![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anandis | Structured version Visualization version GIF version |
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
Ref | Expression |
---|---|
anandis.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) |
Ref | Expression |
---|---|
anandis | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anandis.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) | |
2 | 1 | an4s 660 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
3 | 2 | anabsan 665 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: 3impdi 1349 dff13 7275 f1oiso 7371 omord2 8604 fodomacn 10094 ltapi 10941 ltmpi 10942 axpre-ltadd 11205 faclbnd 14326 pwsdiagmhm 18857 tgcl 22992 brbtwn2 28935 grpoinvf 30561 ocorth 31320 fh1 31647 fh2 31648 spansncvi 31681 lnopmi 32029 adjlnop 32115 matunitlindflem2 37604 poimirlem4 37611 heicant 37642 mblfinlem2 37645 ismblfin 37648 ftc1anclem6 37685 ftc1anclem7 37686 ftc1anc 37688 |
Copyright terms: Public domain | W3C validator |