| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anandis | Structured version Visualization version GIF version | ||
| Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| anandis.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) |
| Ref | Expression |
|---|---|
| anandis | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anandis.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) | |
| 2 | 1 | an4s 660 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| 3 | 2 | anabsan 665 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3impdi 1351 dff13 7252 f1oiso 7349 omord2 8584 fodomacn 10075 ltapi 10922 ltmpi 10923 axpre-ltadd 11186 faclbnd 14313 pwsdiagmhm 18814 tgcl 22912 brbtwn2 28889 grpoinvf 30518 ocorth 31277 fh1 31604 fh2 31605 spansncvi 31638 lnopmi 31986 adjlnop 32072 matunitlindflem2 37646 poimirlem4 37653 heicant 37684 mblfinlem2 37687 ismblfin 37690 ftc1anclem6 37727 ftc1anclem7 37728 ftc1anc 37730 |
| Copyright terms: Public domain | W3C validator |