| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anandis | Structured version Visualization version GIF version | ||
| Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| anandis.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) |
| Ref | Expression |
|---|---|
| anandis | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anandis.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) | |
| 2 | 1 | an4s 660 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| 3 | 2 | anabsan 665 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3impdi 1351 dff13 7183 f1oiso 7280 omord2 8477 fodomacn 9939 ltapi 10786 ltmpi 10787 axpre-ltadd 11050 faclbnd 14189 pwsdiagmhm 18731 tgcl 22877 brbtwn2 28876 grpoinvf 30502 ocorth 31261 fh1 31588 fh2 31589 spansncvi 31622 lnopmi 31970 adjlnop 32056 matunitlindflem2 37636 poimirlem4 37643 heicant 37674 mblfinlem2 37677 ismblfin 37680 ftc1anclem6 37717 ftc1anclem7 37718 ftc1anc 37720 |
| Copyright terms: Public domain | W3C validator |