Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iddvds | Structured version Visualization version GIF version |
Description: An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
iddvds | ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 12025 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
2 | 1 | mulid2d 10697 | . 2 ⊢ (𝑁 ∈ ℤ → (1 · 𝑁) = 𝑁) |
3 | 1z 12051 | . . . 4 ⊢ 1 ∈ ℤ | |
4 | dvds0lem 15668 | . . . 4 ⊢ (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) | |
5 | 3, 4 | mp3anl1 1452 | . . 3 ⊢ (((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) |
6 | 5 | anabsan 664 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) |
7 | 2, 6 | mpdan 686 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 class class class wbr 5032 (class class class)co 7150 1c1 10576 · cmul 10580 ℤcz 12020 ∥ cdvds 15655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rrecex 10647 ax-cnre 10648 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-neg 10911 df-nn 11675 df-z 12021 df-dvds 15656 |
This theorem is referenced by: dvdsadd 15703 dvds1 15720 dvdsext 15722 z2even 15771 divalglem0 15794 divalglem2 15796 sadadd3 15860 gcd0id 15918 gcdzeq 15953 mulgcddvds 16051 1idssfct 16076 isprm2lem 16077 dvdsprime 16083 dvdsprm 16099 exprmfct 16100 coprm 16107 isprm6 16110 pcidlem 16263 pcprmpw2 16273 pcprmpw 16274 prmgaplem1 16440 prmgaplem2 16441 prmgaplcmlem1 16442 prmgaplcmlem2 16443 odeq 18745 pgpfi 18797 znidomb 20329 sgmnncl 25831 muinv 25877 ppiublem2 25886 perfect1 25911 perfectlem2 25913 2sqlem6 26106 ex-ind-dvds 28345 eulerpartlemt 31857 dfgcd3 35018 poimirlem25 35362 poimirlem27 35364 jm2.18 40302 jm2.15nn0 40317 jm2.16nn0 40318 jm2.27c 40321 nzss 41394 etransclem25 43267 perfectALTVlem2 44607 |
Copyright terms: Public domain | W3C validator |