| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iddvds | Structured version Visualization version GIF version | ||
| Description: An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| iddvds | ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12540 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 2 | 1 | mullidd 11198 | . 2 ⊢ (𝑁 ∈ ℤ → (1 · 𝑁) = 𝑁) |
| 3 | 1z 12569 | . . . 4 ⊢ 1 ∈ ℤ | |
| 4 | dvds0lem 16242 | . . . 4 ⊢ (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) | |
| 5 | 3, 4 | mp3anl1 1457 | . . 3 ⊢ (((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) |
| 6 | 5 | anabsan 665 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) |
| 7 | 2, 6 | mpdan 687 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5109 (class class class)co 7389 1c1 11075 · cmul 11079 ℤcz 12535 ∥ cdvds 16228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rrecex 11146 ax-cnre 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-neg 11414 df-nn 12188 df-z 12536 df-dvds 16229 |
| This theorem is referenced by: dvdsadd 16278 dvds1 16295 dvdsext 16297 z2even 16346 divalglem0 16369 divalglem2 16371 sadadd3 16437 gcd0id 16495 gcdzeq 16528 mulgcddvds 16631 1idssfct 16656 isprm2lem 16657 dvdsprime 16663 dvdsprm 16679 exprmfct 16680 coprm 16687 isprm6 16690 pcidlem 16849 pcprmpw2 16859 pcprmpw 16860 prmgaplem1 17026 prmgaplem2 17027 prmgaplcmlem1 17028 prmgaplcmlem2 17029 odeq 19486 pgpfi 19541 znidomb 21477 sgmnncl 27063 muinv 27109 ppiublem2 27120 perfect1 27145 perfectlem2 27147 2sqlem6 27340 ex-ind-dvds 30396 2sqr3nconstr 33777 cos9thpinconstrlem2 33786 eulerpartlemt 34368 dfgcd3 37307 poimirlem25 37634 poimirlem27 37636 aks4d1p9 42071 unitscyglem2 42179 unitscyglem4 42181 jm2.18 42970 jm2.15nn0 42985 jm2.16nn0 42986 jm2.27c 42989 nzss 44299 etransclem25 46250 perfectALTVlem2 47713 |
| Copyright terms: Public domain | W3C validator |