![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iddvds | Structured version Visualization version GIF version |
Description: An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
iddvds | ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 12644 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
2 | 1 | mullidd 11308 | . 2 ⊢ (𝑁 ∈ ℤ → (1 · 𝑁) = 𝑁) |
3 | 1z 12673 | . . . 4 ⊢ 1 ∈ ℤ | |
4 | dvds0lem 16315 | . . . 4 ⊢ (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) | |
5 | 3, 4 | mp3anl1 1455 | . . 3 ⊢ (((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) |
6 | 5 | anabsan 664 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) |
7 | 2, 6 | mpdan 686 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 1c1 11185 · cmul 11189 ℤcz 12639 ∥ cdvds 16302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rrecex 11256 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-neg 11523 df-nn 12294 df-z 12640 df-dvds 16303 |
This theorem is referenced by: dvdsadd 16350 dvds1 16367 dvdsext 16369 z2even 16418 divalglem0 16441 divalglem2 16443 sadadd3 16507 gcd0id 16565 gcdzeq 16599 mulgcddvds 16702 1idssfct 16727 isprm2lem 16728 dvdsprime 16734 dvdsprm 16750 exprmfct 16751 coprm 16758 isprm6 16761 pcidlem 16919 pcprmpw2 16929 pcprmpw 16930 prmgaplem1 17096 prmgaplem2 17097 prmgaplcmlem1 17098 prmgaplcmlem2 17099 odeq 19592 pgpfi 19647 znidomb 21603 sgmnncl 27208 muinv 27254 ppiublem2 27265 perfect1 27290 perfectlem2 27292 2sqlem6 27485 ex-ind-dvds 30493 eulerpartlemt 34336 dfgcd3 37290 poimirlem25 37605 poimirlem27 37607 aks4d1p9 42045 unitscyglem2 42153 unitscyglem4 42155 jm2.18 42945 jm2.15nn0 42960 jm2.16nn0 42961 jm2.27c 42964 nzss 44286 etransclem25 46180 perfectALTVlem2 47596 |
Copyright terms: Public domain | W3C validator |