MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anandis Structured version   Visualization version   GIF version

Theorem anandis 677
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.)
Hypothesis
Ref Expression
anandis.1 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜏)
Assertion
Ref Expression
anandis ((𝜑 ∧ (𝜓𝜒)) → 𝜏)

Proof of Theorem anandis
StepHypRef Expression
1 anandis.1 . . 3 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜏)
21an4s 659 . 2 (((𝜑𝜑) ∧ (𝜓𝜒)) → 𝜏)
32anabsan 664 1 ((𝜑 ∧ (𝜓𝜒)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  3impdi  1348  dff13  7259  f1oiso  7353  omord2  8581  fodomacn  10071  ltapi  10918  ltmpi  10919  axpre-ltadd  11182  faclbnd  14273  pwsdiagmhm  18774  tgcl  22859  brbtwn2  28703  grpoinvf  30329  ocorth  31088  fh1  31415  fh2  31416  spansncvi  31449  lnopmi  31797  adjlnop  31883  matunitlindflem2  37025  poimirlem4  37032  heicant  37063  mblfinlem2  37066  ismblfin  37069  ftc1anclem6  37106  ftc1anclem7  37107  ftc1anc  37109
  Copyright terms: Public domain W3C validator