| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iddvds | Structured version Visualization version GIF version | ||
| Description: An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| iddvds | ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12534 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 2 | 1 | mullidd 11192 | . 2 ⊢ (𝑁 ∈ ℤ → (1 · 𝑁) = 𝑁) |
| 3 | 1z 12563 | . . . 4 ⊢ 1 ∈ ℤ | |
| 4 | dvds0lem 16236 | . . . 4 ⊢ (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) | |
| 5 | 3, 4 | mp3anl1 1457 | . . 3 ⊢ (((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) |
| 6 | 5 | anabsan 665 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) |
| 7 | 2, 6 | mpdan 687 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 1c1 11069 · cmul 11073 ℤcz 12529 ∥ cdvds 16222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rrecex 11140 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-neg 11408 df-nn 12187 df-z 12530 df-dvds 16223 |
| This theorem is referenced by: dvdsadd 16272 dvds1 16289 dvdsext 16291 z2even 16340 divalglem0 16363 divalglem2 16365 sadadd3 16431 gcd0id 16489 gcdzeq 16522 mulgcddvds 16625 1idssfct 16650 isprm2lem 16651 dvdsprime 16657 dvdsprm 16673 exprmfct 16674 coprm 16681 isprm6 16684 pcidlem 16843 pcprmpw2 16853 pcprmpw 16854 prmgaplem1 17020 prmgaplem2 17021 prmgaplcmlem1 17022 prmgaplcmlem2 17023 odeq 19480 pgpfi 19535 znidomb 21471 sgmnncl 27057 muinv 27103 ppiublem2 27114 perfect1 27139 perfectlem2 27141 2sqlem6 27334 ex-ind-dvds 30390 2sqr3nconstr 33771 cos9thpinconstrlem2 33780 eulerpartlemt 34362 dfgcd3 37312 poimirlem25 37639 poimirlem27 37641 aks4d1p9 42076 unitscyglem2 42184 unitscyglem4 42186 jm2.18 42977 jm2.15nn0 42992 jm2.16nn0 42993 jm2.27c 42996 nzss 44306 etransclem25 46257 perfectALTVlem2 47723 |
| Copyright terms: Public domain | W3C validator |