| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anidm23 | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.) |
| Ref | Expression |
|---|---|
| 3anidm23.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| 3anidm23 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm23.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) → 𝜒) |
| 3 | 2 | anabss3 675 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: supsn 9400 infsn 9434 grusn 10733 subeq0 11424 halfaddsub 12391 avglt2 12397 modabs2 13843 efsub 16044 sinmul 16116 divalgmod 16352 modgcd 16478 pythagtriplem4 16766 pythagtriplem16 16777 pltirr 18274 latjidm 18403 latmidm 18415 ipopos 18477 mulgmodid 19027 f1omvdcnv 19358 lsmss1 19579 rhmsubclem3 20607 zntoslem 21498 obsipid 21664 smadiadetlem2 22584 smadiadet 22590 ordtt1 23299 xmet0 24263 nmsq 25127 tcphcphlem3 25166 tcphcph 25170 grpoidinvlem1 30483 grpodivid 30521 nvmid 30638 ipidsq 30689 5oalem1 31633 3oalem2 31642 unopf1o 31895 unopnorm 31896 hmopre 31902 ballotlemfc0 34477 ballotlemfcc 34478 gcdabsorb 35730 cgr3rflx 36035 endofsegid 36066 tailini 36357 nnssi2 36436 nndivlub 36439 brin2 38393 opoccl 39180 opococ 39181 opexmid 39193 opnoncon 39194 cmtidN 39243 ltrniotaidvalN 40570 pell14qrexpclnn0 42847 rmxdbl 42921 rmydbl 42922 rhmsubcALTVlem3 48264 |
| Copyright terms: Public domain | W3C validator |