MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.24 Structured version   Visualization version   GIF version

Theorem pm4.24 563
Description: Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.)
Assertion
Ref Expression
pm4.24 (𝜑 ↔ (𝜑𝜑))

Proof of Theorem pm4.24
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
21pm4.71i 559 1 (𝜑 ↔ (𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anidm  564  anabsan  665  nic-ax  1674  sbnf2  2358  euind  3683  reuind  3712  disjprg  5087  wesn  5705  01sqrexlem5  15153  srg1zr  20134  crngunit  20297  lmodvscl  20812  isclo2  23004  vitalilem1  25537  tgjustf  28452  ercgrg  28496  slmdvscl  33181  erler  33230  in-ax8  36264  bj-imdirco  37230  idinxpssinxp2  38358  eldmcoss2  38502  prtlem16  38914  prjsperref  42645  omabs2  43371  ifpid1g  43533  opabbrfex0d  47323  opabbrfexd  47325
  Copyright terms: Public domain W3C validator