MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anandis Structured version   Visualization version   GIF version

Theorem anandis 678
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.)
Hypothesis
Ref Expression
anandis.1 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜏)
Assertion
Ref Expression
anandis ((𝜑 ∧ (𝜓𝜒)) → 𝜏)

Proof of Theorem anandis
StepHypRef Expression
1 anandis.1 . . 3 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜏)
21an4s 660 . 2 (((𝜑𝜑) ∧ (𝜓𝜒)) → 𝜏)
32anabsan 665 1 ((𝜑 ∧ (𝜓𝜒)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  3impdi  1350  dff13  7258  f1oiso  7354  omord2  8588  fodomacn  10079  ltapi  10926  ltmpi  10927  axpre-ltadd  11190  faclbnd  14312  pwsdiagmhm  18818  tgcl  22942  brbtwn2  28869  grpoinvf  30498  ocorth  31257  fh1  31584  fh2  31585  spansncvi  31618  lnopmi  31966  adjlnop  32052  matunitlindflem2  37565  poimirlem4  37572  heicant  37603  mblfinlem2  37606  ismblfin  37609  ftc1anclem6  37646  ftc1anclem7  37647  ftc1anc  37649
  Copyright terms: Public domain W3C validator