![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anandis | Structured version Visualization version GIF version |
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
Ref | Expression |
---|---|
anandis.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) |
Ref | Expression |
---|---|
anandis | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anandis.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) | |
2 | 1 | an4s 659 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
3 | 2 | anabsan 664 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: 3impdi 1350 dff13 7292 f1oiso 7387 omord2 8623 fodomacn 10125 ltapi 10972 ltmpi 10973 axpre-ltadd 11236 faclbnd 14339 pwsdiagmhm 18866 tgcl 22997 brbtwn2 28938 grpoinvf 30564 ocorth 31323 fh1 31650 fh2 31651 spansncvi 31684 lnopmi 32032 adjlnop 32118 matunitlindflem2 37577 poimirlem4 37584 heicant 37615 mblfinlem2 37618 ismblfin 37621 ftc1anclem6 37658 ftc1anclem7 37659 ftc1anc 37661 |
Copyright terms: Public domain | W3C validator |