![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iddvds | Structured version Visualization version GIF version |
Description: An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
iddvds | ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 12615 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
2 | 1 | mullidd 11276 | . 2 ⊢ (𝑁 ∈ ℤ → (1 · 𝑁) = 𝑁) |
3 | 1z 12644 | . . . 4 ⊢ 1 ∈ ℤ | |
4 | dvds0lem 16300 | . . . 4 ⊢ (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) | |
5 | 3, 4 | mp3anl1 1454 | . . 3 ⊢ (((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) |
6 | 5 | anabsan 665 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) |
7 | 2, 6 | mpdan 687 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 class class class wbr 5147 (class class class)co 7430 1c1 11153 · cmul 11157 ℤcz 12610 ∥ cdvds 16286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rrecex 11224 ax-cnre 11225 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-neg 11492 df-nn 12264 df-z 12611 df-dvds 16287 |
This theorem is referenced by: dvdsadd 16335 dvds1 16352 dvdsext 16354 z2even 16403 divalglem0 16426 divalglem2 16428 sadadd3 16494 gcd0id 16552 gcdzeq 16585 mulgcddvds 16688 1idssfct 16713 isprm2lem 16714 dvdsprime 16720 dvdsprm 16736 exprmfct 16737 coprm 16744 isprm6 16747 pcidlem 16905 pcprmpw2 16915 pcprmpw 16916 prmgaplem1 17082 prmgaplem2 17083 prmgaplcmlem1 17084 prmgaplcmlem2 17085 odeq 19582 pgpfi 19637 znidomb 21597 sgmnncl 27204 muinv 27250 ppiublem2 27261 perfect1 27286 perfectlem2 27288 2sqlem6 27481 ex-ind-dvds 30489 eulerpartlemt 34352 dfgcd3 37306 poimirlem25 37631 poimirlem27 37633 aks4d1p9 42069 unitscyglem2 42177 unitscyglem4 42179 jm2.18 42976 jm2.15nn0 42991 jm2.16nn0 42992 jm2.27c 42995 nzss 44312 etransclem25 46214 perfectALTVlem2 47646 |
Copyright terms: Public domain | W3C validator |