| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anandis | Structured version Visualization version GIF version | ||
| Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| anandis.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) |
| Ref | Expression |
|---|---|
| anandis | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anandis.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) | |
| 2 | 1 | an4s 660 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| 3 | 2 | anabsan 665 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3impdi 1351 dff13 7197 f1oiso 7294 omord2 8491 fodomacn 9957 ltapi 10804 ltmpi 10805 axpre-ltadd 11068 faclbnd 14207 pwsdiagmhm 18749 tgcl 22894 brbtwn2 28894 grpoinvf 30523 ocorth 31282 fh1 31609 fh2 31610 spansncvi 31643 lnopmi 31991 adjlnop 32077 matunitlindflem2 37667 poimirlem4 37674 heicant 37705 mblfinlem2 37708 ismblfin 37711 ftc1anclem6 37748 ftc1anclem7 37749 ftc1anc 37751 |
| Copyright terms: Public domain | W3C validator |