| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anidm23 | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.) |
| Ref | Expression |
|---|---|
| 3anidm23.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| 3anidm23 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm23.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) → 𝜒) |
| 3 | 2 | anabss3 675 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: supsn 9431 infsn 9465 grusn 10764 subeq0 11455 halfaddsub 12422 avglt2 12428 modabs2 13874 efsub 16075 sinmul 16147 divalgmod 16383 modgcd 16509 pythagtriplem4 16797 pythagtriplem16 16808 pltirr 18301 latjidm 18428 latmidm 18440 ipopos 18502 mulgmodid 19052 f1omvdcnv 19381 lsmss1 19602 rhmsubclem3 20603 zntoslem 21473 obsipid 21638 smadiadetlem2 22558 smadiadet 22564 ordtt1 23273 xmet0 24237 nmsq 25101 tcphcphlem3 25140 tcphcph 25144 grpoidinvlem1 30440 grpodivid 30478 nvmid 30595 ipidsq 30646 5oalem1 31590 3oalem2 31599 unopf1o 31852 unopnorm 31853 hmopre 31859 ballotlemfc0 34491 ballotlemfcc 34492 gcdabsorb 35744 cgr3rflx 36049 endofsegid 36080 tailini 36371 nnssi2 36450 nndivlub 36453 brin2 38407 opoccl 39194 opococ 39195 opexmid 39207 opnoncon 39208 cmtidN 39257 ltrniotaidvalN 40584 pell14qrexpclnn0 42861 rmxdbl 42935 rmydbl 42936 rhmsubcALTVlem3 48275 |
| Copyright terms: Public domain | W3C validator |