| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iddvds | Structured version Visualization version GIF version | ||
| Description: An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| iddvds | ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12479 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 2 | 1 | mullidd 11136 | . 2 ⊢ (𝑁 ∈ ℤ → (1 · 𝑁) = 𝑁) |
| 3 | 1z 12508 | . . . 4 ⊢ 1 ∈ ℤ | |
| 4 | dvds0lem 16183 | . . . 4 ⊢ (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) | |
| 5 | 3, 4 | mp3anl1 1457 | . . 3 ⊢ (((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) |
| 6 | 5 | anabsan 665 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) |
| 7 | 2, 6 | mpdan 687 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 class class class wbr 5093 (class class class)co 7352 1c1 11013 · cmul 11017 ℤcz 12474 ∥ cdvds 16169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rrecex 11084 ax-cnre 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-neg 11353 df-nn 12132 df-z 12475 df-dvds 16170 |
| This theorem is referenced by: dvdsadd 16219 dvds1 16236 dvdsext 16238 z2even 16287 divalglem0 16310 divalglem2 16312 sadadd3 16378 gcd0id 16436 gcdzeq 16469 mulgcddvds 16572 1idssfct 16597 isprm2lem 16598 dvdsprime 16604 dvdsprm 16620 exprmfct 16621 coprm 16628 isprm6 16631 pcidlem 16790 pcprmpw2 16800 pcprmpw 16801 prmgaplem1 16967 prmgaplem2 16968 prmgaplcmlem1 16969 prmgaplcmlem2 16970 odeq 19468 pgpfi 19523 znidomb 21504 sgmnncl 27090 muinv 27136 ppiublem2 27147 perfect1 27172 perfectlem2 27174 2sqlem6 27367 ex-ind-dvds 30448 2sqr3nconstr 33801 cos9thpinconstrlem2 33810 eulerpartlemt 34391 dfgcd3 37375 poimirlem25 37691 poimirlem27 37693 aks4d1p9 42187 unitscyglem2 42295 unitscyglem4 42297 jm2.18 43086 jm2.15nn0 43101 jm2.16nn0 43102 jm2.27c 43105 nzss 44415 etransclem25 46362 perfectALTVlem2 47827 |
| Copyright terms: Public domain | W3C validator |