Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iddvds | Structured version Visualization version GIF version |
Description: An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
iddvds | ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 12324 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
2 | 1 | mulid2d 10993 | . 2 ⊢ (𝑁 ∈ ℤ → (1 · 𝑁) = 𝑁) |
3 | 1z 12350 | . . . 4 ⊢ 1 ∈ ℤ | |
4 | dvds0lem 15976 | . . . 4 ⊢ (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) | |
5 | 3, 4 | mp3anl1 1454 | . . 3 ⊢ (((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) |
6 | 5 | anabsan 662 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) |
7 | 2, 6 | mpdan 684 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 1c1 10872 · cmul 10876 ℤcz 12319 ∥ cdvds 15963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rrecex 10943 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-neg 11208 df-nn 11974 df-z 12320 df-dvds 15964 |
This theorem is referenced by: dvdsadd 16011 dvds1 16028 dvdsext 16030 z2even 16079 divalglem0 16102 divalglem2 16104 sadadd3 16168 gcd0id 16226 gcdzeq 16262 mulgcddvds 16360 1idssfct 16385 isprm2lem 16386 dvdsprime 16392 dvdsprm 16408 exprmfct 16409 coprm 16416 isprm6 16419 pcidlem 16573 pcprmpw2 16583 pcprmpw 16584 prmgaplem1 16750 prmgaplem2 16751 prmgaplcmlem1 16752 prmgaplcmlem2 16753 odeq 19158 pgpfi 19210 znidomb 20769 sgmnncl 26296 muinv 26342 ppiublem2 26351 perfect1 26376 perfectlem2 26378 2sqlem6 26571 ex-ind-dvds 28825 eulerpartlemt 32338 dfgcd3 35495 poimirlem25 35802 poimirlem27 35804 aks4d1p9 40096 jm2.18 40810 jm2.15nn0 40825 jm2.16nn0 40826 jm2.27c 40829 nzss 41935 etransclem25 43800 perfectALTVlem2 45174 |
Copyright terms: Public domain | W3C validator |