Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anidm23 | Structured version Visualization version GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.) |
Ref | Expression |
---|---|
3anidm23.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
3anidm23 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm23.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) | |
2 | 1 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) → 𝜒) |
3 | 2 | anabss3 673 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: supsn 9275 infsn 9308 grusn 10606 subeq0 11293 halfaddsub 12252 avglt2 12258 modabs2 13671 efsub 15854 sinmul 15926 divalgmod 16160 modgcd 16285 prmdvdssqOLD 16469 pythagtriplem4 16565 pythagtriplem16 16576 pltirr 18098 latjidm 18225 latmidm 18237 ipopos 18299 mulgmodid 18787 f1omvdcnv 19097 lsmss1 19316 zntoslem 20809 obsipid 20974 smadiadetlem2 21858 smadiadet 21864 ordtt1 22575 xmet0 23540 nmsq 24403 tcphcphlem3 24442 tcphcph 24446 grpoidinvlem1 28911 grpodivid 28949 nvmid 29066 ipidsq 29117 5oalem1 30061 3oalem2 30070 unopf1o 30323 unopnorm 30324 hmopre 30330 ballotlemfc0 32504 ballotlemfcc 32505 gcdabsorb 33761 cgr3rflx 34401 endofsegid 34432 tailini 34610 nnssi2 34689 nndivlub 34692 brin2 36577 opoccl 37250 opococ 37251 opexmid 37263 opnoncon 37264 cmtidN 37313 ltrniotaidvalN 38639 pell14qrexpclnn0 40725 rmxdbl 40799 rmydbl 40800 rhmsubclem3 45704 rhmsubcALTVlem3 45722 |
Copyright terms: Public domain | W3C validator |