![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iddvds | Structured version Visualization version GIF version |
Description: An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
iddvds | โข (๐ โ โค โ ๐ โฅ ๐) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 12564 | . . 3 โข (๐ โ โค โ ๐ โ โ) | |
2 | 1 | mullidd 11233 | . 2 โข (๐ โ โค โ (1 ยท ๐) = ๐) |
3 | 1z 12593 | . . . 4 โข 1 โ โค | |
4 | dvds0lem 16215 | . . . 4 โข (((1 โ โค โง ๐ โ โค โง ๐ โ โค) โง (1 ยท ๐) = ๐) โ ๐ โฅ ๐) | |
5 | 3, 4 | mp3anl1 1451 | . . 3 โข (((๐ โ โค โง ๐ โ โค) โง (1 ยท ๐) = ๐) โ ๐ โฅ ๐) |
6 | 5 | anabsan 662 | . 2 โข ((๐ โ โค โง (1 ยท ๐) = ๐) โ ๐ โฅ ๐) |
7 | 2, 6 | mpdan 684 | 1 โข (๐ โ โค โ ๐ โฅ ๐) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1533 โ wcel 2098 class class class wbr 5141 (class class class)co 7404 1c1 11110 ยท cmul 11114 โคcz 12559 โฅ cdvds 16202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rrecex 11181 ax-cnre 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-neg 11448 df-nn 12214 df-z 12560 df-dvds 16203 |
This theorem is referenced by: dvdsadd 16250 dvds1 16267 dvdsext 16269 z2even 16318 divalglem0 16341 divalglem2 16343 sadadd3 16407 gcd0id 16465 gcdzeq 16499 mulgcddvds 16597 1idssfct 16622 isprm2lem 16623 dvdsprime 16629 dvdsprm 16645 exprmfct 16646 coprm 16653 isprm6 16656 pcidlem 16812 pcprmpw2 16822 pcprmpw 16823 prmgaplem1 16989 prmgaplem2 16990 prmgaplcmlem1 16991 prmgaplcmlem2 16992 odeq 19468 pgpfi 19523 znidomb 21452 sgmnncl 27030 muinv 27076 ppiublem2 27087 perfect1 27112 perfectlem2 27114 2sqlem6 27307 ex-ind-dvds 30219 eulerpartlemt 33900 dfgcd3 36712 poimirlem25 37024 poimirlem27 37026 aks4d1p9 41467 jm2.18 42286 jm2.15nn0 42301 jm2.16nn0 42302 jm2.27c 42305 nzss 43633 etransclem25 45528 perfectALTVlem2 46943 |
Copyright terms: Public domain | W3C validator |