![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anidm23 | Structured version Visualization version GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.) |
Ref | Expression |
---|---|
3anidm23.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
3anidm23 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm23.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) | |
2 | 1 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) → 𝜒) |
3 | 2 | anabss3 674 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: supsn 9541 infsn 9574 grusn 10873 subeq0 11562 halfaddsub 12526 avglt2 12532 modabs2 13956 efsub 16148 sinmul 16220 divalgmod 16454 modgcd 16579 pythagtriplem4 16866 pythagtriplem16 16877 pltirr 18405 latjidm 18532 latmidm 18544 ipopos 18606 mulgmodid 19153 f1omvdcnv 19486 lsmss1 19707 rhmsubclem3 20709 zntoslem 21598 obsipid 21765 smadiadetlem2 22691 smadiadet 22697 ordtt1 23408 xmet0 24373 nmsq 25247 tcphcphlem3 25286 tcphcph 25290 grpoidinvlem1 30536 grpodivid 30574 nvmid 30691 ipidsq 30742 5oalem1 31686 3oalem2 31695 unopf1o 31948 unopnorm 31949 hmopre 31955 ballotlemfc0 34457 ballotlemfcc 34458 gcdabsorb 35712 cgr3rflx 36018 endofsegid 36049 tailini 36342 nnssi2 36421 nndivlub 36424 brin2 38365 opoccl 39150 opococ 39151 opexmid 39163 opnoncon 39164 cmtidN 39213 ltrniotaidvalN 40540 pell14qrexpclnn0 42822 rmxdbl 42896 rmydbl 42897 rhmsubcALTVlem3 48006 |
Copyright terms: Public domain | W3C validator |