![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.24 | Structured version Visualization version GIF version |
Description: Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
pm4.24 | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | 1 | pm4.71i 560 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 |
This theorem is referenced by: anidm 565 anabsan 661 nornot 1516 nic-ax 1655 sbnf2 2334 euind 3649 reuind 3678 disjprg 4958 wesn 5526 sqrlem5 14440 srg1zr 18969 crngunit 19102 lmodvscl 19341 isclo2 21380 vitalilem1 23892 tgjustf 25941 ercgrg 25985 slmdvscl 30480 idinxpssinxp2 35107 eldmcoss2 35230 prtlem16 35536 prjsperref 38753 ifpid1g 39345 opabbrfex0d 43001 opabbrfexd 43003 |
Copyright terms: Public domain | W3C validator |