| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anandis | Structured version Visualization version GIF version | ||
| Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| anandis.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) |
| Ref | Expression |
|---|---|
| anandis | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anandis.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) | |
| 2 | 1 | an4s 660 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| 3 | 2 | anabsan 665 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 3impdi 1350 dff13 7258 f1oiso 7354 omord2 8588 fodomacn 10079 ltapi 10926 ltmpi 10927 axpre-ltadd 11190 faclbnd 14312 pwsdiagmhm 18818 tgcl 22942 brbtwn2 28869 grpoinvf 30498 ocorth 31257 fh1 31584 fh2 31585 spansncvi 31618 lnopmi 31966 adjlnop 32052 matunitlindflem2 37565 poimirlem4 37572 heicant 37603 mblfinlem2 37606 ismblfin 37609 ftc1anclem6 37646 ftc1anclem7 37647 ftc1anc 37649 |
| Copyright terms: Public domain | W3C validator |