MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anandis Structured version   Visualization version   GIF version

Theorem anandis 676
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.)
Hypothesis
Ref Expression
anandis.1 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜏)
Assertion
Ref Expression
anandis ((𝜑 ∧ (𝜓𝜒)) → 𝜏)

Proof of Theorem anandis
StepHypRef Expression
1 anandis.1 . . 3 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜏)
21an4s 658 . 2 (((𝜑𝜑) ∧ (𝜓𝜒)) → 𝜏)
32anabsan 663 1 ((𝜑 ∧ (𝜓𝜒)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  3impdi  1350  dff13  7256  f1oiso  7350  omord2  8569  fodomacn  10053  ltapi  10900  ltmpi  10901  axpre-ltadd  11164  faclbnd  14254  pwsdiagmhm  18748  tgcl  22692  brbtwn2  28418  grpoinvf  30040  ocorth  30799  fh1  31126  fh2  31127  spansncvi  31160  lnopmi  31508  adjlnop  31594  matunitlindflem2  36788  poimirlem4  36795  heicant  36826  mblfinlem2  36829  ismblfin  36832  ftc1anclem6  36869  ftc1anclem7  36870  ftc1anc  36872
  Copyright terms: Public domain W3C validator