| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.24 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| pm4.24 | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | 1 | pm4.71i 559 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anidm 564 anabsan 665 nic-ax 1674 sbnf2 2358 euind 3683 reuind 3712 disjprg 5087 wesn 5705 01sqrexlem5 15153 srg1zr 20134 crngunit 20297 lmodvscl 20812 isclo2 23004 vitalilem1 25537 tgjustf 28452 ercgrg 28496 slmdvscl 33181 erler 33230 in-ax8 36264 bj-imdirco 37230 idinxpssinxp2 38358 eldmcoss2 38502 prtlem16 38914 prjsperref 42645 omabs2 43371 ifpid1g 43533 opabbrfex0d 47323 opabbrfexd 47325 |
| Copyright terms: Public domain | W3C validator |