Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1dvds | Structured version Visualization version GIF version |
Description: 1 divides any integer. Theorem 1.1(f) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
1dvds | ⊢ (𝑁 ∈ ℤ → 1 ∥ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 12025 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
2 | 1 | mulid1d 10696 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑁 · 1) = 𝑁) |
3 | 1z 12051 | . . . 4 ⊢ 1 ∈ ℤ | |
4 | dvds0lem 15668 | . . . 4 ⊢ (((𝑁 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 · 1) = 𝑁) → 1 ∥ 𝑁) | |
5 | 3, 4 | mp3anl2 1453 | . . 3 ⊢ (((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 · 1) = 𝑁) → 1 ∥ 𝑁) |
6 | 5 | anabsan 664 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 · 1) = 𝑁) → 1 ∥ 𝑁) |
7 | 2, 6 | mpdan 686 | 1 ⊢ (𝑁 ∈ ℤ → 1 ∥ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 class class class wbr 5032 (class class class)co 7150 1c1 10576 · cmul 10580 ℤcz 12020 ∥ cdvds 15655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rrecex 10647 ax-cnre 10648 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-neg 10911 df-nn 11675 df-z 12021 df-dvds 15656 |
This theorem is referenced by: dvds1 15720 gcdcllem1 15898 gcdcllem3 15900 lcmfunsnlem 16037 coprmproddvds 16059 1idssfct 16076 isprm2lem 16077 dvdsprime 16083 pclem 16230 prmreclem1 16307 oddvdssubg 19043 perfectlem2 25913 oddpwdc 31840 perfectALTVlem2 44629 |
Copyright terms: Public domain | W3C validator |