![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anandis | Structured version Visualization version GIF version |
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
Ref | Expression |
---|---|
anandis.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) |
Ref | Expression |
---|---|
anandis | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anandis.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) | |
2 | 1 | an4s 659 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
3 | 2 | anabsan 664 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: 3impdi 1351 dff13 7254 f1oiso 7348 omord2 8567 fodomacn 10051 ltapi 10898 ltmpi 10899 axpre-ltadd 11162 faclbnd 14250 pwsdiagmhm 18712 tgcl 22472 brbtwn2 28194 grpoinvf 29816 ocorth 30575 fh1 30902 fh2 30903 spansncvi 30936 lnopmi 31284 adjlnop 31370 matunitlindflem2 36533 poimirlem4 36540 heicant 36571 mblfinlem2 36574 ismblfin 36577 ftc1anclem6 36614 ftc1anclem7 36615 ftc1anc 36617 |
Copyright terms: Public domain | W3C validator |