Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspunlsplem Structured version   Visualization version   GIF version

Theorem fldextrspunlsplem 33665
Description: Lemma for fldextrspunlsp 33666: First direction. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
fldextrspunfld.k 𝐾 = (𝐿s 𝐹)
fldextrspunfld.i 𝐼 = (𝐿s 𝐺)
fldextrspunfld.j 𝐽 = (𝐿s 𝐻)
fldextrspunfld.2 (𝜑𝐿 ∈ Field)
fldextrspunfld.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspunfld.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspunfld.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspunfld.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspunlsp.n 𝑁 = (RingSpan‘𝐿)
fldextrspunlsp.c 𝐶 = (𝑁‘(𝐺𝐻))
fldextrspunlsp.e 𝐸 = (𝐿s 𝐶)
fldextrspunlsp.1 (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
fldextrspunlsp.2 (𝜑𝐵 ∈ Fin)
fldextrspunlsplem.2 (𝜑𝑃:𝐻𝐺)
fldextrspunlsplem.3 (𝜑𝑃 finSupp (0g𝐿))
fldextrspunlsplem.4 (𝜑𝑋 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))))
Assertion
Ref Expression
fldextrspunlsplem (𝜑 → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))))
Distinct variable groups:   𝐵,𝑎,𝑏,𝑓   𝐹,𝑎,𝑏,𝑓   𝐺,𝑎,𝑓   𝐻,𝑎,𝑏,𝑓   𝐽,𝑏   𝐾,𝑎,𝑏,𝑓   𝐿,𝑎,𝑏,𝑓   𝑃,𝑎,𝑏,𝑓   𝑋,𝑎   𝜑,𝑎,𝑏,𝑓
Allowed substitution hints:   𝐶(𝑓,𝑎,𝑏)   𝐸(𝑓,𝑎,𝑏)   𝐺(𝑏)   𝐼(𝑓,𝑎,𝑏)   𝐽(𝑓,𝑎)   𝑁(𝑓,𝑎,𝑏)   𝑋(𝑓,𝑏)

Proof of Theorem fldextrspunlsplem
Dummy variables 𝑐 𝑢 𝑒 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextrspunfld.5 . . . . 5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
21ad2antrr 726 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐺 ∈ (SubDRing‘𝐿))
3 fldextrspunlsp.1 . . . . 5 (𝜑𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
43ad2antrr 726 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
5 eqid 2734 . . . . . 6 (0g𝐿) = (0g𝐿)
6 fldextrspunfld.2 . . . . . . . . . 10 (𝜑𝐿 ∈ Field)
76flddrngd 20710 . . . . . . . . 9 (𝜑𝐿 ∈ DivRing)
87drngringd 20706 . . . . . . . 8 (𝜑𝐿 ∈ Ring)
98ringcmnd 20250 . . . . . . 7 (𝜑𝐿 ∈ CMnd)
109ad3antrrr 730 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐿 ∈ CMnd)
11 fldextrspunfld.6 . . . . . . 7 (𝜑𝐻 ∈ (SubDRing‘𝐿))
1211ad3antrrr 730 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐻 ∈ (SubDRing‘𝐿))
13 sdrgsubrg 20761 . . . . . . . . 9 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
141, 13syl 17 . . . . . . . 8 (𝜑𝐺 ∈ (SubRing‘𝐿))
15 subrgsubg 20546 . . . . . . . 8 (𝐺 ∈ (SubRing‘𝐿) → 𝐺 ∈ (SubGrp‘𝐿))
16 subgsubm 19136 . . . . . . . 8 (𝐺 ∈ (SubGrp‘𝐿) → 𝐺 ∈ (SubMnd‘𝐿))
1714, 15, 163syl 18 . . . . . . 7 (𝜑𝐺 ∈ (SubMnd‘𝐿))
1817ad3antrrr 730 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐺 ∈ (SubMnd‘𝐿))
19 eqid 2734 . . . . . . . . 9 (.r𝐿) = (.r𝐿)
2014ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐺 ∈ (SubRing‘𝐿))
21 fldextrspunlsplem.2 . . . . . . . . . . 11 (𝜑𝑃:𝐻𝐺)
2221ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑃:𝐻𝐺)
23 simpr 484 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑓𝐻)
2422, 23ffvelcdmd 7085 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → (𝑃𝑓) ∈ 𝐺)
25 fldextrspunfld.3 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (SubDRing‘𝐼))
26 eqid 2734 . . . . . . . . . . . . . 14 (Base‘𝐼) = (Base‘𝐼)
2726sdrgss 20763 . . . . . . . . . . . . 13 (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ⊆ (Base‘𝐼))
2825, 27syl 17 . . . . . . . . . . . 12 (𝜑𝐹 ⊆ (Base‘𝐼))
29 eqid 2734 . . . . . . . . . . . . . . 15 (Base‘𝐿) = (Base‘𝐿)
3029sdrgss 20763 . . . . . . . . . . . . . 14 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
311, 30syl 17 . . . . . . . . . . . . 13 (𝜑𝐺 ⊆ (Base‘𝐿))
32 fldextrspunfld.i . . . . . . . . . . . . . 14 𝐼 = (𝐿s 𝐺)
3332, 29ressbas2 17262 . . . . . . . . . . . . 13 (𝐺 ⊆ (Base‘𝐿) → 𝐺 = (Base‘𝐼))
3431, 33syl 17 . . . . . . . . . . . 12 (𝜑𝐺 = (Base‘𝐼))
3528, 34sseqtrrd 4001 . . . . . . . . . . 11 (𝜑𝐹𝐺)
3635ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐹𝐺)
373ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
3825ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐹 ∈ (SubDRing‘𝐼))
3911ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝐻 ∈ (SubDRing‘𝐿))
40 ovexd 7448 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → (𝐹m 𝐵) ∈ V)
41 simpllr 775 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
4239, 40, 41elmaprd 32625 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑢:𝐻⟶(𝐹m 𝐵))
4342, 23ffvelcdmd 7085 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → (𝑢𝑓) ∈ (𝐹m 𝐵))
4437, 38, 43elmaprd 32625 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → (𝑢𝑓):𝐵𝐹)
45 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → 𝑐𝐵)
4644, 45ffvelcdmd 7085 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → ((𝑢𝑓)‘𝑐) ∈ 𝐹)
4736, 46sseldd 3964 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → ((𝑢𝑓)‘𝑐) ∈ 𝐺)
4819, 20, 24, 47subrgmcld 33181 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) ∧ 𝑓𝐻) → ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)) ∈ 𝐺)
4948fmpttd 7115 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑐𝐵) → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))):𝐻𝐺)
5049adantlr 715 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))):𝐻𝐺)
51 fveq2 6886 . . . . . . . . 9 (𝑓 = → (𝑃𝑓) = (𝑃))
52 fveq2 6886 . . . . . . . . . 10 (𝑓 = → (𝑢𝑓) = (𝑢))
5352fveq1d 6888 . . . . . . . . 9 (𝑓 = → ((𝑢𝑓)‘𝑐) = ((𝑢)‘𝑐))
5451, 53oveq12d 7431 . . . . . . . 8 (𝑓 = → ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)) = ((𝑃)(.r𝐿)((𝑢)‘𝑐)))
5554cbvmptv 5235 . . . . . . 7 (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))) = (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐)))
56 fvexd 6901 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (0g𝐿) ∈ V)
57 ssidd 3987 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐻𝐻)
58 fldextrspunfld.4 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (SubDRing‘𝐽))
59 eqid 2734 . . . . . . . . . . . . . 14 (Base‘𝐽) = (Base‘𝐽)
6059sdrgss 20763 . . . . . . . . . . . . 13 (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ⊆ (Base‘𝐽))
6158, 60syl 17 . . . . . . . . . . . 12 (𝜑𝐹 ⊆ (Base‘𝐽))
6229sdrgss 20763 . . . . . . . . . . . . . 14 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
6311, 62syl 17 . . . . . . . . . . . . 13 (𝜑𝐻 ⊆ (Base‘𝐿))
64 fldextrspunfld.j . . . . . . . . . . . . . 14 𝐽 = (𝐿s 𝐻)
6564, 29ressbas2 17262 . . . . . . . . . . . . 13 (𝐻 ⊆ (Base‘𝐿) → 𝐻 = (Base‘𝐽))
6663, 65syl 17 . . . . . . . . . . . 12 (𝜑𝐻 = (Base‘𝐽))
6761, 66sseqtrrd 4001 . . . . . . . . . . 11 (𝜑𝐹𝐻)
6867, 63sstrd 3974 . . . . . . . . . 10 (𝜑𝐹 ⊆ (Base‘𝐿))
6968ad4antr 732 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐹 ⊆ (Base‘𝐿))
703ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
7158ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐹 ∈ (SubDRing‘𝐽))
72 ovexd 7448 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐹m 𝐵) ∈ V)
73 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
7412, 72, 73elmaprd 32625 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑢:𝐻⟶(𝐹m 𝐵))
7574ffvelcdmda 7084 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (𝑢) ∈ (𝐹m 𝐵))
7670, 71, 75elmaprd 32625 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (𝑢):𝐵𝐹)
77 simplr 768 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝑐𝐵)
7876, 77ffvelcdmd 7085 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → ((𝑢)‘𝑐) ∈ 𝐹)
7969, 78sseldd 3964 . . . . . . . 8 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → ((𝑢)‘𝑐) ∈ (Base‘𝐿))
8021ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑃:𝐻𝐺)
81 fldextrspunlsplem.3 . . . . . . . . 9 (𝜑𝑃 finSupp (0g𝐿))
8281ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑃 finSupp (0g𝐿))
838ad4antr 732 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝐿 ∈ Ring)
84 simpr 484 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝑦 ∈ (Base‘𝐿))
8529, 19, 5, 83, 84ringlzd 20261 . . . . . . . 8 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝑦 ∈ (Base‘𝐿)) → ((0g𝐿)(.r𝐿)𝑦) = (0g𝐿))
8656, 56, 12, 57, 79, 80, 82, 85fisuppov1 32628 . . . . . . 7 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))) finSupp (0g𝐿))
8755, 86eqbrtrid 5158 . . . . . 6 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))) finSupp (0g𝐿))
885, 10, 12, 18, 50, 87gsumsubmcl 19906 . . . . 5 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))) ∈ 𝐺)
8988fmpttd 7115 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))):𝐵𝐺)
902, 4, 89elmapdd 8863 . . 3 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) ∈ (𝐺m 𝐵))
91 breq1 5126 . . . . . 6 (𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) → (𝑎 finSupp (0g𝐿) ↔ (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿)))
9291adantl 481 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → (𝑎 finSupp (0g𝐿) ↔ (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿)))
93 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))))
9493fveq1d 6888 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → (𝑎𝑏) = ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))‘𝑏))
95 eqid 2734 . . . . . . . . . . . 12 (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))
96 fveq2 6886 . . . . . . . . . . . . . . 15 (𝑐 = 𝑏 → ((𝑢𝑓)‘𝑐) = ((𝑢𝑓)‘𝑏))
9796oveq2d 7429 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)) = ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))
9897mpteq2dv 5224 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))) = (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))
9998oveq2d 7429 . . . . . . . . . . . 12 (𝑐 = 𝑏 → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))) = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))))
100 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑏𝐵) → 𝑏𝐵)
101 ovexd 7448 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑏𝐵) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))) ∈ V)
10295, 99, 100, 101fvmptd3 7019 . . . . . . . . . . 11 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑏𝐵) → ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))‘𝑏) = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))))
103102adantlr 715 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))‘𝑏) = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))))
10494, 103eqtrd 2769 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → (𝑎𝑏) = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))))
105104oveq1d 7428 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) ∧ 𝑏𝐵) → ((𝑎𝑏)(.r𝐿)𝑏) = ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))
106105mpteq2dva 5222 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)) = (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏)))
107106oveq2d 7429 . . . . . 6 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))))
108107eqeq2d 2745 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → (𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏))) ↔ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏)))))
10992, 108anbi12d 632 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → ((𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))) ↔ ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))))))
110109adantlr 715 . . 3 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑎 = (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))))) → ((𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))) ↔ ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))))))
111 fldextrspunlsp.2 . . . . . 6 (𝜑𝐵 ∈ Fin)
112111ad2antrr 726 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐵 ∈ Fin)
113 ovexd 7448 . . . . 5 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐)))) ∈ V)
114 fvexd 6901 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (0g𝐿) ∈ V)
11595, 112, 113, 114fsuppmptdm 9398 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿))
116 fldextrspunlsplem.4 . . . . . . 7 (𝜑𝑋 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))))
117116ad2antrr 726 . . . . . 6 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑋 = (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))))
1188ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐿 ∈ Ring)
119118adantr 480 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐿 ∈ Ring)
1203ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
12131ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐺 ⊆ (Base‘𝐿))
12221ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑃:𝐻𝐺)
123122ffvelcdmda 7084 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑃) ∈ 𝐺)
124121, 123sseldd 3964 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑃) ∈ (Base‘𝐿))
125119adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐿 ∈ Ring)
12668ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐹 ⊆ (Base‘𝐿))
1273ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
12858ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐹 ∈ (SubDRing‘𝐽))
12911ad4antr 732 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐻 ∈ (SubDRing‘𝐿))
130 ovexd 7448 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (𝐹m 𝐵) ∈ V)
131 simp-4r 783 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
132129, 130, 131elmaprd 32625 . . . . . . . . . . . . . . . 16 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝑢:𝐻⟶(𝐹m 𝐵))
133 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝐻)
134132, 133ffvelcdmd 7085 . . . . . . . . . . . . . . 15 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (𝑢) ∈ (𝐹m 𝐵))
135127, 128, 134elmaprd 32625 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (𝑢):𝐵𝐹)
136 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝑐𝐵)
137135, 136ffvelcdmd 7085 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → ((𝑢)‘𝑐) ∈ 𝐹)
138126, 137sseldd 3964 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → ((𝑢)‘𝑐) ∈ (Base‘𝐿))
139 eqid 2734 . . . . . . . . . . . . . . . . . 18 (Base‘((subringAlg ‘𝐽)‘𝐹)) = (Base‘((subringAlg ‘𝐽)‘𝐹))
140 eqid 2734 . . . . . . . . . . . . . . . . . 18 (LBasis‘((subringAlg ‘𝐽)‘𝐹)) = (LBasis‘((subringAlg ‘𝐽)‘𝐹))
141139, 140lbsss 21045 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → 𝐵 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
1423, 141syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ⊆ (Base‘((subringAlg ‘𝐽)‘𝐹)))
143 eqidd 2735 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹))
144143, 61srabase 21145 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝐽) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
14566, 144eqtr2d 2770 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘((subringAlg ‘𝐽)‘𝐹)) = 𝐻)
146142, 145sseqtrd 4000 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐻)
147146, 63sstrd 3974 . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ (Base‘𝐿))
148147ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐵 ⊆ (Base‘𝐿))
149148sselda 3963 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → 𝑐 ∈ (Base‘𝐿))
15029, 19, 125, 138, 149ringcld 20226 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (((𝑢)‘𝑐)(.r𝐿)𝑐) ∈ (Base‘𝐿))
151 fvexd 6901 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (0g𝐿) ∈ V)
152 ssidd 3987 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐵𝐵)
15358ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐹 ∈ (SubDRing‘𝐽))
15411ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐻 ∈ (SubDRing‘𝐿))
155 ovexd 7448 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐹m 𝐵) ∈ V)
156 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
157154, 155, 156elmaprd 32625 . . . . . . . . . . . . . 14 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑢:𝐻⟶(𝐹m 𝐵))
158157ffvelcdmda 7084 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑢) ∈ (𝐹m 𝐵))
159120, 153, 158elmaprd 32625 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑢):𝐵𝐹)
16052breq1d 5133 . . . . . . . . . . . . . . 15 (𝑓 = → ((𝑢𝑓) finSupp (0g𝐿) ↔ (𝑢) finSupp (0g𝐿)))
161 id 22 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑓 = )
16252fveq1d 6888 . . . . . . . . . . . . . . . . . . 19 (𝑓 = → ((𝑢𝑓)‘𝑏) = ((𝑢)‘𝑏))
163162oveq1d 7428 . . . . . . . . . . . . . . . . . 18 (𝑓 = → (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏) = (((𝑢)‘𝑏)(.r𝐿)𝑏))
164163mpteq2dv 5224 . . . . . . . . . . . . . . . . 17 (𝑓 = → (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)) = (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏)))
165164oveq2d 7429 . . . . . . . . . . . . . . . 16 (𝑓 = → (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏))))
166161, 165eqeq12d 2750 . . . . . . . . . . . . . . 15 (𝑓 = → (𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))) ↔ = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏)))))
167160, 166anbi12d 632 . . . . . . . . . . . . . 14 (𝑓 = → (((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))) ↔ ((𝑢) finSupp (0g𝐿) ∧ = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏))))))
168 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))))
169 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → 𝐻)
170167, 168, 169rspcdva 3606 . . . . . . . . . . . . 13 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → ((𝑢) finSupp (0g𝐿) ∧ = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏)))))
171170simpld 494 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑢) finSupp (0g𝐿))
172119adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝐿 ∈ Ring)
173 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝑦 ∈ (Base‘𝐿))
17429, 19, 5, 172, 173ringlzd 20261 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑦 ∈ (Base‘𝐿)) → ((0g𝐿)(.r𝐿)𝑦) = (0g𝐿))
175151, 151, 120, 152, 149, 159, 171, 174fisuppov1 32628 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐)) finSupp (0g𝐿))
17629, 5, 19, 119, 120, 124, 150, 175gsummulc2 20283 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝐿 Σg (𝑐𝐵 ↦ ((𝑃)(.r𝐿)(((𝑢)‘𝑐)(.r𝐿)𝑐)))) = ((𝑃)(.r𝐿)(𝐿 Σg (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐)))))
177124adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (𝑃) ∈ (Base‘𝐿))
17829, 19, 125, 177, 138, 149ringassd 20223 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) ∧ 𝑐𝐵) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = ((𝑃)(.r𝐿)(((𝑢)‘𝑐)(.r𝐿)𝑐)))
179178mpteq2dva 5222 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐)) = (𝑐𝐵 ↦ ((𝑃)(.r𝐿)(((𝑢)‘𝑐)(.r𝐿)𝑐))))
180179oveq2d 7429 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))) = (𝐿 Σg (𝑐𝐵 ↦ ((𝑃)(.r𝐿)(((𝑢)‘𝑐)(.r𝐿)𝑐)))))
181170simprd 495 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏))))
182 fveq2 6886 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → ((𝑢)‘𝑏) = ((𝑢)‘𝑐))
183 id 22 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐𝑏 = 𝑐)
184182, 183oveq12d 7431 . . . . . . . . . . . . . 14 (𝑏 = 𝑐 → (((𝑢)‘𝑏)(.r𝐿)𝑏) = (((𝑢)‘𝑐)(.r𝐿)𝑐))
185184cbvmptv 5235 . . . . . . . . . . . . 13 (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏)) = (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐))
186185oveq2i 7424 . . . . . . . . . . . 12 (𝐿 Σg (𝑏𝐵 ↦ (((𝑢)‘𝑏)(.r𝐿)𝑏))) = (𝐿 Σg (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐)))
187181, 186eqtrdi 2785 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → = (𝐿 Σg (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐))))
188187oveq2d 7429 . . . . . . . . . 10 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → ((𝑃)(.r𝐿)) = ((𝑃)(.r𝐿)(𝐿 Σg (𝑐𝐵 ↦ (((𝑢)‘𝑐)(.r𝐿)𝑐)))))
189176, 180, 1883eqtr4rd 2780 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝐻) → ((𝑃)(.r𝐿)) = (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))
190189mpteq2dva 5222 . . . . . . . 8 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐻 ↦ ((𝑃)(.r𝐿))) = (𝐻 ↦ (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐)))))
191190oveq2d 7429 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)))) = (𝐿 Σg (𝐻 ↦ (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))))
19251, 161oveq12d 7431 . . . . . . . . . 10 (𝑓 = → ((𝑃𝑓)(.r𝐿)𝑓) = ((𝑃)(.r𝐿)))
193192cbvmptv 5235 . . . . . . . . 9 (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓)) = (𝐻 ↦ ((𝑃)(.r𝐿)))
194193oveq2i 7424 . . . . . . . 8 (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿))))
195194a1i 11 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)))))
1969ad2antrr 726 . . . . . . . 8 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐿 ∈ CMnd)
1978ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐿 ∈ Ring)
19831ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝐺 ⊆ (Base‘𝐿))
19980ffvelcdmda 7084 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (𝑃) ∈ 𝐺)
200198, 199sseldd 3964 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (𝑃) ∈ (Base‘𝐿))
20129, 19, 197, 200, 79ringcld 20226 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) ∈ (Base‘𝐿))
202147ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝐵 ⊆ (Base‘𝐿))
203202sselda 3963 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝑐 ∈ (Base‘𝐿))
204203adantr 480 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → 𝑐 ∈ (Base‘𝐿))
20529, 19, 197, 201, 204ringcld 20226 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) ∈ (Base‘𝐿))
206205anasss 466 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ (𝑐𝐵𝐻)) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) ∈ (Base‘𝐿))
20781fsuppimpd 9391 . . . . . . . . . . . 12 (𝜑 → (𝑃 supp (0g𝐿)) ∈ Fin)
208207ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑃 supp (0g𝐿)) ∈ Fin)
209 suppssdm 8184 . . . . . . . . . . . . . . . . . 18 (𝑃 supp (0g𝐿)) ⊆ dom 𝑃
210209, 21fssdm 6735 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃 supp (0g𝐿)) ⊆ 𝐻)
211210sseld 3962 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑓 ∈ (𝑃 supp (0g𝐿)) → 𝑓𝐻))
212211adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → (𝑓 ∈ (𝑃 supp (0g𝐿)) → 𝑓𝐻))
213 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ (𝑢𝑓) finSupp (0g𝐿)) → (𝑢𝑓) finSupp (0g𝐿))
214213fsuppimpd 9391 . . . . . . . . . . . . . . . . 17 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ (𝑢𝑓) finSupp (0g𝐿)) → ((𝑢𝑓) supp (0g𝐿)) ∈ Fin)
215214ex 412 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → ((𝑢𝑓) finSupp (0g𝐿) → ((𝑢𝑓) supp (0g𝐿)) ∈ Fin))
216215adantrd 491 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → (((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))) → ((𝑢𝑓) supp (0g𝐿)) ∈ Fin))
217212, 216imim12d 81 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → ((𝑓𝐻 → ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑓 ∈ (𝑃 supp (0g𝐿)) → ((𝑢𝑓) supp (0g𝐿)) ∈ Fin)))
218217ralimdv2 3150 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) → (∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))) → ∀𝑓 ∈ (𝑃 supp (0g𝐿))((𝑢𝑓) supp (0g𝐿)) ∈ Fin))
219218imp 406 . . . . . . . . . . . 12 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ∀𝑓 ∈ (𝑃 supp (0g𝐿))((𝑢𝑓) supp (0g𝐿)) ∈ Fin)
220 fveq2 6886 . . . . . . . . . . . . . . 15 (𝑓 = 𝑖 → (𝑢𝑓) = (𝑢𝑖))
221220oveq1d 7428 . . . . . . . . . . . . . 14 (𝑓 = 𝑖 → ((𝑢𝑓) supp (0g𝐿)) = ((𝑢𝑖) supp (0g𝐿)))
222221eleq1d 2818 . . . . . . . . . . . . 13 (𝑓 = 𝑖 → (((𝑢𝑓) supp (0g𝐿)) ∈ Fin ↔ ((𝑢𝑖) supp (0g𝐿)) ∈ Fin))
223222cbvralvw 3223 . . . . . . . . . . . 12 (∀𝑓 ∈ (𝑃 supp (0g𝐿))((𝑢𝑓) supp (0g𝐿)) ∈ Fin ↔ ∀𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin)
224219, 223sylib 218 . . . . . . . . . . 11 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ∀𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin)
225 iunfi 9365 . . . . . . . . . . 11 (((𝑃 supp (0g𝐿)) ∈ Fin ∧ ∀𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin) → 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin)
226208, 224, 225syl2anc 584 . . . . . . . . . 10 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin)
227 xpfi 9340 . . . . . . . . . 10 (( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) ∈ Fin ∧ (𝑃 supp (0g𝐿)) ∈ Fin) → ( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) × (𝑃 supp (0g𝐿))) ∈ Fin)
228226, 208, 227syl2anc 584 . . . . . . . . 9 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) × (𝑃 supp (0g𝐿))) ∈ Fin)
229 snssi 4788 . . . . . . . . . . . 12 (𝑖 ∈ (𝑃 supp (0g𝐿)) → {𝑖} ⊆ (𝑃 supp (0g𝐿)))
230229adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑃 supp (0g𝐿))) → {𝑖} ⊆ (𝑃 supp (0g𝐿)))
231230iunxpssiun1 32517 . . . . . . . . . 10 (𝜑 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ⊆ ( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) × (𝑃 supp (0g𝐿))))
232231ad2antrr 726 . . . . . . . . 9 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ⊆ ( 𝑖 ∈ (𝑃 supp (0g𝐿))((𝑢𝑖) supp (0g𝐿)) × (𝑃 supp (0g𝐿))))
233228, 232ssfid 9283 . . . . . . . 8 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ∈ Fin)
23421ffnd 6717 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 Fn 𝐻)
235234ad6antr 736 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝑃 Fn 𝐻)
23611ad6antr 736 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐻 ∈ (SubDRing‘𝐿))
237 fvexd 6901 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (0g𝐿) ∈ V)
238 simpllr 775 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐻)
239 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ¬ ∈ (𝑃 supp (0g𝐿)))
240238, 239eldifd 3942 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ∈ (𝐻 ∖ (𝑃 supp (0g𝐿))))
241235, 236, 237, 240fvdifsupp 8178 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (𝑃) = (0g𝐿))
242241oveq1d 7428 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = ((0g𝐿)(.r𝐿)((𝑢)‘𝑐)))
2438ad6antr 736 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐿 ∈ Ring)
24468ad6antr 736 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐹 ⊆ (Base‘𝐿))
2453ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
24658ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝐹 ∈ (SubDRing‘𝐽))
247 ovexd 7448 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (𝐹m 𝐵) ∈ V)
248 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
249236, 247, 248elmaprd 32625 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝑢:𝐻⟶(𝐹m 𝐵))
250249, 238ffvelcdmd 7085 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (𝑢) ∈ (𝐹m 𝐵))
251245, 246, 250elmaprd 32625 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → (𝑢):𝐵𝐹)
252 simp-4r 783 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → 𝑐𝐵)
253251, 252ffvelcdmd 7085 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((𝑢)‘𝑐) ∈ 𝐹)
254244, 253sseldd 3964 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((𝑢)‘𝑐) ∈ (Base‘𝐿))
25529, 19, 5, 243, 254ringlzd 20261 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((0g𝐿)(.r𝐿)((𝑢)‘𝑐)) = (0g𝐿))
256242, 255eqtrd 2769 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ ∈ (𝑃 supp (0g𝐿))) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = (0g𝐿))
2573ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
25858ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐹 ∈ (SubDRing‘𝐽))
25911ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐻 ∈ (SubDRing‘𝐿))
260 ovexd 7448 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝐹m 𝐵) ∈ V)
261 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻))
262259, 260, 261elmaprd 32625 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝑢:𝐻⟶(𝐹m 𝐵))
263 simpllr 775 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐻)
264262, 263ffvelcdmd 7085 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝑢) ∈ (𝐹m 𝐵))
265257, 258, 264elmaprd 32625 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝑢):𝐵𝐹)
266265ffnd 6717 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝑢) Fn 𝐵)
267 fvexd 6901 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (0g𝐿) ∈ V)
268 simp-4r 783 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝑐𝐵)
269 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿)))
270268, 269eldifd 3942 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝑐 ∈ (𝐵 ∖ ((𝑢) supp (0g𝐿))))
271266, 257, 267, 270fvdifsupp 8178 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ((𝑢)‘𝑐) = (0g𝐿))
272271oveq2d 7429 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = ((𝑃)(.r𝐿)(0g𝐿)))
273197ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → 𝐿 ∈ Ring)
274200ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → (𝑃) ∈ (Base‘𝐿))
27529, 19, 5, 273, 274ringrzd 20262 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ((𝑃)(.r𝐿)(0g𝐿)) = (0g𝐿))
276272, 275eqtrd 2769 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = (0g𝐿))
277 df-br 5124 . . . . . . . . . . . . . . . . . . . 20 (𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ↔ ⟨𝑐, ⟩ ∈ 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}))
278 fveq2 6886 . . . . . . . . . . . . . . . . . . . . . . . 24 ( = 𝑖 → (𝑢) = (𝑢𝑖))
279278oveq1d 7428 . . . . . . . . . . . . . . . . . . . . . . 23 ( = 𝑖 → ((𝑢) supp (0g𝐿)) = ((𝑢𝑖) supp (0g𝐿)))
280 sneq 4616 . . . . . . . . . . . . . . . . . . . . . . 23 ( = 𝑖 → {} = {𝑖})
281279, 280xpeq12d 5696 . . . . . . . . . . . . . . . . . . . . . 22 ( = 𝑖 → (((𝑢) supp (0g𝐿)) × {}) = (((𝑢𝑖) supp (0g𝐿)) × {𝑖}))
282281cbviunv 5020 . . . . . . . . . . . . . . . . . . . . 21 ∈ (𝑃 supp (0g𝐿))(((𝑢) supp (0g𝐿)) × {}) = 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})
283282eleq2i 2825 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑐, ⟩ ∈ ∈ (𝑃 supp (0g𝐿))(((𝑢) supp (0g𝐿)) × {}) ↔ ⟨𝑐, ⟩ ∈ 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}))
284 opeliun2xp 5733 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑐, ⟩ ∈ ∈ (𝑃 supp (0g𝐿))(((𝑢) supp (0g𝐿)) × {}) ↔ ( ∈ (𝑃 supp (0g𝐿)) ∧ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
285277, 283, 2843bitr2i 299 . . . . . . . . . . . . . . . . . . 19 (𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ↔ ( ∈ (𝑃 supp (0g𝐿)) ∧ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
286285notbii 320 . . . . . . . . . . . . . . . . . 18 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) ↔ ¬ ( ∈ (𝑃 supp (0g𝐿)) ∧ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
287 ianor 983 . . . . . . . . . . . . . . . . . 18 (¬ ( ∈ (𝑃 supp (0g𝐿)) ∧ 𝑐 ∈ ((𝑢) supp (0g𝐿))) ↔ (¬ ∈ (𝑃 supp (0g𝐿)) ∨ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
288286, 287sylbb 219 . . . . . . . . . . . . . . . . 17 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}) → (¬ ∈ (𝑃 supp (0g𝐿)) ∨ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
289288adantl 481 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → (¬ ∈ (𝑃 supp (0g𝐿)) ∨ ¬ 𝑐 ∈ ((𝑢) supp (0g𝐿))))
290256, 276, 289mpjaodan 960 . . . . . . . . . . . . . . 15 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → ((𝑃)(.r𝐿)((𝑢)‘𝑐)) = (0g𝐿))
291290oveq1d 7428 . . . . . . . . . . . . . 14 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = ((0g𝐿)(.r𝐿)𝑐))
292118ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → 𝐿 ∈ Ring)
293203ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → 𝑐 ∈ (Base‘𝐿))
29429, 19, 5, 292, 293ringlzd 20261 . . . . . . . . . . . . . 14 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → ((0g𝐿)(.r𝐿)𝑐) = (0g𝐿))
295291, 294eqtrd 2769 . . . . . . . . . . . . 13 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) ∧ 𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
296295an42ds 32398 . . . . . . . . . . . 12 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ 𝐻) ∧ 𝑐𝐵) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
297296an32s 652 . . . . . . . . . . 11 ((((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ 𝑐𝐵) ∧ 𝐻) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
298297anasss 466 . . . . . . . . . 10 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) ∧ (𝑐𝐵𝐻)) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
299298an32s 652 . . . . . . . . 9 (((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ (𝑐𝐵𝐻)) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖})) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
300299anasss 466 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ ((𝑐𝐵𝐻) ∧ ¬ 𝑐 𝑖 ∈ (𝑃 supp (0g𝐿))(((𝑢𝑖) supp (0g𝐿)) × {𝑖}))) → (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐) = (0g𝐿))
30129, 5, 196, 4, 154, 206, 233, 300gsumcom3 19965 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝑐𝐵 ↦ (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))) = (𝐿 Σg (𝐻 ↦ (𝐿 Σg (𝑐𝐵 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))))
302191, 195, 3013eqtr4d 2779 . . . . . 6 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)𝑓))) = (𝐿 Σg (𝑐𝐵 ↦ (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))))
303118adantr 480 . . . . . . . . 9 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → 𝐿 ∈ Ring)
30429, 5, 19, 303, 12, 203, 201, 86gsummulc1 20282 . . . . . . . 8 ((((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) ∧ 𝑐𝐵) → (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))) = ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))
305304mpteq2dva 5222 . . . . . . 7 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝑐𝐵 ↦ (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐)))) = (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐)))
306305oveq2d 7429 . . . . . 6 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → (𝐿 Σg (𝑐𝐵 ↦ (𝐿 Σg (𝐻 ↦ (((𝑃)(.r𝐿)((𝑢)‘𝑐))(.r𝐿)𝑐))))) = (𝐿 Σg (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))))
307117, 302, 3063eqtrd 2773 . . . . 5 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑋 = (𝐿 Σg (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))))
30851, 162oveq12d 7431 . . . . . . . . . . 11 (𝑓 = → ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)) = ((𝑃)(.r𝐿)((𝑢)‘𝑏)))
309308cbvmptv 5235 . . . . . . . . . 10 (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))) = (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑏)))
310182oveq2d 7429 . . . . . . . . . . 11 (𝑏 = 𝑐 → ((𝑃)(.r𝐿)((𝑢)‘𝑏)) = ((𝑃)(.r𝐿)((𝑢)‘𝑐)))
311310mpteq2dv 5224 . . . . . . . . . 10 (𝑏 = 𝑐 → (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑏))) = (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))
312309, 311eqtrid 2781 . . . . . . . . 9 (𝑏 = 𝑐 → (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))) = (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))
313312oveq2d 7429 . . . . . . . 8 (𝑏 = 𝑐 → (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏)))) = (𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐)))))
314313, 183oveq12d 7431 . . . . . . 7 (𝑏 = 𝑐 → ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏) = ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))
315314cbvmptv 5235 . . . . . 6 (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏)) = (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐))
316315oveq2i 7424 . . . . 5 (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))) = (𝐿 Σg (𝑐𝐵 ↦ ((𝐿 Σg (𝐻 ↦ ((𝑃)(.r𝐿)((𝑢)‘𝑐))))(.r𝐿)𝑐)))
317307, 316eqtr4di 2787 . . . 4 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏))))
318115, 317jca 511 . . 3 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ((𝑐𝐵 ↦ (𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑐))))) finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝐿 Σg (𝑓𝐻 ↦ ((𝑃𝑓)(.r𝐿)((𝑢𝑓)‘𝑏))))(.r𝐿)𝑏)))))
31990, 110, 318rspcedvd 3607 . 2 (((𝜑𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)) ∧ ∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))) → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))))
320 breq1 5126 . . . 4 (𝑒 = (𝑢𝑓) → (𝑒 finSupp (0g𝐿) ↔ (𝑢𝑓) finSupp (0g𝐿)))
321 fveq1 6885 . . . . . . . 8 (𝑒 = (𝑢𝑓) → (𝑒𝑏) = ((𝑢𝑓)‘𝑏))
322321oveq1d 7428 . . . . . . 7 (𝑒 = (𝑢𝑓) → ((𝑒𝑏)(.r𝐿)𝑏) = (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))
323322mpteq2dv 5224 . . . . . 6 (𝑒 = (𝑢𝑓) → (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)) = (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))
324323oveq2d 7429 . . . . 5 (𝑒 = (𝑢𝑓) → (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))
325324eqeq2d 2745 . . . 4 (𝑒 = (𝑢𝑓) → (𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))) ↔ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))))
326320, 325anbi12d 632 . . 3 (𝑒 = (𝑢𝑓) → ((𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)))) ↔ ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏))))))
327 ovexd 7448 . . 3 (𝜑 → (𝐹m 𝐵) ∈ V)
328 eqid 2734 . . . . . . . . . 10 (LSpan‘((subringAlg ‘𝐽)‘𝐹)) = (LSpan‘((subringAlg ‘𝐽)‘𝐹))
329139, 140, 328lbssp 21047 . . . . . . . . 9 (𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)) → ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
3303, 329syl 17 . . . . . . . 8 (𝜑 → ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) = (Base‘((subringAlg ‘𝐽)‘𝐹)))
331144, 66, 3303eqtr4rd 2780 . . . . . . 7 (𝜑 → ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) = 𝐻)
332331eleq2d 2819 . . . . . 6 (𝜑 → (𝑓 ∈ ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) ↔ 𝑓𝐻))
333 eqid 2734 . . . . . . 7 (Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = (Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹)))
334 eqid 2734 . . . . . . 7 (Scalar‘((subringAlg ‘𝐽)‘𝐹)) = (Scalar‘((subringAlg ‘𝐽)‘𝐹))
335 eqid 2734 . . . . . . 7 (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹)))
336 eqid 2734 . . . . . . 7 ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)) = ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))
337 sdrgsubrg 20761 . . . . . . . . 9 (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ∈ (SubRing‘𝐽))
33858, 337syl 17 . . . . . . . 8 (𝜑𝐹 ∈ (SubRing‘𝐽))
339 eqid 2734 . . . . . . . . 9 ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹)
340339sralmod 21157 . . . . . . . 8 (𝐹 ∈ (SubRing‘𝐽) → ((subringAlg ‘𝐽)‘𝐹) ∈ LMod)
341338, 340syl 17 . . . . . . 7 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) ∈ LMod)
342328, 139, 333, 334, 335, 336, 341, 142ellspds 33336 . . . . . 6 (𝜑 → (𝑓 ∈ ((LSpan‘((subringAlg ‘𝐽)‘𝐹))‘𝐵) ↔ ∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))))
343332, 342bitr3d 281 . . . . 5 (𝜑 → (𝑓𝐻 ↔ ∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))))
344343biimpa 476 . . . 4 ((𝜑𝑓𝐻) → ∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)))))
345 eqid 2734 . . . . . . . . . 10 (𝐽s 𝐹) = (𝐽s 𝐹)
346345, 59ressbas2 17262 . . . . . . . . 9 (𝐹 ⊆ (Base‘𝐽) → 𝐹 = (Base‘(𝐽s 𝐹)))
34761, 346syl 17 . . . . . . . 8 (𝜑𝐹 = (Base‘(𝐽s 𝐹)))
348143, 61srasca 21148 . . . . . . . . 9 (𝜑 → (𝐽s 𝐹) = (Scalar‘((subringAlg ‘𝐽)‘𝐹)))
349348fveq2d 6890 . . . . . . . 8 (𝜑 → (Base‘(𝐽s 𝐹)) = (Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))))
350347, 349eqtr2d 2770 . . . . . . 7 (𝜑 → (Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = 𝐹)
351350oveq1d 7428 . . . . . 6 (𝜑 → ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵) = (𝐹m 𝐵))
352 sdrgsubrg 20761 . . . . . . . . . . . 12 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ∈ (SubRing‘𝐿))
35311, 352syl 17 . . . . . . . . . . 11 (𝜑𝐻 ∈ (SubRing‘𝐿))
354 subrgsubg 20546 . . . . . . . . . . 11 (𝐻 ∈ (SubRing‘𝐿) → 𝐻 ∈ (SubGrp‘𝐿))
35564, 5subg0 19120 . . . . . . . . . . 11 (𝐻 ∈ (SubGrp‘𝐿) → (0g𝐿) = (0g𝐽))
356353, 354, 3553syl 18 . . . . . . . . . 10 (𝜑 → (0g𝐿) = (0g𝐽))
35764sdrgdrng 20760 . . . . . . . . . . . . . . 15 (𝐻 ∈ (SubDRing‘𝐿) → 𝐽 ∈ DivRing)
35811, 357syl 17 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ DivRing)
359358drngringd 20706 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Ring)
360359ringcmnd 20250 . . . . . . . . . . . 12 (𝜑𝐽 ∈ CMnd)
361360cmnmndd 19791 . . . . . . . . . . 11 (𝜑𝐽 ∈ Mnd)
362 subrgsubg 20546 . . . . . . . . . . . 12 (𝐹 ∈ (SubRing‘𝐽) → 𝐹 ∈ (SubGrp‘𝐽))
363 eqid 2734 . . . . . . . . . . . . 13 (0g𝐽) = (0g𝐽)
364363subg0cl 19122 . . . . . . . . . . . 12 (𝐹 ∈ (SubGrp‘𝐽) → (0g𝐽) ∈ 𝐹)
365338, 362, 3643syl 18 . . . . . . . . . . 11 (𝜑 → (0g𝐽) ∈ 𝐹)
366345, 59, 363ress0g 18745 . . . . . . . . . . 11 ((𝐽 ∈ Mnd ∧ (0g𝐽) ∈ 𝐹𝐹 ⊆ (Base‘𝐽)) → (0g𝐽) = (0g‘(𝐽s 𝐹)))
367361, 365, 61, 366syl3anc 1372 . . . . . . . . . 10 (𝜑 → (0g𝐽) = (0g‘(𝐽s 𝐹)))
368348fveq2d 6890 . . . . . . . . . 10 (𝜑 → (0g‘(𝐽s 𝐹)) = (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))))
369356, 367, 3683eqtrrd 2774 . . . . . . . . 9 (𝜑 → (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = (0g𝐿))
370369breq2d 5135 . . . . . . . 8 (𝜑 → (𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↔ 𝑒 finSupp (0g𝐿)))
371370adantr 480 . . . . . . 7 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↔ 𝑒 finSupp (0g𝐿)))
3723adantr 480 . . . . . . . . . 10 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐵 ∈ (LBasis‘((subringAlg ‘𝐽)‘𝐹)))
373 subgsubm 19136 . . . . . . . . . . . 12 (𝐻 ∈ (SubGrp‘𝐿) → 𝐻 ∈ (SubMnd‘𝐿))
374353, 354, 3733syl 18 . . . . . . . . . . 11 (𝜑𝐻 ∈ (SubMnd‘𝐿))
375374adantr 480 . . . . . . . . . 10 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐻 ∈ (SubMnd‘𝐿))
37664, 19ressmulr 17324 . . . . . . . . . . . . . . . 16 (𝐻 ∈ (SubDRing‘𝐿) → (.r𝐿) = (.r𝐽))
37711, 376syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (.r𝐿) = (.r𝐽))
378143, 61sravsca 21150 . . . . . . . . . . . . . . 15 (𝜑 → (.r𝐽) = ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)))
379377, 378eqtrd 2769 . . . . . . . . . . . . . 14 (𝜑 → (.r𝐿) = ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)))
380379ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → (.r𝐿) = ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)))
381380oveqd 7430 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → ((𝑒𝑏)(.r𝐿)𝑏) = ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))
382353ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → 𝐻 ∈ (SubRing‘𝐿))
38367ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → 𝐹𝐻)
38425adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐹 ∈ (SubDRing‘𝐼))
385351eleq2d 2819 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵) ↔ 𝑒 ∈ (𝐹m 𝐵)))
386385biimpa 476 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝑒 ∈ (𝐹m 𝐵))
387372, 384, 386elmaprd 32625 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝑒:𝐵𝐹)
388387ffvelcdmda 7084 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → (𝑒𝑏) ∈ 𝐹)
389383, 388sseldd 3964 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → (𝑒𝑏) ∈ 𝐻)
390146adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐵𝐻)
391390sselda 3963 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → 𝑏𝐻)
39219, 382, 389, 391subrgmcld 33181 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → ((𝑒𝑏)(.r𝐿)𝑏) ∈ 𝐻)
393381, 392eqeltrrd 2834 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏𝐵) → ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏) ∈ 𝐻)
394393fmpttd 7115 . . . . . . . . . 10 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)):𝐵𝐻)
395372, 375, 394, 64gsumsubm 18818 . . . . . . . . 9 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (𝐽 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))
396377, 378eqtr2d 2770 . . . . . . . . . . . . 13 (𝜑 → ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)) = (.r𝐿))
397396adantr 480 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → ( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)) = (.r𝐿))
398397oveqd 7430 . . . . . . . . . . 11 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏) = ((𝑒𝑏)(.r𝐿)𝑏))
399398mpteq2dv 5224 . . . . . . . . . 10 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)) = (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)))
400399oveq2d 7429 . . . . . . . . 9 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))
4013mptexd 7226 . . . . . . . . . . 11 (𝜑 → (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)) ∈ V)
402 fvexd 6901 . . . . . . . . . . 11 (𝜑 → ((subringAlg ‘𝐽)‘𝐹) ∈ V)
403339, 401, 358, 402, 61gsumsra 32994 . . . . . . . . . 10 (𝜑 → (𝐽 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))
404403adantr 480 . . . . . . . . 9 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝐽 Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))))
405395, 400, 4043eqtr3rd 2778 . . . . . . . 8 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))
406405eqeq2d 2745 . . . . . . 7 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏))) ↔ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)))))
407371, 406anbi12d 632 . . . . . 6 ((𝜑𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → ((𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)))) ↔ (𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))))
408351, 407rexeqbidva 3316 . . . . 5 (𝜑 → (∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)))) ↔ ∃𝑒 ∈ (𝐹m 𝐵)(𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))))
409408adantr 480 . . . 4 ((𝜑𝑓𝐻) → (∃𝑒 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp (0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏𝐵 ↦ ((𝑒𝑏)( ·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))𝑏)))) ↔ ∃𝑒 ∈ (𝐹m 𝐵)(𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏))))))
410344, 409mpbid 232 . . 3 ((𝜑𝑓𝐻) → ∃𝑒 ∈ (𝐹m 𝐵)(𝑒 finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑒𝑏)(.r𝐿)𝑏)))))
411326, 11, 327, 410ac6mapd 32571 . 2 (𝜑 → ∃𝑢 ∈ ((𝐹m 𝐵) ↑m 𝐻)∀𝑓𝐻 ((𝑢𝑓) finSupp (0g𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏𝐵 ↦ (((𝑢𝑓)‘𝑏)(.r𝐿)𝑏)))))
412319, 411r19.29a 3149 1 (𝜑 → ∃𝑎 ∈ (𝐺m 𝐵)(𝑎 finSupp (0g𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏𝐵 ↦ ((𝑎𝑏)(.r𝐿)𝑏)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  wral 3050  wrex 3059  Vcvv 3463  cun 3929  wss 3931  {csn 4606  cop 4612   ciun 4971   class class class wbr 5123  cmpt 5205   × cxp 5663   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413   supp csupp 8167  m cmap 8848  Fincfn 8967   finSupp cfsupp 9383  Basecbs 17230  s cress 17253  .rcmulr 17275  Scalarcsca 17277   ·𝑠 cvsca 17278  0gc0g 17456   Σg cgsu 17457  Mndcmnd 18717  SubMndcsubmnd 18765  SubGrpcsubg 19108  CMndccmn 19767  Ringcrg 20199  SubRingcsubrg 20538  RingSpancrgspn 20579  DivRingcdr 20698  Fieldcfield 20699  SubDRingcsdrg 20756  LModclmod 20827  LSpanclspn 20938  LBasisclbs 21042  subringAlg csra 21139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-reg 9614  ax-inf2 9663  ax-ac2 10485  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-oi 9532  df-r1 9786  df-rank 9787  df-card 9961  df-ac 10138  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14353  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-sca 17290  df-vsca 17291  df-ip 17292  df-tset 17293  df-ple 17294  df-ds 17296  df-hom 17298  df-cco 17299  df-0g 17458  df-gsum 17459  df-prds 17464  df-pws 17466  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19769  df-abl 19770  df-mgp 20107  df-rng 20119  df-ur 20148  df-ring 20201  df-nzr 20482  df-subrng 20515  df-subrg 20539  df-drng 20700  df-field 20701  df-sdrg 20757  df-lmod 20829  df-lss 20899  df-lsp 20939  df-lmhm 20990  df-lbs 21043  df-sra 21141  df-rgmod 21142  df-dsmm 21707  df-frlm 21722  df-uvc 21758
This theorem is referenced by:  fldextrspunlsp  33666
  Copyright terms: Public domain W3C validator