![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.24 | Structured version Visualization version GIF version |
Description: Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
pm4.24 | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | 1 | pm4.71i 559 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: anidm 564 anabsan 665 nic-ax 1670 sbnf2 2359 euind 3733 reuind 3762 disjprg 5144 wesn 5777 01sqrexlem5 15282 srg1zr 20233 crngunit 20395 lmodvscl 20893 isclo2 23112 vitalilem1 25657 tgjustf 28496 ercgrg 28540 slmdvscl 33203 erler 33252 in-ax8 36207 bj-imdirco 37173 idinxpssinxp2 38300 eldmcoss2 38441 prtlem16 38851 prjsperref 42593 omabs2 43322 ifpid1g 43484 opabbrfex0d 47236 opabbrfexd 47238 |
Copyright terms: Public domain | W3C validator |