐿)) ∧ 𝑐 ∈ ((𝑢) supp (0g𝐿))) ↔ (¬ ∈ (𝑃 supp (0g𝐿)) ∨ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
288286, 287sylbb 219 . . . . . . . . . . . . . . . . 17 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) → (¬ ∈ (𝑃 supp (0g𝐿)) ∨ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
289288adantl 481 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → (¬ ∈ (𝑃 supp (0g𝐿)) ∨ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
290256, 276, 289mpjaodan 960 . . . . . . . . . . . . . . 15 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = (0g𝐿))
291290oveq1d 7404 . . . . . . . . . . . . . 14 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = ((0g𝐿)(.r𝐿)𝑐))
292118ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → 𝐿 ∈ Ring)
293203ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → 𝑐 ∈ (Base‘𝐿))
29429, 19, 5, 292, 293ringlzd 20210 . . . . . . . . . . . . . 14 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → ((0g𝐿)(.r𝐿)𝑐) = (0g𝐿))
295291, 294eqtrd 2765 . . . . . . . . . . . . 13 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
296295an42ds 32385 . . . . . . . . . . . 12 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ 𝐻) ∧ 𝑐𝐵) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
297296an32s 652 . . . . . . . . . . 11 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ 𝑐𝐵) ∧ 𝐻) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
298297anasss 466 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ (𝑐𝐵𝐻)) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
299298an32s 652 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ (𝑐𝐵𝐻)) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
300299anasss 466 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ ((𝑐𝐵𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}))) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
30129, 5, 196, 4, 154, 206, 233, 300gsumcom3 19914 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝑐𝐵 ↦ (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))) = (𝐿 Σg (𝐻 ↦ (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))))
302191, 195, 3013eqtr4d 2775 . . . . . 6 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑐𝐵 ↦ (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))))
303118adantr 480 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐿 ∈ Ring)
30429, 5, 19, 303, 12, 203, 201, 86gsummulc1 20231 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))) = ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))
305304mpteq2dva 5202 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑐𝐵 ↦ (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐)))) = (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐)))
306305oveq2d 7405 . . . . . 6 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝑐𝐵 ↦ (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))) = (𝐿 Σg (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))))
307117, 302, 3063eqtrd 2769 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑋 = (𝐿 Σg (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))))
30851, 162oveq12d 7407 . . . . . . . . . . 11 (𝑓 = → ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)) = ((𝑃)(.r𝐿)((𝑢)‘𝑏)))
309308cbvmptv 5213 . . . . . . . . . 10 (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))) = (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑏)))
310182oveq2d 7405 . . . . . . . . . . 11 (𝑏 = 𝑐 → ((𝑃)(.r𝐿)((𝑢)‘𝑏)) = ((𝑃)(.r𝐿)((𝑢)‘𝑐)))
311310mpteq2dv 5203 . . . . . . . . . 10 (𝑏 = 𝑐 → (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑏))) = (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))
312309, 311eqtrid 2777 . . . . . . . . 9 (𝑏 = 𝑐 → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))) = (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))
313312oveq2d 7405 . . . . . . . 8 (𝑏 = 𝑐 → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))) = (𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐)))))
314313, 183oveq12d 7407 . . . . . . 7 (𝑏 = 𝑐 → ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏) = ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))
315314cbvmptv 5213 . . . . . 6 (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏)) = (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))
316315oveq2i 7400 . . . . 5 (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))) = (𝐿 Σg (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐)))
317307, 316eqtr4di 2783 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))))
318115, 317jca 511 . . 3 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏)))))
31990, 110, 318rspcedvd 3593 . 2 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))))
320 breq1 5112 . . . 4 (𝑒 = (𝑢𝑓) → (𝑒 finSupp (0g𝐿) ↔ (𝑢𝑓) finSupp (0g𝐿)))
321 fveq1 6859 . . . . . . . 8 (𝑒 = (𝑢𝑓) → (𝑒𝑏) = ((𝑢𝑓)‘𝑏))
322321oveq1d 7404 . . . . . . 7 (𝑒 = (𝑢𝑓) → ((𝑒𝑏)(.r𝐿)𝑏) = (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))
323322mpteq2dv 5203 . . . . . 6 (𝑒 = (𝑢𝑓) → (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)) = (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))
324323oveq2d 7405 . . . . 5 (𝑒 = (𝑢𝑓) → (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))
325324eqeq2d 2741 . . . 4 (𝑒 = (𝑢𝑓) → (𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))) ↔ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))))
326320, 325anbi12d 632 . . 3 (𝑒 = (𝑢𝑓) → ((𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)))) ↔ ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))))
327 ovexd 7424 . . 3 (𝜑 → (𝐹m 𝐵) ∈ V)
328 eqid 2730 . . . . . . . . . 10 (LSpan‘((subringAlg ‘𝐽)‘𝐹)) = (LSpan‘((subringAlg ‘𝐽)‘𝐹))
329139, 140, 328lbssp 20992 . . . . . . . . 9 (𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
3303, 329syl 17 . . . . . . . 8 (𝜑 → ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
331144, 66, 3303eqtr4rd 2776 . . . . . . 7 (𝜑 → ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) = 𝐻)
332331eleq2d 2815 . . . . . 6 (𝜑 → (𝑓 ∈ ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) ↔ 𝑓𝐻))
333 eqid 2730 . . . . . . 7 (Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = (Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹)))
334 eqid 2730 . . . . . . 7 (Scalar‘((subringAlg ‘𝐽)‘𝐹)) = (Scalar‘((subringAlg ‘𝐽)‘𝐹))
335 eqid 2730 . . . . . . 7 (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹)))
336 eqid 2730 . . . . . . 7 ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)) = ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))
337 sdrgsubrg 20706 . . . . . . . . 9 (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ∈ (SubRing‘𝐽))
33858, 337syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (SubRing‘𝐽))
339 eqid 2730 . . . . . . . . 9 ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹)
340339sralmod 21100 . . . . . . . 8 (𝐹 ∈ (SubRing‘𝐽) → ((subringAlg ‘𝐽)‘𝐹) ∈ LMod)
341338, 340syl 17 . . . . . . 7 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) ∈ LMod)
342328, 139, 333, 334, 335, 336, 341, 142ellspds 33345 . . . . . 6 (𝜑 → (𝑓 ∈ ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) ↔ ∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))))
343332, 342bitr3d 281 . . . . 5 (𝜑 → (𝑓𝐻 ↔ ∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))))
344343biimpa 476 . . . 4 ((𝜑𝑓𝐻) → ∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)))))
345 eqid 2730 . . . . . . . . . 10 (𝐽s 𝐹) = (𝐽s 𝐹)
346345, 59ressbas2 17214 . . . . . . . . 9 (𝐹 ⊆ (Base‘𝐽) → 𝐹 = (Base‘(𝐽s 𝐹)))
34761, 346syl 17 . . . . . . . 8 (𝜑𝐹 = (Base‘(𝐽s 𝐹)))
348143, 61srasca 21093 . . . . . . . . 9 (𝜑 → (𝐽s 𝐹) = (Scalar‘((subringAlg ‘𝐽)‘𝐹)))
349348fveq2d 6864 . . . . . . . 8 (𝜑 → (Base‘(𝐽s 𝐹)) = (Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))))
350347, 349eqtr2d 2766 . . . . . . 7 (𝜑 → (Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = 𝐹)
351350oveq1d 7404 . . . . . 6 (𝜑 → ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵) = (𝐹m 𝐵))
352 sdrgsubrg 20706 . . . . . . . . . . . 12 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ∈ (SubRing‘𝐿))
35311, 352syl 17 . . . . . . . . . . 11 (𝜑𝐻 ∈ (SubRing‘𝐿))
354 subrgsubg 20492 . . . . . . . . . . 11 (𝐻 ∈ (SubRing‘𝐿) → 𝐻 ∈ (SubGrp‘𝐿))
35564, 5subg0 19070 . . . . . . . . . . 11 (𝐻 ∈ (SubGrp‘𝐿) → (0g𝐿) = (0g𝐽))
356353, 354, 3553syl 18 . . . . . . . . . 10 (𝜑 → (0g𝐿) = (0g𝐽))
35764sdrgdrng 20705 . . . . . . . . . . . . . . 15 (𝐻 ∈ (SubDRing‘𝐿) → 𝐽 ∈ DivRing)
35811, 357syl 17 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ DivRing)
359358drngringd 20652 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Ring)
360359ringcmnd 20199 . . . . . . . . . . . 12 (𝜑𝐽 ∈ CMnd)
361360cmnmndd 19740 . . . . . . . . . . 11 (𝜑𝐽 ∈ Mnd)
362 subrgsubg 20492 . . . . . . . . . . . 12 (𝐹 ∈ (SubRing‘𝐽) → 𝐹 ∈ (SubGrp‘𝐽))
363 eqid 2730 . . . . . . . . . . . . 13 (0g𝐽) = (0g𝐽)
364363subg0cl 19072 . . . . . . . . . . . 12 (𝐹 ∈ (SubGrp‘𝐽) → (0g𝐽) ∈ 𝐹)
365338, 362, 3643syl 18 . . . . . . . . . . 11 (𝜑 → (0g𝐽) ∈ 𝐹)
366345, 59, 363ress0g 18695 . . . . . . . . . . 11 ((𝐽 ∈ Mnd ∧ (0g𝐽) ∈ 𝐹𝐹 ⊆ (Base‘𝐽)) → (0g𝐽) = (0g‘(𝐽s 𝐹)))
367361, 365, 61, 366syl3anc 1373 . . . . . . . . . 10 (𝜑 → (0g𝐽) = (0g‘(𝐽s 𝐹)))
368348fveq2d 6864 . . . . . . . . . 10 (𝜑 → (0g‘(𝐽s 𝐹)) = (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))))
369356, 367, 3683eqtrrd 2770 . . . . . . . . 9 (𝜑 → (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = (0g𝐿))
370369breq2d 5121 . . . . . . . 8 (𝜑 → (𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↔ 𝑒 finSupp (0g𝐿)))
371370adantr 480 . . . . . . 7 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↔ 𝑒 finSupp (0g𝐿)))
3723adantr 480 . . . . . . . . . 10 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
373 subgsubm 19086 . . . . . . . . . . . 12 (𝐻 ∈ (SubGrp‘𝐿) → 𝐻 ∈ (SubMnd‘𝐿))
374353, 354, 3733syl 18 . . . . . . . . . . 11 (𝜑𝐻 ∈ (SubMnd‘𝐿))
375374adantr 480 . . . . . . . . . 10 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐻 ∈ (SubMnd‘𝐿))
37664, 19ressmulr 17276 . . . . . . . . . . . . . . . 16 (𝐻 ∈ (SubDRing‘𝐿) → (.r𝐿) = (.r𝐽))
37711, 376syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (.r𝐿) = (.r𝐽))
378143, 61sravsca 21094 . . . . . . . . . . . . . . 15 (𝜑 → (.r𝐽) = ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)))
379377, 378eqtrd 2765 . . . . . . . . . . . . . 14 (𝜑 → (.r𝐿) = ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)))
380379ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → (.r𝐿) = ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)))
381380oveqd 7406 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → ((𝑒𝑏)(.r𝐿)𝑏) = ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))
382353ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → 𝐻 ∈ (SubRing‘𝐿))
38367ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → 𝐹𝐻)
38425adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐹 ∈ (SubDRing‘𝐼))
385351eleq2d 2815 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵) ↔ 𝑒 ∈ (𝐹m 𝐵)))
386385biimpa 476 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝑒 ∈ (𝐹m 𝐵))
387372, 384, 386elmaprd 32609 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝑒:𝐵𝐹)
388387ffvelcdmda 7058 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → (𝑒𝑏) ∈ 𝐹)
389383, 388sseldd 3949 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → (𝑒𝑏) ∈ 𝐻)
390146adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐵𝐻)
391390sselda 3948 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → 𝑏𝐻)
39219, 382, 389, 391subrgmcld 33190 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → ((𝑒𝑏)(.r𝐿)𝑏) ∈ 𝐻)
393381, 392eqeltrrd 2830 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏) ∈ 𝐻)
394393fmpttd 7089 . . . . . . . . . 10 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)):𝐵𝐻)
395372, 375, 394, 64gsumsubm 18768 . . . . . . . . 9 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (𝐽 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))
396377, 378eqtr2d 2766 . . . . . . . . . . . . 13 (𝜑 → ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)) = (.r𝐿))
397396adantr 480 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)) = (.r𝐿))
398397oveqd 7406 . . . . . . . . . . 11 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏) = ((𝑒𝑏)(.r𝐿)𝑏))
399398mpteq2dv 5203 . . . . . . . . . 10 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)) = (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)))
400399oveq2d 7405 . . . . . . . . 9 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))
4013mptexd 7200 . . . . . . . . . . 11 (𝜑 → (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)) ∈ V)
402 fvexd 6875 . . . . . . . . . . 11 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) ∈ V)
403339, 401, 358, 402, 61gsumsra 32993 . . . . . . . . . 10 (𝜑 → (𝐽 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))
404403adantr 480 . . . . . . . . 9 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝐽 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))
405395, 400, 4043eqtr3rd 2774 . . . . . . . 8 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))
406405eqeq2d 2741 . . . . . . 7 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) ↔ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)))))
407371, 406anbi12d 632 . . . . . 6 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → ((𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)))) ↔ (𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))))
408351, 407rexeqbidva 3308 . . . . 5 (𝜑 → (∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)))) ↔ ∃𝑒 ∈ (𝐹m 𝐵)(𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))))
409408adantr 480 . . . 4 ((𝜑𝑓𝐻) → (∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)))) ↔ ∃𝑒 ∈ (𝐹m 𝐵)(𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))))
410344, 409mpbid 232 . . 3 ((𝜑𝑓𝐻) → ∃𝑒 ∈ (𝐹m 𝐵)(𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)))))
411326, 11, 327, 410ac6mapd 32555 . 2 (𝜑 → ∃𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))))
412319, 411r19.29a 3142 1 (𝜑 → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  cun 3914  wss 3916  {csn 4591  cop 4597   ciun 4957   class class class wbr 5109  cmpt 5190   × cxp 5638   Fn wfn 6508  wf 6509  cfv 6513  (class class class)co 7389   supp csupp 8141  m cmap 8801  Fincfn 8920   finSupp cfsupp 9318  Basecbs 17185  s cress 17206  .rcmulr 17227  Scalarcsca 17229   ·𝑠 cvsca 17230  0gc0g 17408   Σg cgsu 17409  Mndcmnd 18667  SubMndcsubmnd 18715  SubGrpcsubg 19058  CMndccmn 19716  Ringcrg 20148  SubRingcsubrg 20484  RingSpancrgspn 20525  DivRingcdr 20644  Fieldcfield 20645  SubDRingcsdrg 20701  LModclmod 20772  LSpanclspn 20883  LBasisclbs 20987  subringAlg csra 21084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-reg 9551  ax-inf2 9600  ax-ac2 10422  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-sup 9399  df-oi 9469  df-r1 9723  df-rank 9724  df-card 9898  df-ac 10075  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-fzo 13622  df-seq 13973  df-hash 14302  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-hom 17250  df-cco 17251  df-0g 17410  df-gsum 17411  df-prds 17416  df-pws 17418  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-ghm 19151  df-cntz 19255  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-drng 20646  df-field 20647  df-sdrg 20702  df-lmod 20774  df-lss 20844  df-lsp 20884  df-lmhm 20935  df-lbs 20988  df-sra 21086  df-rgmod 21087  df-dsmm 21647  df-frlm 21662  df-uvc 21698
This theorem is referenced by:  fldextrspunlsp  33675
  Copyright terms: Public domain W3C validator