Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anandis | Structured version Visualization version GIF version |
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
Ref | Expression |
---|---|
anandis.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) |
Ref | Expression |
---|---|
anandis | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anandis.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) | |
2 | 1 | an4s 659 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
3 | 2 | anabsan 664 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: 3impdi 1347 dff13 7005 f1oiso 7098 omord2 8203 fodomacn 9516 ltapi 10363 ltmpi 10364 axpre-ltadd 10627 faclbnd 13700 pwsdiagmhm 18061 tgcl 21669 brbtwn2 26798 grpoinvf 28414 ocorth 29173 fh1 29500 fh2 29501 spansncvi 29534 lnopmi 29882 adjlnop 29968 matunitlindflem2 35334 poimirlem4 35341 heicant 35372 mblfinlem2 35375 ismblfin 35378 ftc1anclem6 35415 ftc1anclem7 35416 ftc1anc 35418 |
Copyright terms: Public domain | W3C validator |