MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.24 Structured version   Visualization version   GIF version

Theorem pm4.24 565
Description: Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.)
Assertion
Ref Expression
pm4.24 (𝜑 ↔ (𝜑𝜑))

Proof of Theorem pm4.24
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
21pm4.71i 561 1 (𝜑 ↔ (𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  anidm  566  anabsan  664  nic-ax  1676  sbnf2  2355  euind  3721  reuind  3750  disjprgw  5144  disjprg  5145  wesn  5765  01sqrexlem5  15193  srg1zr  20038  crngunit  20192  lmodvscl  20489  isclo2  22592  vitalilem1  25125  tgjustf  27724  ercgrg  27768  slmdvscl  32359  bj-imdirco  36071  idinxpssinxp2  37187  eldmcoss2  37329  prtlem16  37739  prjsperref  41348  omabs2  42082  ifpid1g  42245  opabbrfex0d  45994  opabbrfexd  45996
  Copyright terms: Public domain W3C validator