Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anandis | Structured version Visualization version GIF version |
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
Ref | Expression |
---|---|
anandis.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) |
Ref | Expression |
---|---|
anandis | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anandis.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) | |
2 | 1 | an4s 658 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
3 | 2 | anabsan 663 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: 3impdi 1350 dff13 7160 f1oiso 7254 omord2 8429 fodomacn 9858 ltapi 10705 ltmpi 10706 axpre-ltadd 10969 faclbnd 14050 pwsdiagmhm 18514 tgcl 22164 brbtwn2 27318 grpoinvf 28939 ocorth 29698 fh1 30025 fh2 30026 spansncvi 30059 lnopmi 30407 adjlnop 30493 matunitlindflem2 35818 poimirlem4 35825 heicant 35856 mblfinlem2 35859 ismblfin 35862 ftc1anclem6 35899 ftc1anclem7 35900 ftc1anc 35902 |
Copyright terms: Public domain | W3C validator |