| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1dvds | Structured version Visualization version GIF version | ||
| Description: 1 divides any integer. Theorem 1.1(f) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| 1dvds | ⊢ (𝑁 ∈ ℤ → 1 ∥ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12593 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 2 | 1 | mulridd 11252 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑁 · 1) = 𝑁) |
| 3 | 1z 12622 | . . . 4 ⊢ 1 ∈ ℤ | |
| 4 | dvds0lem 16286 | . . . 4 ⊢ (((𝑁 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 · 1) = 𝑁) → 1 ∥ 𝑁) | |
| 5 | 3, 4 | mp3anl2 1458 | . . 3 ⊢ (((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 · 1) = 𝑁) → 1 ∥ 𝑁) |
| 6 | 5 | anabsan 665 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 · 1) = 𝑁) → 1 ∥ 𝑁) |
| 7 | 2, 6 | mpdan 687 | 1 ⊢ (𝑁 ∈ ℤ → 1 ∥ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 1c1 11130 · cmul 11134 ℤcz 12588 ∥ cdvds 16272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rrecex 11201 ax-cnre 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-neg 11469 df-nn 12241 df-z 12589 df-dvds 16273 |
| This theorem is referenced by: dvds1 16338 gcdcllem1 16518 gcdcllem3 16520 lcmfunsnlem 16660 coprmproddvds 16682 1idssfct 16699 isprm2lem 16700 dvdsprime 16706 pclem 16858 prmreclem1 16936 oddvdssubg 19836 perfectlem2 27193 oddpwdc 34386 perfectALTVlem2 47736 |
| Copyright terms: Public domain | W3C validator |