MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.24 Structured version   Visualization version   GIF version

Theorem pm4.24 563
Description: Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.)
Assertion
Ref Expression
pm4.24 (𝜑 ↔ (𝜑𝜑))

Proof of Theorem pm4.24
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
21pm4.71i 559 1 (𝜑 ↔ (𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anidm  564  anabsan  664  nic-ax  1671  sbnf2  2364  euind  3746  reuind  3775  disjprg  5162  wesn  5788  01sqrexlem5  15295  srg1zr  20242  crngunit  20404  lmodvscl  20898  isclo2  23117  vitalilem1  25662  tgjustf  28499  ercgrg  28543  slmdvscl  33193  erler  33237  in-ax8  36190  bj-imdirco  37156  idinxpssinxp2  38274  eldmcoss2  38415  prtlem16  38825  prjsperref  42561  omabs2  43294  ifpid1g  43456  opabbrfex0d  47201  opabbrfexd  47203
  Copyright terms: Public domain W3C validator