MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anandis Structured version   Visualization version   GIF version

Theorem anandis 674
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.)
Hypothesis
Ref Expression
anandis.1 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜏)
Assertion
Ref Expression
anandis ((𝜑 ∧ (𝜓𝜒)) → 𝜏)

Proof of Theorem anandis
StepHypRef Expression
1 anandis.1 . . 3 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜏)
21an4s 656 . 2 (((𝜑𝜑) ∧ (𝜓𝜒)) → 𝜏)
32anabsan 661 1 ((𝜑 ∧ (𝜓𝜒)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  3impdi  1348  dff13  7122  f1oiso  7215  omord2  8374  fodomacn  9796  ltapi  10643  ltmpi  10644  axpre-ltadd  10907  faclbnd  13985  pwsdiagmhm  18450  tgcl  22100  brbtwn2  27254  grpoinvf  28873  ocorth  29632  fh1  29959  fh2  29960  spansncvi  29993  lnopmi  30341  adjlnop  30427  matunitlindflem2  35753  poimirlem4  35760  heicant  35791  mblfinlem2  35794  ismblfin  35797  ftc1anclem6  35834  ftc1anclem7  35835  ftc1anc  35837
  Copyright terms: Public domain W3C validator