Step | Hyp | Ref
| Expression |
1 | | fldextrspunfld.5 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) |
2 | 1 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → 𝐺 ∈ (SubDRing‘𝐿)) |
3 | | fldextrspunlsp.1 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ (LBasis‘((subringAlg
‘𝐽)‘𝐹))) |
4 | 3 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → 𝐵 ∈ (LBasis‘((subringAlg
‘𝐽)‘𝐹))) |
5 | | eqid 2736 |
. . . . . 6
⊢
(0g‘𝐿) = (0g‘𝐿) |
6 | | fldextrspunfld.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ Field) |
7 | 6 | flddrngd 20733 |
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ DivRing) |
8 | 7 | drngringd 20729 |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ Ring) |
9 | 8 | ringcmnd 20273 |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ CMnd) |
10 | 9 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) → 𝐿 ∈ CMnd) |
11 | | fldextrspunfld.6 |
. . . . . . 7
⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) |
12 | 11 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) → 𝐻 ∈ (SubDRing‘𝐿)) |
13 | | sdrgsubrg 20784 |
. . . . . . . . 9
⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿)) |
14 | 1, 13 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ (SubRing‘𝐿)) |
15 | | subrgsubg 20569 |
. . . . . . . 8
⊢ (𝐺 ∈ (SubRing‘𝐿) → 𝐺 ∈ (SubGrp‘𝐿)) |
16 | | subgsubm 19162 |
. . . . . . . 8
⊢ (𝐺 ∈ (SubGrp‘𝐿) → 𝐺 ∈ (SubMnd‘𝐿)) |
17 | 14, 15, 16 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ (SubMnd‘𝐿)) |
18 | 17 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) → 𝐺 ∈ (SubMnd‘𝐿)) |
19 | | eqid 2736 |
. . . . . . . . 9
⊢
(.r‘𝐿) = (.r‘𝐿) |
20 | 14 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑐 ∈ 𝐵) ∧ 𝑓 ∈ 𝐻) → 𝐺 ∈ (SubRing‘𝐿)) |
21 | | fldextrspunlsplem.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃:𝐻⟶𝐺) |
22 | 21 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑐 ∈ 𝐵) ∧ 𝑓 ∈ 𝐻) → 𝑃:𝐻⟶𝐺) |
23 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑐 ∈ 𝐵) ∧ 𝑓 ∈ 𝐻) → 𝑓 ∈ 𝐻) |
24 | 22, 23 | ffvelcdmd 7103 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑐 ∈ 𝐵) ∧ 𝑓 ∈ 𝐻) → (𝑃‘𝑓) ∈ 𝐺) |
25 | | fldextrspunfld.3 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) |
26 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝐼) =
(Base‘𝐼) |
27 | 26 | sdrgss 20786 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (SubDRing‘𝐼) → 𝐹 ⊆ (Base‘𝐼)) |
28 | 25, 27 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐼)) |
29 | | eqid 2736 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝐿) =
(Base‘𝐿) |
30 | 29 | sdrgss 20786 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿)) |
31 | 1, 30 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 ⊆ (Base‘𝐿)) |
32 | | fldextrspunfld.i |
. . . . . . . . . . . . . 14
⊢ 𝐼 = (𝐿 ↾s 𝐺) |
33 | 32, 29 | ressbas2 17279 |
. . . . . . . . . . . . 13
⊢ (𝐺 ⊆ (Base‘𝐿) → 𝐺 = (Base‘𝐼)) |
34 | 31, 33 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 = (Base‘𝐼)) |
35 | 28, 34 | sseqtrrd 4020 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ⊆ 𝐺) |
36 | 35 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑐 ∈ 𝐵) ∧ 𝑓 ∈ 𝐻) → 𝐹 ⊆ 𝐺) |
37 | 3 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑐 ∈ 𝐵) ∧ 𝑓 ∈ 𝐻) → 𝐵 ∈ (LBasis‘((subringAlg
‘𝐽)‘𝐹))) |
38 | 25 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑐 ∈ 𝐵) ∧ 𝑓 ∈ 𝐻) → 𝐹 ∈ (SubDRing‘𝐼)) |
39 | 11 | ad3antrrr 730 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑐 ∈ 𝐵) ∧ 𝑓 ∈ 𝐻) → 𝐻 ∈ (SubDRing‘𝐿)) |
40 | | ovexd 7464 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑐 ∈ 𝐵) ∧ 𝑓 ∈ 𝐻) → (𝐹 ↑m 𝐵) ∈ V) |
41 | | simpllr 776 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑐 ∈ 𝐵) ∧ 𝑓 ∈ 𝐻) → 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) |
42 | 39, 40, 41 | elmaprd 32678 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑐 ∈ 𝐵) ∧ 𝑓 ∈ 𝐻) → 𝑢:𝐻⟶(𝐹 ↑m 𝐵)) |
43 | 42, 23 | ffvelcdmd 7103 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑐 ∈ 𝐵) ∧ 𝑓 ∈ 𝐻) → (𝑢‘𝑓) ∈ (𝐹 ↑m 𝐵)) |
44 | 37, 38, 43 | elmaprd 32678 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑐 ∈ 𝐵) ∧ 𝑓 ∈ 𝐻) → (𝑢‘𝑓):𝐵⟶𝐹) |
45 | | simplr 769 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑐 ∈ 𝐵) ∧ 𝑓 ∈ 𝐻) → 𝑐 ∈ 𝐵) |
46 | 44, 45 | ffvelcdmd 7103 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑐 ∈ 𝐵) ∧ 𝑓 ∈ 𝐻) → ((𝑢‘𝑓)‘𝑐) ∈ 𝐹) |
47 | 36, 46 | sseldd 3983 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑐 ∈ 𝐵) ∧ 𝑓 ∈ 𝐻) → ((𝑢‘𝑓)‘𝑐) ∈ 𝐺) |
48 | 19, 20, 24, 47 | subrgmcld 33225 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑐 ∈ 𝐵) ∧ 𝑓 ∈ 𝐻) → ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐)) ∈ 𝐺) |
49 | 48 | fmpttd 7133 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑐 ∈ 𝐵) → (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐))):𝐻⟶𝐺) |
50 | 49 | adantlr 715 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) → (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐))):𝐻⟶𝐺) |
51 | | fveq2 6904 |
. . . . . . . . 9
⊢ (𝑓 = ℎ → (𝑃‘𝑓) = (𝑃‘ℎ)) |
52 | | fveq2 6904 |
. . . . . . . . . 10
⊢ (𝑓 = ℎ → (𝑢‘𝑓) = (𝑢‘ℎ)) |
53 | 52 | fveq1d 6906 |
. . . . . . . . 9
⊢ (𝑓 = ℎ → ((𝑢‘𝑓)‘𝑐) = ((𝑢‘ℎ)‘𝑐)) |
54 | 51, 53 | oveq12d 7447 |
. . . . . . . 8
⊢ (𝑓 = ℎ → ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐)) = ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))) |
55 | 54 | cbvmptv 5253 |
. . . . . . 7
⊢ (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐))) = (ℎ ∈ 𝐻 ↦ ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))) |
56 | | fvexd 6919 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) → (0g‘𝐿) ∈ V) |
57 | | ssidd 4006 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) → 𝐻 ⊆ 𝐻) |
58 | | fldextrspunfld.4 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) |
59 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝐽) =
(Base‘𝐽) |
60 | 59 | sdrgss 20786 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ⊆ (Base‘𝐽)) |
61 | 58, 60 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐽)) |
62 | 29 | sdrgss 20786 |
. . . . . . . . . . . . . 14
⊢ (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿)) |
63 | 11, 62 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐻 ⊆ (Base‘𝐿)) |
64 | | fldextrspunfld.j |
. . . . . . . . . . . . . 14
⊢ 𝐽 = (𝐿 ↾s 𝐻) |
65 | 64, 29 | ressbas2 17279 |
. . . . . . . . . . . . 13
⊢ (𝐻 ⊆ (Base‘𝐿) → 𝐻 = (Base‘𝐽)) |
66 | 63, 65 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐻 = (Base‘𝐽)) |
67 | 61, 66 | sseqtrrd 4020 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ⊆ 𝐻) |
68 | 67, 63 | sstrd 3993 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐿)) |
69 | 68 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) → 𝐹 ⊆ (Base‘𝐿)) |
70 | 3 | ad4antr 732 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) → 𝐵 ∈ (LBasis‘((subringAlg
‘𝐽)‘𝐹))) |
71 | 58 | ad4antr 732 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) → 𝐹 ∈ (SubDRing‘𝐽)) |
72 | | ovexd 7464 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) → (𝐹 ↑m 𝐵) ∈ V) |
73 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) → 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) |
74 | 12, 72, 73 | elmaprd 32678 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) → 𝑢:𝐻⟶(𝐹 ↑m 𝐵)) |
75 | 74 | ffvelcdmda 7102 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) → (𝑢‘ℎ) ∈ (𝐹 ↑m 𝐵)) |
76 | 70, 71, 75 | elmaprd 32678 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) → (𝑢‘ℎ):𝐵⟶𝐹) |
77 | | simplr 769 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) → 𝑐 ∈ 𝐵) |
78 | 76, 77 | ffvelcdmd 7103 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) → ((𝑢‘ℎ)‘𝑐) ∈ 𝐹) |
79 | 69, 78 | sseldd 3983 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) → ((𝑢‘ℎ)‘𝑐) ∈ (Base‘𝐿)) |
80 | 21 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) → 𝑃:𝐻⟶𝐺) |
81 | | fldextrspunlsplem.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 finSupp (0g‘𝐿)) |
82 | 81 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) → 𝑃 finSupp (0g‘𝐿)) |
83 | 8 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝐿 ∈ Ring) |
84 | | simpr 484 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝑦 ∈ (Base‘𝐿)) |
85 | 29, 19, 5, 83, 84 | ringlzd 20284 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ 𝑦 ∈ (Base‘𝐿)) → ((0g‘𝐿)(.r‘𝐿)𝑦) = (0g‘𝐿)) |
86 | 56, 56, 12, 57, 79, 80, 82, 85 | fisuppov1 32681 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) → (ℎ ∈ 𝐻 ↦ ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))) finSupp (0g‘𝐿)) |
87 | 55, 86 | eqbrtrid 5176 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) → (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐))) finSupp (0g‘𝐿)) |
88 | 5, 10, 12, 18, 50, 87 | gsumsubmcl 19933 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) → (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐)))) ∈ 𝐺) |
89 | 88 | fmpttd 7133 |
. . . 4
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐))))):𝐵⟶𝐺) |
90 | 2, 4, 89 | elmapdd 8877 |
. . 3
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐))))) ∈ (𝐺 ↑m 𝐵)) |
91 | | breq1 5144 |
. . . . . 6
⊢ (𝑎 = (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐))))) → (𝑎 finSupp (0g‘𝐿) ↔ (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐))))) finSupp (0g‘𝐿))) |
92 | 91 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐)))))) → (𝑎 finSupp (0g‘𝐿) ↔ (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐))))) finSupp (0g‘𝐿))) |
93 | | simplr 769 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐)))))) ∧ 𝑏 ∈ 𝐵) → 𝑎 = (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐)))))) |
94 | 93 | fveq1d 6906 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐)))))) ∧ 𝑏 ∈ 𝐵) → (𝑎‘𝑏) = ((𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐)))))‘𝑏)) |
95 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐))))) = (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐))))) |
96 | | fveq2 6904 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 𝑏 → ((𝑢‘𝑓)‘𝑐) = ((𝑢‘𝑓)‘𝑏)) |
97 | 96 | oveq2d 7445 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑏 → ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐)) = ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏))) |
98 | 97 | mpteq2dv 5242 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑏 → (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐))) = (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏)))) |
99 | 98 | oveq2d 7445 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑏 → (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐)))) = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏))))) |
100 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) |
101 | | ovexd 7464 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑏 ∈ 𝐵) → (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏)))) ∈ V) |
102 | 95, 99, 100, 101 | fvmptd3 7037 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑏 ∈ 𝐵) → ((𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐)))))‘𝑏) = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏))))) |
103 | 102 | adantlr 715 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐)))))) ∧ 𝑏 ∈ 𝐵) → ((𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐)))))‘𝑏) = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏))))) |
104 | 94, 103 | eqtrd 2776 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐)))))) ∧ 𝑏 ∈ 𝐵) → (𝑎‘𝑏) = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏))))) |
105 | 104 | oveq1d 7444 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐)))))) ∧ 𝑏 ∈ 𝐵) → ((𝑎‘𝑏)(.r‘𝐿)𝑏) = ((𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏))))(.r‘𝐿)𝑏)) |
106 | 105 | mpteq2dva 5240 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐)))))) → (𝑏 ∈ 𝐵 ↦ ((𝑎‘𝑏)(.r‘𝐿)𝑏)) = (𝑏 ∈ 𝐵 ↦ ((𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏))))(.r‘𝐿)𝑏))) |
107 | 106 | oveq2d 7445 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐)))))) → (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝑎‘𝑏)(.r‘𝐿)𝑏))) = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏))))(.r‘𝐿)𝑏)))) |
108 | 107 | eqeq2d 2747 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐)))))) → (𝑋 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝑎‘𝑏)(.r‘𝐿)𝑏))) ↔ 𝑋 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏))))(.r‘𝐿)𝑏))))) |
109 | 92, 108 | anbi12d 632 |
. . . 4
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ 𝑎 = (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐)))))) → ((𝑎 finSupp (0g‘𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝑎‘𝑏)(.r‘𝐿)𝑏)))) ↔ ((𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐))))) finSupp (0g‘𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏))))(.r‘𝐿)𝑏)))))) |
110 | 109 | adantlr 715 |
. . 3
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑎 = (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐)))))) → ((𝑎 finSupp (0g‘𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝑎‘𝑏)(.r‘𝐿)𝑏)))) ↔ ((𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐))))) finSupp (0g‘𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏))))(.r‘𝐿)𝑏)))))) |
111 | | fldextrspunlsp.2 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ Fin) |
112 | 111 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → 𝐵 ∈ Fin) |
113 | | ovexd 7464 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) → (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐)))) ∈ V) |
114 | | fvexd 6919 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → (0g‘𝐿) ∈ V) |
115 | 95, 112, 113, 114 | fsuppmptdm 9412 |
. . . 4
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐))))) finSupp (0g‘𝐿)) |
116 | | fldextrspunlsplem.4 |
. . . . . . 7
⊢ (𝜑 → 𝑋 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)𝑓)))) |
117 | 116 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → 𝑋 = (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)𝑓)))) |
118 | 8 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → 𝐿 ∈ Ring) |
119 | 118 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → 𝐿 ∈ Ring) |
120 | 3 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → 𝐵 ∈ (LBasis‘((subringAlg
‘𝐽)‘𝐹))) |
121 | 31 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → 𝐺 ⊆ (Base‘𝐿)) |
122 | 21 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → 𝑃:𝐻⟶𝐺) |
123 | 122 | ffvelcdmda 7102 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → (𝑃‘ℎ) ∈ 𝐺) |
124 | 121, 123 | sseldd 3983 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → (𝑃‘ℎ) ∈ (Base‘𝐿)) |
125 | 119 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) ∧ 𝑐 ∈ 𝐵) → 𝐿 ∈ Ring) |
126 | 68 | ad4antr 732 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) ∧ 𝑐 ∈ 𝐵) → 𝐹 ⊆ (Base‘𝐿)) |
127 | 3 | ad4antr 732 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) ∧ 𝑐 ∈ 𝐵) → 𝐵 ∈ (LBasis‘((subringAlg
‘𝐽)‘𝐹))) |
128 | 58 | ad4antr 732 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) ∧ 𝑐 ∈ 𝐵) → 𝐹 ∈ (SubDRing‘𝐽)) |
129 | 11 | ad4antr 732 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) ∧ 𝑐 ∈ 𝐵) → 𝐻 ∈ (SubDRing‘𝐿)) |
130 | | ovexd 7464 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) ∧ 𝑐 ∈ 𝐵) → (𝐹 ↑m 𝐵) ∈ V) |
131 | | simp-4r 784 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) ∧ 𝑐 ∈ 𝐵) → 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) |
132 | 129, 130,
131 | elmaprd 32678 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) ∧ 𝑐 ∈ 𝐵) → 𝑢:𝐻⟶(𝐹 ↑m 𝐵)) |
133 | | simplr 769 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) ∧ 𝑐 ∈ 𝐵) → ℎ ∈ 𝐻) |
134 | 132, 133 | ffvelcdmd 7103 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) ∧ 𝑐 ∈ 𝐵) → (𝑢‘ℎ) ∈ (𝐹 ↑m 𝐵)) |
135 | 127, 128,
134 | elmaprd 32678 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) ∧ 𝑐 ∈ 𝐵) → (𝑢‘ℎ):𝐵⟶𝐹) |
136 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) ∧ 𝑐 ∈ 𝐵) → 𝑐 ∈ 𝐵) |
137 | 135, 136 | ffvelcdmd 7103 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) ∧ 𝑐 ∈ 𝐵) → ((𝑢‘ℎ)‘𝑐) ∈ 𝐹) |
138 | 126, 137 | sseldd 3983 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) ∧ 𝑐 ∈ 𝐵) → ((𝑢‘ℎ)‘𝑐) ∈ (Base‘𝐿)) |
139 | | eqid 2736 |
. . . . . . . . . . . . . . . . . 18
⊢
(Base‘((subringAlg ‘𝐽)‘𝐹)) = (Base‘((subringAlg ‘𝐽)‘𝐹)) |
140 | | eqid 2736 |
. . . . . . . . . . . . . . . . . 18
⊢
(LBasis‘((subringAlg ‘𝐽)‘𝐹)) = (LBasis‘((subringAlg ‘𝐽)‘𝐹)) |
141 | 139, 140 | lbsss 21068 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈
(LBasis‘((subringAlg ‘𝐽)‘𝐹)) → 𝐵 ⊆ (Base‘((subringAlg
‘𝐽)‘𝐹))) |
142 | 3, 141 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐵 ⊆ (Base‘((subringAlg
‘𝐽)‘𝐹))) |
143 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹)) |
144 | 143, 61 | srabase 21169 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (Base‘𝐽) = (Base‘((subringAlg
‘𝐽)‘𝐹))) |
145 | 66, 144 | eqtr2d 2777 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (Base‘((subringAlg
‘𝐽)‘𝐹)) = 𝐻) |
146 | 142, 145 | sseqtrd 4019 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ⊆ 𝐻) |
147 | 146, 63 | sstrd 3993 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ⊆ (Base‘𝐿)) |
148 | 147 | ad3antrrr 730 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → 𝐵 ⊆ (Base‘𝐿)) |
149 | 148 | sselda 3982 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) ∧ 𝑐 ∈ 𝐵) → 𝑐 ∈ (Base‘𝐿)) |
150 | 29, 19, 125, 138, 149 | ringcld 20252 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) ∧ 𝑐 ∈ 𝐵) → (((𝑢‘ℎ)‘𝑐)(.r‘𝐿)𝑐) ∈ (Base‘𝐿)) |
151 | | fvexd 6919 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → (0g‘𝐿) ∈ V) |
152 | | ssidd 4006 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → 𝐵 ⊆ 𝐵) |
153 | 58 | ad3antrrr 730 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → 𝐹 ∈ (SubDRing‘𝐽)) |
154 | 11 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → 𝐻 ∈ (SubDRing‘𝐿)) |
155 | | ovexd 7464 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → (𝐹 ↑m 𝐵) ∈ V) |
156 | | simplr 769 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) |
157 | 154, 155,
156 | elmaprd 32678 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → 𝑢:𝐻⟶(𝐹 ↑m 𝐵)) |
158 | 157 | ffvelcdmda 7102 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → (𝑢‘ℎ) ∈ (𝐹 ↑m 𝐵)) |
159 | 120, 153,
158 | elmaprd 32678 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → (𝑢‘ℎ):𝐵⟶𝐹) |
160 | 52 | breq1d 5151 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = ℎ → ((𝑢‘𝑓) finSupp (0g‘𝐿) ↔ (𝑢‘ℎ) finSupp (0g‘𝐿))) |
161 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = ℎ → 𝑓 = ℎ) |
162 | 52 | fveq1d 6906 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = ℎ → ((𝑢‘𝑓)‘𝑏) = ((𝑢‘ℎ)‘𝑏)) |
163 | 162 | oveq1d 7444 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = ℎ → (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏) = (((𝑢‘ℎ)‘𝑏)(.r‘𝐿)𝑏)) |
164 | 163 | mpteq2dv 5242 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = ℎ → (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏)) = (𝑏 ∈ 𝐵 ↦ (((𝑢‘ℎ)‘𝑏)(.r‘𝐿)𝑏))) |
165 | 164 | oveq2d 7445 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = ℎ → (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))) = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘ℎ)‘𝑏)(.r‘𝐿)𝑏)))) |
166 | 161, 165 | eqeq12d 2752 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = ℎ → (𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))) ↔ ℎ = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘ℎ)‘𝑏)(.r‘𝐿)𝑏))))) |
167 | 160, 166 | anbi12d 632 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = ℎ → (((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏)))) ↔ ((𝑢‘ℎ) finSupp (0g‘𝐿) ∧ ℎ = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘ℎ)‘𝑏)(.r‘𝐿)𝑏)))))) |
168 | | simplr 769 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) |
169 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → ℎ ∈ 𝐻) |
170 | 167, 168,
169 | rspcdva 3622 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → ((𝑢‘ℎ) finSupp (0g‘𝐿) ∧ ℎ = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘ℎ)‘𝑏)(.r‘𝐿)𝑏))))) |
171 | 170 | simpld 494 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → (𝑢‘ℎ) finSupp (0g‘𝐿)) |
172 | 119 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝐿 ∈ Ring) |
173 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) ∧ 𝑦 ∈ (Base‘𝐿)) → 𝑦 ∈ (Base‘𝐿)) |
174 | 29, 19, 5, 172, 173 | ringlzd 20284 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) ∧ 𝑦 ∈ (Base‘𝐿)) → ((0g‘𝐿)(.r‘𝐿)𝑦) = (0g‘𝐿)) |
175 | 151, 151,
120, 152, 149, 159, 171, 174 | fisuppov1 32681 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → (𝑐 ∈ 𝐵 ↦ (((𝑢‘ℎ)‘𝑐)(.r‘𝐿)𝑐)) finSupp (0g‘𝐿)) |
176 | 29, 5, 19, 119, 120, 124, 150, 175 | gsummulc2 20306 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → (𝐿 Σg (𝑐 ∈ 𝐵 ↦ ((𝑃‘ℎ)(.r‘𝐿)(((𝑢‘ℎ)‘𝑐)(.r‘𝐿)𝑐)))) = ((𝑃‘ℎ)(.r‘𝐿)(𝐿 Σg (𝑐 ∈ 𝐵 ↦ (((𝑢‘ℎ)‘𝑐)(.r‘𝐿)𝑐))))) |
177 | 124 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) ∧ 𝑐 ∈ 𝐵) → (𝑃‘ℎ) ∈ (Base‘𝐿)) |
178 | 29, 19, 125, 177, 138, 149 | ringassd 20250 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) ∧ 𝑐 ∈ 𝐵) → (((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))(.r‘𝐿)𝑐) = ((𝑃‘ℎ)(.r‘𝐿)(((𝑢‘ℎ)‘𝑐)(.r‘𝐿)𝑐))) |
179 | 178 | mpteq2dva 5240 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → (𝑐 ∈ 𝐵 ↦ (((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))(.r‘𝐿)𝑐)) = (𝑐 ∈ 𝐵 ↦ ((𝑃‘ℎ)(.r‘𝐿)(((𝑢‘ℎ)‘𝑐)(.r‘𝐿)𝑐)))) |
180 | 179 | oveq2d 7445 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → (𝐿 Σg (𝑐 ∈ 𝐵 ↦ (((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))(.r‘𝐿)𝑐))) = (𝐿 Σg (𝑐 ∈ 𝐵 ↦ ((𝑃‘ℎ)(.r‘𝐿)(((𝑢‘ℎ)‘𝑐)(.r‘𝐿)𝑐))))) |
181 | 170 | simprd 495 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → ℎ = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘ℎ)‘𝑏)(.r‘𝐿)𝑏)))) |
182 | | fveq2 6904 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑐 → ((𝑢‘ℎ)‘𝑏) = ((𝑢‘ℎ)‘𝑐)) |
183 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑐 → 𝑏 = 𝑐) |
184 | 182, 183 | oveq12d 7447 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑐 → (((𝑢‘ℎ)‘𝑏)(.r‘𝐿)𝑏) = (((𝑢‘ℎ)‘𝑐)(.r‘𝐿)𝑐)) |
185 | 184 | cbvmptv 5253 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ 𝐵 ↦ (((𝑢‘ℎ)‘𝑏)(.r‘𝐿)𝑏)) = (𝑐 ∈ 𝐵 ↦ (((𝑢‘ℎ)‘𝑐)(.r‘𝐿)𝑐)) |
186 | 185 | oveq2i 7440 |
. . . . . . . . . . . 12
⊢ (𝐿 Σg
(𝑏 ∈ 𝐵 ↦ (((𝑢‘ℎ)‘𝑏)(.r‘𝐿)𝑏))) = (𝐿 Σg (𝑐 ∈ 𝐵 ↦ (((𝑢‘ℎ)‘𝑐)(.r‘𝐿)𝑐))) |
187 | 181, 186 | eqtrdi 2792 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → ℎ = (𝐿 Σg (𝑐 ∈ 𝐵 ↦ (((𝑢‘ℎ)‘𝑐)(.r‘𝐿)𝑐)))) |
188 | 187 | oveq2d 7445 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → ((𝑃‘ℎ)(.r‘𝐿)ℎ) = ((𝑃‘ℎ)(.r‘𝐿)(𝐿 Σg (𝑐 ∈ 𝐵 ↦ (((𝑢‘ℎ)‘𝑐)(.r‘𝐿)𝑐))))) |
189 | 176, 180,
188 | 3eqtr4rd 2787 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ℎ ∈ 𝐻) → ((𝑃‘ℎ)(.r‘𝐿)ℎ) = (𝐿 Σg (𝑐 ∈ 𝐵 ↦ (((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))(.r‘𝐿)𝑐)))) |
190 | 189 | mpteq2dva 5240 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → (ℎ ∈ 𝐻 ↦ ((𝑃‘ℎ)(.r‘𝐿)ℎ)) = (ℎ ∈ 𝐻 ↦ (𝐿 Σg (𝑐 ∈ 𝐵 ↦ (((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))(.r‘𝐿)𝑐))))) |
191 | 190 | oveq2d 7445 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → (𝐿 Σg (ℎ ∈ 𝐻 ↦ ((𝑃‘ℎ)(.r‘𝐿)ℎ))) = (𝐿 Σg (ℎ ∈ 𝐻 ↦ (𝐿 Σg (𝑐 ∈ 𝐵 ↦ (((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))(.r‘𝐿)𝑐)))))) |
192 | 51, 161 | oveq12d 7447 |
. . . . . . . . . 10
⊢ (𝑓 = ℎ → ((𝑃‘𝑓)(.r‘𝐿)𝑓) = ((𝑃‘ℎ)(.r‘𝐿)ℎ)) |
193 | 192 | cbvmptv 5253 |
. . . . . . . . 9
⊢ (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)𝑓)) = (ℎ ∈ 𝐻 ↦ ((𝑃‘ℎ)(.r‘𝐿)ℎ)) |
194 | 193 | oveq2i 7440 |
. . . . . . . 8
⊢ (𝐿 Σg
(𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)𝑓))) = (𝐿 Σg (ℎ ∈ 𝐻 ↦ ((𝑃‘ℎ)(.r‘𝐿)ℎ))) |
195 | 194 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)𝑓))) = (𝐿 Σg (ℎ ∈ 𝐻 ↦ ((𝑃‘ℎ)(.r‘𝐿)ℎ)))) |
196 | 9 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → 𝐿 ∈ CMnd) |
197 | 8 | ad4antr 732 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) → 𝐿 ∈ Ring) |
198 | 31 | ad4antr 732 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) → 𝐺 ⊆ (Base‘𝐿)) |
199 | 80 | ffvelcdmda 7102 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) → (𝑃‘ℎ) ∈ 𝐺) |
200 | 198, 199 | sseldd 3983 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) → (𝑃‘ℎ) ∈ (Base‘𝐿)) |
201 | 29, 19, 197, 200, 79 | ringcld 20252 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) → ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐)) ∈ (Base‘𝐿)) |
202 | 147 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → 𝐵 ⊆ (Base‘𝐿)) |
203 | 202 | sselda 3982 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) → 𝑐 ∈ (Base‘𝐿)) |
204 | 203 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) → 𝑐 ∈ (Base‘𝐿)) |
205 | 29, 19, 197, 201, 204 | ringcld 20252 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) → (((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))(.r‘𝐿)𝑐) ∈ (Base‘𝐿)) |
206 | 205 | anasss 466 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ (𝑐 ∈ 𝐵 ∧ ℎ ∈ 𝐻)) → (((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))(.r‘𝐿)𝑐) ∈ (Base‘𝐿)) |
207 | 81 | fsuppimpd 9405 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃 supp (0g‘𝐿)) ∈ Fin) |
208 | 207 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → (𝑃 supp (0g‘𝐿)) ∈ Fin) |
209 | | suppssdm 8198 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 supp (0g‘𝐿)) ⊆ dom 𝑃 |
210 | 209, 21 | fssdm 6753 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑃 supp (0g‘𝐿)) ⊆ 𝐻) |
211 | 210 | sseld 3981 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑓 ∈ (𝑃 supp (0g‘𝐿)) → 𝑓 ∈ 𝐻)) |
212 | 211 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) → (𝑓 ∈ (𝑃 supp (0g‘𝐿)) → 𝑓 ∈ 𝐻)) |
213 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ (𝑢‘𝑓) finSupp (0g‘𝐿)) → (𝑢‘𝑓) finSupp (0g‘𝐿)) |
214 | 213 | fsuppimpd 9405 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ (𝑢‘𝑓) finSupp (0g‘𝐿)) → ((𝑢‘𝑓) supp (0g‘𝐿)) ∈ Fin) |
215 | 214 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) → ((𝑢‘𝑓) finSupp (0g‘𝐿) → ((𝑢‘𝑓) supp (0g‘𝐿)) ∈ Fin)) |
216 | 215 | adantrd 491 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) → (((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏)))) → ((𝑢‘𝑓) supp (0g‘𝐿)) ∈ Fin)) |
217 | 212, 216 | imim12d 81 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) → ((𝑓 ∈ 𝐻 → ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → (𝑓 ∈ (𝑃 supp (0g‘𝐿)) → ((𝑢‘𝑓) supp (0g‘𝐿)) ∈ Fin))) |
218 | 217 | ralimdv2 3162 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) → (∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏)))) → ∀𝑓 ∈ (𝑃 supp (0g‘𝐿))((𝑢‘𝑓) supp (0g‘𝐿)) ∈ Fin)) |
219 | 218 | imp 406 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → ∀𝑓 ∈ (𝑃 supp (0g‘𝐿))((𝑢‘𝑓) supp (0g‘𝐿)) ∈ Fin) |
220 | | fveq2 6904 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑖 → (𝑢‘𝑓) = (𝑢‘𝑖)) |
221 | 220 | oveq1d 7444 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑖 → ((𝑢‘𝑓) supp (0g‘𝐿)) = ((𝑢‘𝑖) supp (0g‘𝐿))) |
222 | 221 | eleq1d 2825 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑖 → (((𝑢‘𝑓) supp (0g‘𝐿)) ∈ Fin ↔ ((𝑢‘𝑖) supp (0g‘𝐿)) ∈ Fin)) |
223 | 222 | cbvralvw 3236 |
. . . . . . . . . . . 12
⊢
(∀𝑓 ∈
(𝑃 supp
(0g‘𝐿))((𝑢‘𝑓) supp (0g‘𝐿)) ∈ Fin ↔ ∀𝑖 ∈ (𝑃 supp (0g‘𝐿))((𝑢‘𝑖) supp (0g‘𝐿)) ∈ Fin) |
224 | 219, 223 | sylib 218 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → ∀𝑖 ∈ (𝑃 supp (0g‘𝐿))((𝑢‘𝑖) supp (0g‘𝐿)) ∈ Fin) |
225 | | iunfi 9379 |
. . . . . . . . . . 11
⊢ (((𝑃 supp (0g‘𝐿)) ∈ Fin ∧
∀𝑖 ∈ (𝑃 supp (0g‘𝐿))((𝑢‘𝑖) supp (0g‘𝐿)) ∈ Fin) → ∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))((𝑢‘𝑖) supp (0g‘𝐿)) ∈ Fin) |
226 | 208, 224,
225 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → ∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))((𝑢‘𝑖) supp (0g‘𝐿)) ∈ Fin) |
227 | | xpfi 9354 |
. . . . . . . . . 10
⊢
((∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))((𝑢‘𝑖) supp (0g‘𝐿)) ∈ Fin ∧ (𝑃 supp (0g‘𝐿)) ∈ Fin) → (∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))((𝑢‘𝑖) supp (0g‘𝐿)) × (𝑃 supp (0g‘𝐿))) ∈ Fin) |
228 | 226, 208,
227 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → (∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))((𝑢‘𝑖) supp (0g‘𝐿)) × (𝑃 supp (0g‘𝐿))) ∈ Fin) |
229 | | snssi 4806 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (𝑃 supp (0g‘𝐿)) → {𝑖} ⊆ (𝑃 supp (0g‘𝐿))) |
230 | 229 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑃 supp (0g‘𝐿))) → {𝑖} ⊆ (𝑃 supp (0g‘𝐿))) |
231 | 230 | iunxpssiun1 32570 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖}) ⊆ (∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))((𝑢‘𝑖) supp (0g‘𝐿)) × (𝑃 supp (0g‘𝐿)))) |
232 | 231 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → ∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖}) ⊆ (∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))((𝑢‘𝑖) supp (0g‘𝐿)) × (𝑃 supp (0g‘𝐿)))) |
233 | 228, 232 | ssfid 9297 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → ∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖}) ∈ Fin) |
234 | 21 | ffnd 6735 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑃 Fn 𝐻) |
235 | 234 | ad6antr 736 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → 𝑃 Fn 𝐻) |
236 | 11 | ad6antr 736 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → 𝐻 ∈ (SubDRing‘𝐿)) |
237 | | fvexd 6919 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → (0g‘𝐿) ∈ V) |
238 | | simpllr 776 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → ℎ ∈ 𝐻) |
239 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) |
240 | 238, 239 | eldifd 3961 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → ℎ ∈ (𝐻 ∖ (𝑃 supp (0g‘𝐿)))) |
241 | 235, 236,
237, 240 | fvdifsupp 8192 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → (𝑃‘ℎ) = (0g‘𝐿)) |
242 | 241 | oveq1d 7444 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐)) = ((0g‘𝐿)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))) |
243 | 8 | ad6antr 736 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → 𝐿 ∈ Ring) |
244 | 68 | ad6antr 736 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → 𝐹 ⊆ (Base‘𝐿)) |
245 | 3 | ad6antr 736 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → 𝐵 ∈ (LBasis‘((subringAlg
‘𝐽)‘𝐹))) |
246 | 58 | ad6antr 736 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → 𝐹 ∈ (SubDRing‘𝐽)) |
247 | | ovexd 7464 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → (𝐹 ↑m 𝐵) ∈ V) |
248 | | simp-6r 788 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) |
249 | 236, 247,
248 | elmaprd 32678 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → 𝑢:𝐻⟶(𝐹 ↑m 𝐵)) |
250 | 249, 238 | ffvelcdmd 7103 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → (𝑢‘ℎ) ∈ (𝐹 ↑m 𝐵)) |
251 | 245, 246,
250 | elmaprd 32678 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → (𝑢‘ℎ):𝐵⟶𝐹) |
252 | | simp-4r 784 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → 𝑐 ∈ 𝐵) |
253 | 251, 252 | ffvelcdmd 7103 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → ((𝑢‘ℎ)‘𝑐) ∈ 𝐹) |
254 | 244, 253 | sseldd 3983 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → ((𝑢‘ℎ)‘𝑐) ∈ (Base‘𝐿)) |
255 | 29, 19, 5, 243, 254 | ringlzd 20284 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → ((0g‘𝐿)(.r‘𝐿)((𝑢‘ℎ)‘𝑐)) = (0g‘𝐿)) |
256 | 242, 255 | eqtrd 2776 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ ℎ ∈ (𝑃 supp (0g‘𝐿))) → ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐)) = (0g‘𝐿)) |
257 | 3 | ad6antr 736 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) → 𝐵 ∈ (LBasis‘((subringAlg
‘𝐽)‘𝐹))) |
258 | 58 | ad6antr 736 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) → 𝐹 ∈ (SubDRing‘𝐽)) |
259 | 11 | ad6antr 736 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) → 𝐻 ∈ (SubDRing‘𝐿)) |
260 | | ovexd 7464 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) → (𝐹 ↑m 𝐵) ∈ V) |
261 | | simp-6r 788 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) → 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) |
262 | 259, 260,
261 | elmaprd 32678 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) → 𝑢:𝐻⟶(𝐹 ↑m 𝐵)) |
263 | | simpllr 776 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) → ℎ ∈ 𝐻) |
264 | 262, 263 | ffvelcdmd 7103 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) → (𝑢‘ℎ) ∈ (𝐹 ↑m 𝐵)) |
265 | 257, 258,
264 | elmaprd 32678 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) → (𝑢‘ℎ):𝐵⟶𝐹) |
266 | 265 | ffnd 6735 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) → (𝑢‘ℎ) Fn 𝐵) |
267 | | fvexd 6919 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) → (0g‘𝐿) ∈ V) |
268 | | simp-4r 784 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) → 𝑐 ∈ 𝐵) |
269 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) → ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) |
270 | 268, 269 | eldifd 3961 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) → 𝑐 ∈ (𝐵 ∖ ((𝑢‘ℎ) supp (0g‘𝐿)))) |
271 | 266, 257,
267, 270 | fvdifsupp 8192 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) → ((𝑢‘ℎ)‘𝑐) = (0g‘𝐿)) |
272 | 271 | oveq2d 7445 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) → ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐)) = ((𝑃‘ℎ)(.r‘𝐿)(0g‘𝐿))) |
273 | 197 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) → 𝐿 ∈ Ring) |
274 | 200 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) → (𝑃‘ℎ) ∈ (Base‘𝐿)) |
275 | 29, 19, 5, 273, 274 | ringrzd 20285 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) → ((𝑃‘ℎ)(.r‘𝐿)(0g‘𝐿)) = (0g‘𝐿)) |
276 | 272, 275 | eqtrd 2776 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) → ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐)) = (0g‘𝐿)) |
277 | | df-br 5142 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ ↔ 〈𝑐, ℎ〉 ∈ ∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})) |
278 | | fveq2 6904 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ℎ = 𝑖 → (𝑢‘ℎ) = (𝑢‘𝑖)) |
279 | 278 | oveq1d 7444 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℎ = 𝑖 → ((𝑢‘ℎ) supp (0g‘𝐿)) = ((𝑢‘𝑖) supp (0g‘𝐿))) |
280 | | sneq 4634 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℎ = 𝑖 → {ℎ} = {𝑖}) |
281 | 279, 280 | xpeq12d 5714 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℎ = 𝑖 → (((𝑢‘ℎ) supp (0g‘𝐿)) × {ℎ}) = (((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})) |
282 | 281 | cbviunv 5038 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∪ ℎ
∈ (𝑃 supp
(0g‘𝐿))(((𝑢‘ℎ) supp (0g‘𝐿)) × {ℎ}) = ∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖}) |
283 | 282 | eleq2i 2832 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(〈𝑐, ℎ〉 ∈ ∪ ℎ
∈ (𝑃 supp
(0g‘𝐿))(((𝑢‘ℎ) supp (0g‘𝐿)) × {ℎ}) ↔ 〈𝑐, ℎ〉 ∈ ∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})) |
284 | | opeliun2xp 5751 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(〈𝑐, ℎ〉 ∈ ∪ ℎ
∈ (𝑃 supp
(0g‘𝐿))(((𝑢‘ℎ) supp (0g‘𝐿)) × {ℎ}) ↔ (ℎ ∈ (𝑃 supp (0g‘𝐿)) ∧ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿)))) |
285 | 277, 283,
284 | 3bitr2i 299 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ ↔ (ℎ ∈ (𝑃 supp (0g‘𝐿)) ∧ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿)))) |
286 | 285 | notbii 320 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ ↔ ¬ (ℎ ∈ (𝑃 supp (0g‘𝐿)) ∧ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿)))) |
287 | | ianor 984 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
(ℎ ∈ (𝑃 supp (0g‘𝐿)) ∧ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿))) ↔ (¬ ℎ ∈ (𝑃 supp (0g‘𝐿)) ∨ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿)))) |
288 | 286, 287 | sylbb 219 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ → (¬ ℎ ∈ (𝑃 supp (0g‘𝐿)) ∨ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿)))) |
289 | 288 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) → (¬ ℎ ∈ (𝑃 supp (0g‘𝐿)) ∨ ¬ 𝑐 ∈ ((𝑢‘ℎ) supp (0g‘𝐿)))) |
290 | 256, 276,
289 | mpjaodan 961 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) → ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐)) = (0g‘𝐿)) |
291 | 290 | oveq1d 7444 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) → (((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))(.r‘𝐿)𝑐) = ((0g‘𝐿)(.r‘𝐿)𝑐)) |
292 | 118 | ad3antrrr 730 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) → 𝐿 ∈ Ring) |
293 | 203 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) → 𝑐 ∈ (Base‘𝐿)) |
294 | 29, 19, 5, 292, 293 | ringlzd 20284 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) → ((0g‘𝐿)(.r‘𝐿)𝑐) = (0g‘𝐿)) |
295 | 291, 294 | eqtrd 2776 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) → (((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))(.r‘𝐿)𝑐) = (0g‘𝐿)) |
296 | 295 | an42ds 32459 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ ℎ ∈ 𝐻) ∧ 𝑐 ∈ 𝐵) → (((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))(.r‘𝐿)𝑐) = (0g‘𝐿)) |
297 | 296 | an32s 652 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ 𝑐 ∈ 𝐵) ∧ ℎ ∈ 𝐻) → (((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))(.r‘𝐿)𝑐) = (0g‘𝐿)) |
298 | 297 | anasss 466 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) ∧ (𝑐 ∈ 𝐵 ∧ ℎ ∈ 𝐻)) → (((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))(.r‘𝐿)𝑐) = (0g‘𝐿)) |
299 | 298 | an32s 652 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ (𝑐 ∈ 𝐵 ∧ ℎ ∈ 𝐻)) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ) → (((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))(.r‘𝐿)𝑐) = (0g‘𝐿)) |
300 | 299 | anasss 466 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ ((𝑐 ∈ 𝐵 ∧ ℎ ∈ 𝐻) ∧ ¬ 𝑐∪ 𝑖 ∈ (𝑃 supp (0g‘𝐿))(((𝑢‘𝑖) supp (0g‘𝐿)) × {𝑖})ℎ)) → (((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))(.r‘𝐿)𝑐) = (0g‘𝐿)) |
301 | 29, 5, 196, 4, 154, 206, 233, 300 | gsumcom3 19992 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → (𝐿 Σg (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (ℎ ∈ 𝐻 ↦ (((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))(.r‘𝐿)𝑐))))) = (𝐿 Σg (ℎ ∈ 𝐻 ↦ (𝐿 Σg (𝑐 ∈ 𝐵 ↦ (((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))(.r‘𝐿)𝑐)))))) |
302 | 191, 195,
301 | 3eqtr4d 2786 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)𝑓))) = (𝐿 Σg (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (ℎ ∈ 𝐻 ↦ (((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))(.r‘𝐿)𝑐)))))) |
303 | 118 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) → 𝐿 ∈ Ring) |
304 | 29, 5, 19, 303, 12, 203, 201, 86 | gsummulc1 20305 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) ∧ 𝑐 ∈ 𝐵) → (𝐿 Σg (ℎ ∈ 𝐻 ↦ (((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))(.r‘𝐿)𝑐))) = ((𝐿 Σg (ℎ ∈ 𝐻 ↦ ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))))(.r‘𝐿)𝑐)) |
305 | 304 | mpteq2dva 5240 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (ℎ ∈ 𝐻 ↦ (((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))(.r‘𝐿)𝑐)))) = (𝑐 ∈ 𝐵 ↦ ((𝐿 Σg (ℎ ∈ 𝐻 ↦ ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))))(.r‘𝐿)𝑐))) |
306 | 305 | oveq2d 7445 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → (𝐿 Σg (𝑐 ∈ 𝐵 ↦ (𝐿 Σg (ℎ ∈ 𝐻 ↦ (((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))(.r‘𝐿)𝑐))))) = (𝐿 Σg (𝑐 ∈ 𝐵 ↦ ((𝐿 Σg (ℎ ∈ 𝐻 ↦ ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))))(.r‘𝐿)𝑐)))) |
307 | 117, 302,
306 | 3eqtrd 2780 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → 𝑋 = (𝐿 Σg (𝑐 ∈ 𝐵 ↦ ((𝐿 Σg (ℎ ∈ 𝐻 ↦ ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))))(.r‘𝐿)𝑐)))) |
308 | 51, 162 | oveq12d 7447 |
. . . . . . . . . . 11
⊢ (𝑓 = ℎ → ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏)) = ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑏))) |
309 | 308 | cbvmptv 5253 |
. . . . . . . . . 10
⊢ (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏))) = (ℎ ∈ 𝐻 ↦ ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑏))) |
310 | 182 | oveq2d 7445 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑐 → ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑏)) = ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))) |
311 | 310 | mpteq2dv 5242 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑐 → (ℎ ∈ 𝐻 ↦ ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑏))) = (ℎ ∈ 𝐻 ↦ ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐)))) |
312 | 309, 311 | eqtrid 2788 |
. . . . . . . . 9
⊢ (𝑏 = 𝑐 → (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏))) = (ℎ ∈ 𝐻 ↦ ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐)))) |
313 | 312 | oveq2d 7445 |
. . . . . . . 8
⊢ (𝑏 = 𝑐 → (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏)))) = (𝐿 Σg (ℎ ∈ 𝐻 ↦ ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))))) |
314 | 313, 183 | oveq12d 7447 |
. . . . . . 7
⊢ (𝑏 = 𝑐 → ((𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏))))(.r‘𝐿)𝑏) = ((𝐿 Σg (ℎ ∈ 𝐻 ↦ ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))))(.r‘𝐿)𝑐)) |
315 | 314 | cbvmptv 5253 |
. . . . . 6
⊢ (𝑏 ∈ 𝐵 ↦ ((𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏))))(.r‘𝐿)𝑏)) = (𝑐 ∈ 𝐵 ↦ ((𝐿 Σg (ℎ ∈ 𝐻 ↦ ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))))(.r‘𝐿)𝑐)) |
316 | 315 | oveq2i 7440 |
. . . . 5
⊢ (𝐿 Σg
(𝑏 ∈ 𝐵 ↦ ((𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏))))(.r‘𝐿)𝑏))) = (𝐿 Σg (𝑐 ∈ 𝐵 ↦ ((𝐿 Σg (ℎ ∈ 𝐻 ↦ ((𝑃‘ℎ)(.r‘𝐿)((𝑢‘ℎ)‘𝑐))))(.r‘𝐿)𝑐))) |
317 | 307, 316 | eqtr4di 2794 |
. . . 4
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → 𝑋 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏))))(.r‘𝐿)𝑏)))) |
318 | 115, 317 | jca 511 |
. . 3
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → ((𝑐 ∈ 𝐵 ↦ (𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑐))))) finSupp (0g‘𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝐿 Σg (𝑓 ∈ 𝐻 ↦ ((𝑃‘𝑓)(.r‘𝐿)((𝑢‘𝑓)‘𝑏))))(.r‘𝐿)𝑏))))) |
319 | 90, 110, 318 | rspcedvd 3623 |
. 2
⊢ (((𝜑 ∧ 𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)) ∧ ∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) → ∃𝑎 ∈ (𝐺 ↑m 𝐵)(𝑎 finSupp (0g‘𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝑎‘𝑏)(.r‘𝐿)𝑏))))) |
320 | | breq1 5144 |
. . . 4
⊢ (𝑒 = (𝑢‘𝑓) → (𝑒 finSupp (0g‘𝐿) ↔ (𝑢‘𝑓) finSupp (0g‘𝐿))) |
321 | | fveq1 6903 |
. . . . . . . 8
⊢ (𝑒 = (𝑢‘𝑓) → (𝑒‘𝑏) = ((𝑢‘𝑓)‘𝑏)) |
322 | 321 | oveq1d 7444 |
. . . . . . 7
⊢ (𝑒 = (𝑢‘𝑓) → ((𝑒‘𝑏)(.r‘𝐿)𝑏) = (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏)) |
323 | 322 | mpteq2dv 5242 |
. . . . . 6
⊢ (𝑒 = (𝑢‘𝑓) → (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)(.r‘𝐿)𝑏)) = (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))) |
324 | 323 | oveq2d 7445 |
. . . . 5
⊢ (𝑒 = (𝑢‘𝑓) → (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)(.r‘𝐿)𝑏))) = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏)))) |
325 | 324 | eqeq2d 2747 |
. . . 4
⊢ (𝑒 = (𝑢‘𝑓) → (𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)(.r‘𝐿)𝑏))) ↔ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) |
326 | 320, 325 | anbi12d 632 |
. . 3
⊢ (𝑒 = (𝑢‘𝑓) → ((𝑒 finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)(.r‘𝐿)𝑏)))) ↔ ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏)))))) |
327 | | ovexd 7464 |
. . 3
⊢ (𝜑 → (𝐹 ↑m 𝐵) ∈ V) |
328 | | eqid 2736 |
. . . . . . . . . 10
⊢
(LSpan‘((subringAlg ‘𝐽)‘𝐹)) = (LSpan‘((subringAlg ‘𝐽)‘𝐹)) |
329 | 139, 140,
328 | lbssp 21070 |
. . . . . . . . 9
⊢ (𝐵 ∈
(LBasis‘((subringAlg ‘𝐽)‘𝐹)) → ((LSpan‘((subringAlg
‘𝐽)‘𝐹))‘𝐵) = (Base‘((subringAlg ‘𝐽)‘𝐹))) |
330 | 3, 329 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((LSpan‘((subringAlg
‘𝐽)‘𝐹))‘𝐵) = (Base‘((subringAlg ‘𝐽)‘𝐹))) |
331 | 144, 66, 330 | 3eqtr4rd 2787 |
. . . . . . 7
⊢ (𝜑 → ((LSpan‘((subringAlg
‘𝐽)‘𝐹))‘𝐵) = 𝐻) |
332 | 331 | eleq2d 2826 |
. . . . . 6
⊢ (𝜑 → (𝑓 ∈ ((LSpan‘((subringAlg
‘𝐽)‘𝐹))‘𝐵) ↔ 𝑓 ∈ 𝐻)) |
333 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = (Base‘(Scalar‘((subringAlg
‘𝐽)‘𝐹))) |
334 | | eqid 2736 |
. . . . . . 7
⊢
(Scalar‘((subringAlg ‘𝐽)‘𝐹)) = (Scalar‘((subringAlg ‘𝐽)‘𝐹)) |
335 | | eqid 2736 |
. . . . . . 7
⊢
(0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) =
(0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) |
336 | | eqid 2736 |
. . . . . . 7
⊢ (
·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)) = ( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹)) |
337 | | sdrgsubrg 20784 |
. . . . . . . . 9
⊢ (𝐹 ∈ (SubDRing‘𝐽) → 𝐹 ∈ (SubRing‘𝐽)) |
338 | 58, 337 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐽)) |
339 | | eqid 2736 |
. . . . . . . . 9
⊢
((subringAlg ‘𝐽)‘𝐹) = ((subringAlg ‘𝐽)‘𝐹) |
340 | 339 | sralmod 21186 |
. . . . . . . 8
⊢ (𝐹 ∈ (SubRing‘𝐽) → ((subringAlg
‘𝐽)‘𝐹) ∈ LMod) |
341 | 338, 340 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((subringAlg ‘𝐽)‘𝐹) ∈ LMod) |
342 | 328, 139,
333, 334, 335, 336, 341, 142 | ellspds 33383 |
. . . . . 6
⊢ (𝜑 → (𝑓 ∈ ((LSpan‘((subringAlg
‘𝐽)‘𝐹))‘𝐵) ↔ ∃𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹))𝑏)))))) |
343 | 332, 342 | bitr3d 281 |
. . . . 5
⊢ (𝜑 → (𝑓 ∈ 𝐻 ↔ ∃𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹))𝑏)))))) |
344 | 343 | biimpa 476 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐻) → ∃𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹))𝑏))))) |
345 | | eqid 2736 |
. . . . . . . . . 10
⊢ (𝐽 ↾s 𝐹) = (𝐽 ↾s 𝐹) |
346 | 345, 59 | ressbas2 17279 |
. . . . . . . . 9
⊢ (𝐹 ⊆ (Base‘𝐽) → 𝐹 = (Base‘(𝐽 ↾s 𝐹))) |
347 | 61, 346 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 = (Base‘(𝐽 ↾s 𝐹))) |
348 | 143, 61 | srasca 21175 |
. . . . . . . . 9
⊢ (𝜑 → (𝐽 ↾s 𝐹) = (Scalar‘((subringAlg ‘𝐽)‘𝐹))) |
349 | 348 | fveq2d 6908 |
. . . . . . . 8
⊢ (𝜑 → (Base‘(𝐽 ↾s 𝐹)) =
(Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹)))) |
350 | 347, 349 | eqtr2d 2777 |
. . . . . . 7
⊢ (𝜑 →
(Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = 𝐹) |
351 | 350 | oveq1d 7444 |
. . . . . 6
⊢ (𝜑 →
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵) = (𝐹 ↑m 𝐵)) |
352 | | sdrgsubrg 20784 |
. . . . . . . . . . . 12
⊢ (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ∈ (SubRing‘𝐿)) |
353 | 11, 352 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐻 ∈ (SubRing‘𝐿)) |
354 | | subrgsubg 20569 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ (SubRing‘𝐿) → 𝐻 ∈ (SubGrp‘𝐿)) |
355 | 64, 5 | subg0 19146 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ (SubGrp‘𝐿) →
(0g‘𝐿) =
(0g‘𝐽)) |
356 | 353, 354,
355 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝐿) = (0g‘𝐽)) |
357 | 64 | sdrgdrng 20783 |
. . . . . . . . . . . . . . 15
⊢ (𝐻 ∈ (SubDRing‘𝐿) → 𝐽 ∈ DivRing) |
358 | 11, 357 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐽 ∈ DivRing) |
359 | 358 | drngringd 20729 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽 ∈ Ring) |
360 | 359 | ringcmnd 20273 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ CMnd) |
361 | 360 | cmnmndd 19818 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ Mnd) |
362 | | subrgsubg 20569 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (SubRing‘𝐽) → 𝐹 ∈ (SubGrp‘𝐽)) |
363 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢
(0g‘𝐽) = (0g‘𝐽) |
364 | 363 | subg0cl 19148 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (SubGrp‘𝐽) →
(0g‘𝐽)
∈ 𝐹) |
365 | 338, 362,
364 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → (0g‘𝐽) ∈ 𝐹) |
366 | 345, 59, 363 | ress0g 18771 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Mnd ∧
(0g‘𝐽)
∈ 𝐹 ∧ 𝐹 ⊆ (Base‘𝐽)) →
(0g‘𝐽) =
(0g‘(𝐽
↾s 𝐹))) |
367 | 361, 365,
61, 366 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝐽) = (0g‘(𝐽 ↾s 𝐹))) |
368 | 348 | fveq2d 6908 |
. . . . . . . . . 10
⊢ (𝜑 →
(0g‘(𝐽
↾s 𝐹)) =
(0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹)))) |
369 | 356, 367,
368 | 3eqtrrd 2781 |
. . . . . . . . 9
⊢ (𝜑 →
(0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) = (0g‘𝐿)) |
370 | 369 | breq2d 5153 |
. . . . . . . 8
⊢ (𝜑 → (𝑒 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↔ 𝑒 finSupp (0g‘𝐿))) |
371 | 370 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑒 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↔ 𝑒 finSupp (0g‘𝐿))) |
372 | 3 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐵 ∈ (LBasis‘((subringAlg
‘𝐽)‘𝐹))) |
373 | | subgsubm 19162 |
. . . . . . . . . . . 12
⊢ (𝐻 ∈ (SubGrp‘𝐿) → 𝐻 ∈ (SubMnd‘𝐿)) |
374 | 353, 354,
373 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐻 ∈ (SubMnd‘𝐿)) |
375 | 374 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐻 ∈ (SubMnd‘𝐿)) |
376 | 64, 19 | ressmulr 17347 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻 ∈ (SubDRing‘𝐿) →
(.r‘𝐿) =
(.r‘𝐽)) |
377 | 11, 376 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (.r‘𝐿) = (.r‘𝐽)) |
378 | 143, 61 | sravsca 21177 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (.r‘𝐽) = (
·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))) |
379 | 377, 378 | eqtrd 2776 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (.r‘𝐿) = (
·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))) |
380 | 379 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏 ∈ 𝐵) → (.r‘𝐿) = (
·𝑠 ‘((subringAlg ‘𝐽)‘𝐹))) |
381 | 380 | oveqd 7446 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏 ∈ 𝐵) → ((𝑒‘𝑏)(.r‘𝐿)𝑏) = ((𝑒‘𝑏)( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹))𝑏)) |
382 | 353 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏 ∈ 𝐵) → 𝐻 ∈ (SubRing‘𝐿)) |
383 | 67 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏 ∈ 𝐵) → 𝐹 ⊆ 𝐻) |
384 | 25 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐹 ∈ (SubDRing‘𝐼)) |
385 | 351 | eleq2d 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵) ↔ 𝑒 ∈ (𝐹 ↑m 𝐵))) |
386 | 385 | biimpa 476 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝑒 ∈ (𝐹 ↑m 𝐵)) |
387 | 372, 384,
386 | elmaprd 32678 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝑒:𝐵⟶𝐹) |
388 | 387 | ffvelcdmda 7102 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏 ∈ 𝐵) → (𝑒‘𝑏) ∈ 𝐹) |
389 | 383, 388 | sseldd 3983 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏 ∈ 𝐵) → (𝑒‘𝑏) ∈ 𝐻) |
390 | 146 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → 𝐵 ⊆ 𝐻) |
391 | 390 | sselda 3982 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐻) |
392 | 19, 382, 389, 391 | subrgmcld 33225 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏 ∈ 𝐵) → ((𝑒‘𝑏)(.r‘𝐿)𝑏) ∈ 𝐻) |
393 | 381, 392 | eqeltrrd 2841 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) ∧ 𝑏 ∈ 𝐵) → ((𝑒‘𝑏)( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹))𝑏) ∈ 𝐻) |
394 | 393 | fmpttd 7133 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹))𝑏)):𝐵⟶𝐻) |
395 | 372, 375,
394, 64 | gsumsubm 18844 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (𝐽 Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹))𝑏)))) |
396 | 377, 378 | eqtr2d 2777 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (
·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)) = (.r‘𝐿)) |
397 | 396 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (
·𝑠 ‘((subringAlg ‘𝐽)‘𝐹)) = (.r‘𝐿)) |
398 | 397 | oveqd 7446 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → ((𝑒‘𝑏)( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹))𝑏) = ((𝑒‘𝑏)(.r‘𝐿)𝑏)) |
399 | 398 | mpteq2dv 5242 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹))𝑏)) = (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)(.r‘𝐿)𝑏))) |
400 | 399 | oveq2d 7445 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)(.r‘𝐿)𝑏)))) |
401 | 3 | mptexd 7242 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹))𝑏)) ∈ V) |
402 | | fvexd 6919 |
. . . . . . . . . . 11
⊢ (𝜑 → ((subringAlg ‘𝐽)‘𝐹) ∈ V) |
403 | 339, 401,
358, 402, 61 | gsumsra 33035 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐽 Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹))𝑏)))) |
404 | 403 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝐽 Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹))𝑏)))) |
405 | 395, 400,
404 | 3eqtr3rd 2785 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹))𝑏))) = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)(.r‘𝐿)𝑏)))) |
406 | 405 | eqeq2d 2747 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → (𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹))𝑏))) ↔ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)(.r‘𝐿)𝑏))))) |
407 | 371, 406 | anbi12d 632 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)) → ((𝑒 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹))𝑏)))) ↔ (𝑒 finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)(.r‘𝐿)𝑏)))))) |
408 | 351, 407 | rexeqbidva 3332 |
. . . . 5
⊢ (𝜑 → (∃𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹))𝑏)))) ↔ ∃𝑒 ∈ (𝐹 ↑m 𝐵)(𝑒 finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)(.r‘𝐿)𝑏)))))) |
409 | 408 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐻) → (∃𝑒 ∈
((Base‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ↑m 𝐵)(𝑒 finSupp
(0g‘(Scalar‘((subringAlg ‘𝐽)‘𝐹))) ∧ 𝑓 = (((subringAlg ‘𝐽)‘𝐹) Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)( ·𝑠
‘((subringAlg ‘𝐽)‘𝐹))𝑏)))) ↔ ∃𝑒 ∈ (𝐹 ↑m 𝐵)(𝑒 finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)(.r‘𝐿)𝑏)))))) |
410 | 344, 409 | mpbid 232 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐻) → ∃𝑒 ∈ (𝐹 ↑m 𝐵)(𝑒 finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝑒‘𝑏)(.r‘𝐿)𝑏))))) |
411 | 326, 11, 327, 410 | ac6mapd 32624 |
. 2
⊢ (𝜑 → ∃𝑢 ∈ ((𝐹 ↑m 𝐵) ↑m 𝐻)∀𝑓 ∈ 𝐻 ((𝑢‘𝑓) finSupp (0g‘𝐿) ∧ 𝑓 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ (((𝑢‘𝑓)‘𝑏)(.r‘𝐿)𝑏))))) |
412 | 319, 411 | r19.29a 3161 |
1
⊢ (𝜑 → ∃𝑎 ∈ (𝐺 ↑m 𝐵)(𝑎 finSupp (0g‘𝐿) ∧ 𝑋 = (𝐿 Σg (𝑏 ∈ 𝐵 ↦ ((𝑎‘𝑏)(.r‘𝐿)𝑏))))) |