MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iddvds Structured version   Visualization version   GIF version

Theorem iddvds 16318
Description: An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
iddvds (𝑁 ∈ ℤ → 𝑁𝑁)

Proof of Theorem iddvds
StepHypRef Expression
1 zcn 12644 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
21mullidd 11308 . 2 (𝑁 ∈ ℤ → (1 · 𝑁) = 𝑁)
3 1z 12673 . . . 4 1 ∈ ℤ
4 dvds0lem 16315 . . . 4 (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁𝑁)
53, 4mp3anl1 1455 . . 3 (((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁𝑁)
65anabsan 664 . 2 ((𝑁 ∈ ℤ ∧ (1 · 𝑁) = 𝑁) → 𝑁𝑁)
72, 6mpdan 686 1 (𝑁 ∈ ℤ → 𝑁𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108   class class class wbr 5166  (class class class)co 7448  1c1 11185   · cmul 11189  cz 12639  cdvds 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rrecex 11256  ax-cnre 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-neg 11523  df-nn 12294  df-z 12640  df-dvds 16303
This theorem is referenced by:  dvdsadd  16350  dvds1  16367  dvdsext  16369  z2even  16418  divalglem0  16441  divalglem2  16443  sadadd3  16507  gcd0id  16565  gcdzeq  16599  mulgcddvds  16702  1idssfct  16727  isprm2lem  16728  dvdsprime  16734  dvdsprm  16750  exprmfct  16751  coprm  16758  isprm6  16761  pcidlem  16919  pcprmpw2  16929  pcprmpw  16930  prmgaplem1  17096  prmgaplem2  17097  prmgaplcmlem1  17098  prmgaplcmlem2  17099  odeq  19592  pgpfi  19647  znidomb  21603  sgmnncl  27208  muinv  27254  ppiublem2  27265  perfect1  27290  perfectlem2  27292  2sqlem6  27485  ex-ind-dvds  30493  eulerpartlemt  34336  dfgcd3  37290  poimirlem25  37605  poimirlem27  37607  aks4d1p9  42045  unitscyglem2  42153  unitscyglem4  42155  jm2.18  42945  jm2.15nn0  42960  jm2.16nn0  42961  jm2.27c  42964  nzss  44286  etransclem25  46180  perfectALTVlem2  47596
  Copyright terms: Public domain W3C validator