Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anandis | Structured version Visualization version GIF version |
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
Ref | Expression |
---|---|
anandis.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) |
Ref | Expression |
---|---|
anandis | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anandis.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) | |
2 | 1 | an4s 656 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
3 | 2 | anabsan 661 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: 3impdi 1348 dff13 7122 f1oiso 7215 omord2 8374 fodomacn 9796 ltapi 10643 ltmpi 10644 axpre-ltadd 10907 faclbnd 13985 pwsdiagmhm 18450 tgcl 22100 brbtwn2 27254 grpoinvf 28873 ocorth 29632 fh1 29959 fh2 29960 spansncvi 29993 lnopmi 30341 adjlnop 30427 matunitlindflem2 35753 poimirlem4 35760 heicant 35791 mblfinlem2 35794 ismblfin 35797 ftc1anclem6 35834 ftc1anclem7 35835 ftc1anc 35837 |
Copyright terms: Public domain | W3C validator |