| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iddvds | Structured version Visualization version GIF version | ||
| Description: An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| iddvds | ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12465 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 2 | 1 | mullidd 11122 | . 2 ⊢ (𝑁 ∈ ℤ → (1 · 𝑁) = 𝑁) |
| 3 | 1z 12494 | . . . 4 ⊢ 1 ∈ ℤ | |
| 4 | dvds0lem 16169 | . . . 4 ⊢ (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) | |
| 5 | 3, 4 | mp3anl1 1457 | . . 3 ⊢ (((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) |
| 6 | 5 | anabsan 665 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) |
| 7 | 2, 6 | mpdan 687 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 class class class wbr 5089 (class class class)co 7341 1c1 10999 · cmul 11003 ℤcz 12460 ∥ cdvds 16155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rrecex 11070 ax-cnre 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-neg 11339 df-nn 12118 df-z 12461 df-dvds 16156 |
| This theorem is referenced by: dvdsadd 16205 dvds1 16222 dvdsext 16224 z2even 16273 divalglem0 16296 divalglem2 16298 sadadd3 16364 gcd0id 16422 gcdzeq 16455 mulgcddvds 16558 1idssfct 16583 isprm2lem 16584 dvdsprime 16590 dvdsprm 16606 exprmfct 16607 coprm 16614 isprm6 16617 pcidlem 16776 pcprmpw2 16786 pcprmpw 16787 prmgaplem1 16953 prmgaplem2 16954 prmgaplcmlem1 16955 prmgaplcmlem2 16956 odeq 19455 pgpfi 19510 znidomb 21491 sgmnncl 27077 muinv 27123 ppiublem2 27134 perfect1 27159 perfectlem2 27161 2sqlem6 27354 ex-ind-dvds 30431 2sqr3nconstr 33784 cos9thpinconstrlem2 33793 eulerpartlemt 34374 dfgcd3 37337 poimirlem25 37664 poimirlem27 37666 aks4d1p9 42100 unitscyglem2 42208 unitscyglem4 42210 jm2.18 43000 jm2.15nn0 43015 jm2.16nn0 43016 jm2.27c 43019 nzss 44329 etransclem25 46276 perfectALTVlem2 47732 |
| Copyright terms: Public domain | W3C validator |