| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anandis | Structured version Visualization version GIF version | ||
| Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| anandis.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) |
| Ref | Expression |
|---|---|
| anandis | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anandis.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) | |
| 2 | 1 | an4s 660 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| 3 | 2 | anabsan 665 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3impdi 1351 dff13 7246 f1oiso 7343 omord2 8577 fodomacn 10068 ltapi 10915 ltmpi 10916 axpre-ltadd 11179 faclbnd 14306 pwsdiagmhm 18807 tgcl 22905 brbtwn2 28830 grpoinvf 30459 ocorth 31218 fh1 31545 fh2 31546 spansncvi 31579 lnopmi 31927 adjlnop 32013 matunitlindflem2 37587 poimirlem4 37594 heicant 37625 mblfinlem2 37628 ismblfin 37631 ftc1anclem6 37668 ftc1anclem7 37669 ftc1anc 37671 |
| Copyright terms: Public domain | W3C validator |