MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anandis Structured version   Visualization version   GIF version

Theorem anandis 676
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.)
Hypothesis
Ref Expression
anandis.1 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜏)
Assertion
Ref Expression
anandis ((𝜑 ∧ (𝜓𝜒)) → 𝜏)

Proof of Theorem anandis
StepHypRef Expression
1 anandis.1 . . 3 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜏)
21an4s 658 . 2 (((𝜑𝜑) ∧ (𝜓𝜒)) → 𝜏)
32anabsan 663 1 ((𝜑 ∧ (𝜓𝜒)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395
This theorem is referenced by:  3impdi  1347  dff13  7263  f1oiso  7356  omord2  8586  fodomacn  10079  ltapi  10926  ltmpi  10927  axpre-ltadd  11190  faclbnd  14281  pwsdiagmhm  18787  tgcl  22902  brbtwn2  28772  grpoinvf  30398  ocorth  31157  fh1  31484  fh2  31485  spansncvi  31518  lnopmi  31866  adjlnop  31952  matunitlindflem2  37160  poimirlem4  37167  heicant  37198  mblfinlem2  37201  ismblfin  37204  ftc1anclem6  37241  ftc1anclem7  37242  ftc1anc  37244
  Copyright terms: Public domain W3C validator