| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.24 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| pm4.24 | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | 1 | pm4.71i 559 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anidm 564 anabsan 665 nic-ax 1674 sbnf2 2360 euind 3679 reuind 3708 disjprg 5091 wesn 5710 01sqrexlem5 15157 srg1zr 20137 crngunit 20300 lmodvscl 20815 isclo2 23006 vitalilem1 25539 tgjustf 28454 ercgrg 28498 slmdvscl 33192 erler 33241 in-ax8 36291 bj-imdirco 37257 idinxpssinxp2 38379 eldmcoss2 38584 prtlem16 38991 prjsperref 42727 omabs2 43452 ifpid1g 43614 opabbrfex0d 47413 opabbrfexd 47415 |
| Copyright terms: Public domain | W3C validator |