![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iddvds | Structured version Visualization version GIF version |
Description: An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
iddvds | โข (๐ โ โค โ ๐ โฅ ๐) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 12594 | . . 3 โข (๐ โ โค โ ๐ โ โ) | |
2 | 1 | mullidd 11263 | . 2 โข (๐ โ โค โ (1 ยท ๐) = ๐) |
3 | 1z 12623 | . . . 4 โข 1 โ โค | |
4 | dvds0lem 16244 | . . . 4 โข (((1 โ โค โง ๐ โ โค โง ๐ โ โค) โง (1 ยท ๐) = ๐) โ ๐ โฅ ๐) | |
5 | 3, 4 | mp3anl1 1452 | . . 3 โข (((๐ โ โค โง ๐ โ โค) โง (1 ยท ๐) = ๐) โ ๐ โฅ ๐) |
6 | 5 | anabsan 664 | . 2 โข ((๐ โ โค โง (1 ยท ๐) = ๐) โ ๐ โฅ ๐) |
7 | 2, 6 | mpdan 686 | 1 โข (๐ โ โค โ ๐ โฅ ๐) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1534 โ wcel 2099 class class class wbr 5148 (class class class)co 7420 1c1 11140 ยท cmul 11144 โคcz 12589 โฅ cdvds 16231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rrecex 11211 ax-cnre 11212 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-neg 11478 df-nn 12244 df-z 12590 df-dvds 16232 |
This theorem is referenced by: dvdsadd 16279 dvds1 16296 dvdsext 16298 z2even 16347 divalglem0 16370 divalglem2 16372 sadadd3 16436 gcd0id 16494 gcdzeq 16528 mulgcddvds 16626 1idssfct 16651 isprm2lem 16652 dvdsprime 16658 dvdsprm 16674 exprmfct 16675 coprm 16682 isprm6 16685 pcidlem 16841 pcprmpw2 16851 pcprmpw 16852 prmgaplem1 17018 prmgaplem2 17019 prmgaplcmlem1 17020 prmgaplcmlem2 17021 odeq 19505 pgpfi 19560 znidomb 21495 sgmnncl 27092 muinv 27138 ppiublem2 27149 perfect1 27174 perfectlem2 27176 2sqlem6 27369 ex-ind-dvds 30284 eulerpartlemt 33991 dfgcd3 36803 poimirlem25 37118 poimirlem27 37120 aks4d1p9 41559 jm2.18 42409 jm2.15nn0 42424 jm2.16nn0 42425 jm2.27c 42428 nzss 43754 etransclem25 45647 perfectALTVlem2 47062 |
Copyright terms: Public domain | W3C validator |