| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anidm23 | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.) |
| Ref | Expression |
|---|---|
| 3anidm23.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| 3anidm23 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm23.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) → 𝜒) |
| 3 | 2 | anabss3 675 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: supsn 9363 infsn 9397 grusn 10698 subeq0 11390 halfaddsub 12357 avglt2 12363 modabs2 13809 efsub 16009 sinmul 16081 divalgmod 16317 modgcd 16443 pythagtriplem4 16731 pythagtriplem16 16742 pltirr 18239 latjidm 18368 latmidm 18380 ipopos 18442 mulgmodid 18992 f1omvdcnv 19323 lsmss1 19544 rhmsubclem3 20572 zntoslem 21463 obsipid 21629 smadiadetlem2 22549 smadiadet 22555 ordtt1 23264 xmet0 24228 nmsq 25092 tcphcphlem3 25131 tcphcph 25135 grpoidinvlem1 30448 grpodivid 30486 nvmid 30603 ipidsq 30654 5oalem1 31598 3oalem2 31607 unopf1o 31860 unopnorm 31861 hmopre 31867 ballotlemfc0 34467 ballotlemfcc 34468 gcdabsorb 35733 cgr3rflx 36038 endofsegid 36069 tailini 36360 nnssi2 36439 nndivlub 36442 brin2 38396 opoccl 39183 opococ 39184 opexmid 39196 opnoncon 39197 cmtidN 39246 ltrniotaidvalN 40572 pell14qrexpclnn0 42849 rmxdbl 42922 rmydbl 42923 rhmsubcALTVlem3 48277 |
| Copyright terms: Public domain | W3C validator |