![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iddvds | Structured version Visualization version GIF version |
Description: An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
iddvds | โข (๐ โ โค โ ๐ โฅ ๐) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 12562 | . . 3 โข (๐ โ โค โ ๐ โ โ) | |
2 | 1 | mullidd 11231 | . 2 โข (๐ โ โค โ (1 ยท ๐) = ๐) |
3 | 1z 12591 | . . . 4 โข 1 โ โค | |
4 | dvds0lem 16209 | . . . 4 โข (((1 โ โค โง ๐ โ โค โง ๐ โ โค) โง (1 ยท ๐) = ๐) โ ๐ โฅ ๐) | |
5 | 3, 4 | mp3anl1 1455 | . . 3 โข (((๐ โ โค โง ๐ โ โค) โง (1 ยท ๐) = ๐) โ ๐ โฅ ๐) |
6 | 5 | anabsan 663 | . 2 โข ((๐ โ โค โง (1 ยท ๐) = ๐) โ ๐ โฅ ๐) |
7 | 2, 6 | mpdan 685 | 1 โข (๐ โ โค โ ๐ โฅ ๐) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1541 โ wcel 2106 class class class wbr 5148 (class class class)co 7408 1c1 11110 ยท cmul 11114 โคcz 12557 โฅ cdvds 16196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rrecex 11181 ax-cnre 11182 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-neg 11446 df-nn 12212 df-z 12558 df-dvds 16197 |
This theorem is referenced by: dvdsadd 16244 dvds1 16261 dvdsext 16263 z2even 16312 divalglem0 16335 divalglem2 16337 sadadd3 16401 gcd0id 16459 gcdzeq 16493 mulgcddvds 16591 1idssfct 16616 isprm2lem 16617 dvdsprime 16623 dvdsprm 16639 exprmfct 16640 coprm 16647 isprm6 16650 pcidlem 16804 pcprmpw2 16814 pcprmpw 16815 prmgaplem1 16981 prmgaplem2 16982 prmgaplcmlem1 16983 prmgaplcmlem2 16984 odeq 19417 pgpfi 19472 znidomb 21116 sgmnncl 26648 muinv 26694 ppiublem2 26703 perfect1 26728 perfectlem2 26730 2sqlem6 26923 ex-ind-dvds 29711 eulerpartlemt 33365 dfgcd3 36200 poimirlem25 36508 poimirlem27 36510 aks4d1p9 40948 jm2.18 41717 jm2.15nn0 41732 jm2.16nn0 41733 jm2.27c 41736 nzss 43066 etransclem25 44965 perfectALTVlem2 46380 |
Copyright terms: Public domain | W3C validator |