MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.24 Structured version   Visualization version   GIF version

Theorem pm4.24 563
Description: Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.)
Assertion
Ref Expression
pm4.24 (𝜑 ↔ (𝜑𝜑))

Proof of Theorem pm4.24
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
21pm4.71i 559 1 (𝜑 ↔ (𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anidm  564  anabsan  665  nic-ax  1674  sbnf2  2360  euind  3679  reuind  3708  disjprg  5091  wesn  5710  01sqrexlem5  15157  srg1zr  20137  crngunit  20300  lmodvscl  20815  isclo2  23006  vitalilem1  25539  tgjustf  28454  ercgrg  28498  slmdvscl  33192  erler  33241  in-ax8  36291  bj-imdirco  37257  idinxpssinxp2  38379  eldmcoss2  38584  prtlem16  38991  prjsperref  42727  omabs2  43452  ifpid1g  43614  opabbrfex0d  47413  opabbrfexd  47415
  Copyright terms: Public domain W3C validator