MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anandis Structured version   Visualization version   GIF version

Theorem anandis 678
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.)
Hypothesis
Ref Expression
anandis.1 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜏)
Assertion
Ref Expression
anandis ((𝜑 ∧ (𝜓𝜒)) → 𝜏)

Proof of Theorem anandis
StepHypRef Expression
1 anandis.1 . . 3 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜏)
21an4s 660 . 2 (((𝜑𝜑) ∧ (𝜓𝜒)) → 𝜏)
32anabsan 665 1 ((𝜑 ∧ (𝜓𝜒)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  3impdi  1351  dff13  7232  f1oiso  7329  omord2  8534  fodomacn  10016  ltapi  10863  ltmpi  10864  axpre-ltadd  11127  faclbnd  14262  pwsdiagmhm  18765  tgcl  22863  brbtwn2  28839  grpoinvf  30468  ocorth  31227  fh1  31554  fh2  31555  spansncvi  31588  lnopmi  31936  adjlnop  32022  matunitlindflem2  37618  poimirlem4  37625  heicant  37656  mblfinlem2  37659  ismblfin  37662  ftc1anclem6  37699  ftc1anclem7  37700  ftc1anc  37702
  Copyright terms: Public domain W3C validator