| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.24 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| pm4.24 | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | 1 | pm4.71i 559 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anidm 564 anabsan 665 nic-ax 1673 sbnf2 2356 euind 3695 reuind 3724 disjprg 5103 wesn 5727 01sqrexlem5 15212 srg1zr 20124 crngunit 20287 lmodvscl 20784 isclo2 22975 vitalilem1 25509 tgjustf 28400 ercgrg 28444 slmdvscl 33167 erler 33216 in-ax8 36212 bj-imdirco 37178 idinxpssinxp2 38306 eldmcoss2 38450 prtlem16 38862 prjsperref 42594 omabs2 43321 ifpid1g 43483 opabbrfex0d 47284 opabbrfexd 47286 |
| Copyright terms: Public domain | W3C validator |