![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anandis | Structured version Visualization version GIF version |
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
Ref | Expression |
---|---|
anandis.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) |
Ref | Expression |
---|---|
anandis | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anandis.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) | |
2 | 1 | an4s 658 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
3 | 2 | anabsan 663 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: 3impdi 1347 dff13 7263 f1oiso 7356 omord2 8586 fodomacn 10079 ltapi 10926 ltmpi 10927 axpre-ltadd 11190 faclbnd 14281 pwsdiagmhm 18787 tgcl 22902 brbtwn2 28772 grpoinvf 30398 ocorth 31157 fh1 31484 fh2 31485 spansncvi 31518 lnopmi 31866 adjlnop 31952 matunitlindflem2 37160 poimirlem4 37167 heicant 37198 mblfinlem2 37201 ismblfin 37204 ftc1anclem6 37241 ftc1anclem7 37242 ftc1anc 37244 |
Copyright terms: Public domain | W3C validator |