Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm4.24 | Structured version Visualization version GIF version |
Description: Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
pm4.24 | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | 1 | pm4.71i 559 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: anidm 564 anabsan 661 nornotOLD 1527 nic-ax 1677 sbnf2 2356 euind 3654 reuind 3683 disjprgw 5065 disjprg 5066 wesn 5666 sqrlem5 14886 srg1zr 19680 crngunit 19819 lmodvscl 20055 isclo2 22147 vitalilem1 24677 tgjustf 26738 ercgrg 26782 slmdvscl 31369 bj-imdirco 35288 idinxpssinxp2 36380 eldmcoss2 36504 prtlem16 36810 prjsperref 40366 ifpid1g 40999 opabbrfex0d 44665 opabbrfexd 44667 |
Copyright terms: Public domain | W3C validator |