![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iddvds | Structured version Visualization version GIF version |
Description: An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
iddvds | ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 11667 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
2 | 1 | mulid2d 10345 | . 2 ⊢ (𝑁 ∈ ℤ → (1 · 𝑁) = 𝑁) |
3 | 1z 11693 | . . . 4 ⊢ 1 ∈ ℤ | |
4 | dvds0lem 15328 | . . . 4 ⊢ (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) | |
5 | 3, 4 | mp3anl1 1580 | . . 3 ⊢ (((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) |
6 | 5 | anabsan 656 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ (1 · 𝑁) = 𝑁) → 𝑁 ∥ 𝑁) |
7 | 2, 6 | mpdan 679 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 class class class wbr 4841 (class class class)co 6876 1c1 10223 · cmul 10227 ℤcz 11662 ∥ cdvds 15316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rrecex 10294 ax-cnre 10295 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-ov 6879 df-om 7298 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-neg 10557 df-nn 11311 df-z 11663 df-dvds 15317 |
This theorem is referenced by: dvdsadd 15360 dvds1 15377 dvdsext 15379 z2even 15439 n2dvds3 15440 divalglem0 15449 divalglem2 15451 sadadd3 15515 gcd0id 15572 gcdzeq 15603 mulgcddvds 15700 1idssfct 15724 isprm2lem 15725 dvdsprime 15731 3prm 15737 dvdsprm 15745 exprmfct 15746 coprm 15753 isprm6 15756 pcidlem 15906 pcprmpw2 15916 pcprmpw 15917 prmgaplem1 16083 prmgaplem2 16084 prmgaplcmlem1 16085 prmgaplcmlem2 16086 odeq 18279 pgpfi 18330 znidomb 20228 sgmnncl 25222 muinv 25268 ppiublem2 25277 perfect1 25302 perfectlem2 25304 2lgslem2 25469 2lgs2 25479 2sqlem6 25497 eupth2lem3lem3 27567 ex-ind-dvds 27838 eulerpartlemt 30941 dfgcd3 33661 poimirlem25 33915 poimirlem27 33917 jm2.18 38328 jm2.15nn0 38343 jm2.16nn0 38344 jm2.27c 38347 nzss 39286 etransclem25 41207 perfectALTVlem2 42401 |
Copyright terms: Public domain | W3C validator |