![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anandis | Structured version Visualization version GIF version |
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
Ref | Expression |
---|---|
anandis.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) |
Ref | Expression |
---|---|
anandis | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anandis.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) | |
2 | 1 | an4s 658 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
3 | 2 | anabsan 663 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: 3impdi 1350 dff13 7256 f1oiso 7350 omord2 8569 fodomacn 10053 ltapi 10900 ltmpi 10901 axpre-ltadd 11164 faclbnd 14254 pwsdiagmhm 18748 tgcl 22692 brbtwn2 28418 grpoinvf 30040 ocorth 30799 fh1 31126 fh2 31127 spansncvi 31160 lnopmi 31508 adjlnop 31594 matunitlindflem2 36788 poimirlem4 36795 heicant 36826 mblfinlem2 36829 ismblfin 36832 ftc1anclem6 36869 ftc1anclem7 36870 ftc1anc 36872 |
Copyright terms: Public domain | W3C validator |