MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.24 Structured version   Visualization version   GIF version

Theorem pm4.24 563
Description: Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.)
Assertion
Ref Expression
pm4.24 (𝜑 ↔ (𝜑𝜑))

Proof of Theorem pm4.24
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
21pm4.71i 559 1 (𝜑 ↔ (𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anidm  564  anabsan  665  nic-ax  1673  sbnf2  2361  euind  3712  reuind  3741  disjprg  5120  wesn  5748  01sqrexlem5  15270  srg1zr  20180  crngunit  20343  lmodvscl  20840  isclo2  23031  vitalilem1  25566  tgjustf  28457  ercgrg  28501  slmdvscl  33216  erler  33265  in-ax8  36247  bj-imdirco  37213  idinxpssinxp2  38341  eldmcoss2  38482  prtlem16  38892  prjsperref  42596  omabs2  43323  ifpid1g  43485  opabbrfex0d  47282  opabbrfexd  47284
  Copyright terms: Public domain W3C validator