| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.24 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| pm4.24 | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | 1 | pm4.71i 559 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anidm 564 anabsan 665 nic-ax 1673 sbnf2 2361 euind 3712 reuind 3741 disjprg 5120 wesn 5748 01sqrexlem5 15270 srg1zr 20180 crngunit 20343 lmodvscl 20840 isclo2 23031 vitalilem1 25566 tgjustf 28457 ercgrg 28501 slmdvscl 33216 erler 33265 in-ax8 36247 bj-imdirco 37213 idinxpssinxp2 38341 eldmcoss2 38482 prtlem16 38892 prjsperref 42596 omabs2 43323 ifpid1g 43485 opabbrfex0d 47282 opabbrfexd 47284 |
| Copyright terms: Public domain | W3C validator |