![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.24 | Structured version Visualization version GIF version |
Description: Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
pm4.24 | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | 1 | pm4.71i 559 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: anidm 564 anabsan 664 nic-ax 1671 sbnf2 2364 euind 3746 reuind 3775 disjprg 5162 wesn 5788 01sqrexlem5 15295 srg1zr 20242 crngunit 20404 lmodvscl 20898 isclo2 23117 vitalilem1 25662 tgjustf 28499 ercgrg 28543 slmdvscl 33193 erler 33237 in-ax8 36190 bj-imdirco 37156 idinxpssinxp2 38274 eldmcoss2 38415 prtlem16 38825 prjsperref 42561 omabs2 43294 ifpid1g 43456 opabbrfex0d 47201 opabbrfexd 47203 |
Copyright terms: Public domain | W3C validator |