Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm4.24 | Structured version Visualization version GIF version |
Description: Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
pm4.24 | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | 1 | pm4.71i 560 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: anidm 565 anabsan 662 nic-ax 1676 sbnf2 2356 euind 3659 reuind 3688 disjprgw 5069 disjprg 5070 wesn 5675 sqrlem5 14958 srg1zr 19765 crngunit 19904 lmodvscl 20140 isclo2 22239 vitalilem1 24772 tgjustf 26834 ercgrg 26878 slmdvscl 31467 bj-imdirco 35361 idinxpssinxp2 36453 eldmcoss2 36577 prtlem16 36883 prjsperref 40445 ifpid1g 41101 opabbrfex0d 44778 opabbrfexd 44780 |
Copyright terms: Public domain | W3C validator |