MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.24 Structured version   Visualization version   GIF version

Theorem pm4.24 563
Description: Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.)
Assertion
Ref Expression
pm4.24 (𝜑 ↔ (𝜑𝜑))

Proof of Theorem pm4.24
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
21pm4.71i 559 1 (𝜑 ↔ (𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anidm  564  anabsan  665  nic-ax  1670  sbnf2  2359  euind  3733  reuind  3762  disjprg  5144  wesn  5777  01sqrexlem5  15282  srg1zr  20233  crngunit  20395  lmodvscl  20893  isclo2  23112  vitalilem1  25657  tgjustf  28496  ercgrg  28540  slmdvscl  33203  erler  33252  in-ax8  36207  bj-imdirco  37173  idinxpssinxp2  38300  eldmcoss2  38441  prtlem16  38851  prjsperref  42593  omabs2  43322  ifpid1g  43484  opabbrfex0d  47236  opabbrfexd  47238
  Copyright terms: Public domain W3C validator