| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iddvds | Structured version Visualization version GIF version | ||
| Description: An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| iddvds | ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12593 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 2 | 1 | mullidd 11253 | . 2 ⊢ (𝑁 ∈ ℤ → (1 · 𝑁) = 𝑁) |
| 3 | 1z 12622 | . . . 4 ⊢ 1 ∈ ℤ | |
| 4 | dvds0lem 16286 | . . . 4 ⊢ (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) | |
| 5 | 3, 4 | mp3anl1 1457 | . . 3 ⊢ (((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) |
| 6 | 5 | anabsan 665 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) |
| 7 | 2, 6 | mpdan 687 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 1c1 11130 · cmul 11134 ℤcz 12588 ∥ cdvds 16272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rrecex 11201 ax-cnre 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-neg 11469 df-nn 12241 df-z 12589 df-dvds 16273 |
| This theorem is referenced by: dvdsadd 16321 dvds1 16338 dvdsext 16340 z2even 16389 divalglem0 16412 divalglem2 16414 sadadd3 16480 gcd0id 16538 gcdzeq 16571 mulgcddvds 16674 1idssfct 16699 isprm2lem 16700 dvdsprime 16706 dvdsprm 16722 exprmfct 16723 coprm 16730 isprm6 16733 pcidlem 16892 pcprmpw2 16902 pcprmpw 16903 prmgaplem1 17069 prmgaplem2 17070 prmgaplcmlem1 17071 prmgaplcmlem2 17072 odeq 19531 pgpfi 19586 znidomb 21522 sgmnncl 27109 muinv 27155 ppiublem2 27166 perfect1 27191 perfectlem2 27193 2sqlem6 27386 ex-ind-dvds 30442 2sqr3nconstr 33815 eulerpartlemt 34403 dfgcd3 37342 poimirlem25 37669 poimirlem27 37671 aks4d1p9 42101 unitscyglem2 42209 unitscyglem4 42211 jm2.18 43012 jm2.15nn0 43027 jm2.16nn0 43028 jm2.27c 43031 nzss 44341 etransclem25 46288 perfectALTVlem2 47736 |
| Copyright terms: Public domain | W3C validator |