MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.24 Structured version   Visualization version   GIF version

Theorem pm4.24 563
Description: Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.)
Assertion
Ref Expression
pm4.24 (𝜑 ↔ (𝜑𝜑))

Proof of Theorem pm4.24
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
21pm4.71i 559 1 (𝜑 ↔ (𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anidm  564  anabsan  665  nic-ax  1673  sbnf2  2356  euind  3695  reuind  3724  disjprg  5103  wesn  5727  01sqrexlem5  15212  srg1zr  20124  crngunit  20287  lmodvscl  20784  isclo2  22975  vitalilem1  25509  tgjustf  28400  ercgrg  28444  slmdvscl  33167  erler  33216  in-ax8  36212  bj-imdirco  37178  idinxpssinxp2  38306  eldmcoss2  38450  prtlem16  38862  prjsperref  42594  omabs2  43321  ifpid1g  43483  opabbrfex0d  47284  opabbrfexd  47286
  Copyright terms: Public domain W3C validator