MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1dvds Structured version   Visualization version   GIF version

Theorem 1dvds 16319
Description: 1 divides any integer. Theorem 1.1(f) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
1dvds (𝑁 ∈ ℤ → 1 ∥ 𝑁)

Proof of Theorem 1dvds
StepHypRef Expression
1 zcn 12644 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
21mulridd 11307 . 2 (𝑁 ∈ ℤ → (𝑁 · 1) = 𝑁)
3 1z 12673 . . . 4 1 ∈ ℤ
4 dvds0lem 16315 . . . 4 (((𝑁 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 · 1) = 𝑁) → 1 ∥ 𝑁)
53, 4mp3anl2 1456 . . 3 (((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 · 1) = 𝑁) → 1 ∥ 𝑁)
65anabsan 664 . 2 ((𝑁 ∈ ℤ ∧ (𝑁 · 1) = 𝑁) → 1 ∥ 𝑁)
72, 6mpdan 686 1 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108   class class class wbr 5166  (class class class)co 7448  1c1 11185   · cmul 11189  cz 12639  cdvds 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rrecex 11256  ax-cnre 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-neg 11523  df-nn 12294  df-z 12640  df-dvds 16303
This theorem is referenced by:  dvds1  16367  gcdcllem1  16545  gcdcllem3  16547  lcmfunsnlem  16688  coprmproddvds  16710  1idssfct  16727  isprm2lem  16728  dvdsprime  16734  pclem  16885  prmreclem1  16963  oddvdssubg  19897  perfectlem2  27292  oddpwdc  34319  perfectALTVlem2  47596
  Copyright terms: Public domain W3C validator