Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anidm23 | Structured version Visualization version GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.) |
Ref | Expression |
---|---|
3anidm23.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
3anidm23 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm23.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) | |
2 | 1 | 3expa 1116 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) → 𝜒) |
3 | 2 | anabss3 671 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: supsn 9192 infsn 9225 grusn 10544 subeq0 11230 halfaddsub 12189 avglt2 12195 modabs2 13606 efsub 15790 sinmul 15862 divalgmod 16096 modgcd 16221 prmdvdssqOLD 16405 pythagtriplem4 16501 pythagtriplem16 16512 pltirr 18034 latjidm 18161 latmidm 18173 ipopos 18235 mulgmodid 18723 f1omvdcnv 19033 lsmss1 19252 zntoslem 20745 obsipid 20910 smadiadetlem2 21794 smadiadet 21800 ordtt1 22511 xmet0 23476 nmsq 24339 tcphcphlem3 24378 tcphcph 24382 grpoidinvlem1 28845 grpodivid 28883 nvmid 29000 ipidsq 29051 5oalem1 29995 3oalem2 30004 unopf1o 30257 unopnorm 30258 hmopre 30264 ballotlemfc0 32438 ballotlemfcc 32439 gcdabsorb 33695 cgr3rflx 34335 endofsegid 34366 tailini 34544 nnssi2 34623 nndivlub 34626 brin2 36514 opoccl 37187 opococ 37188 opexmid 37200 opnoncon 37201 cmtidN 37250 ltrniotaidvalN 38576 pell14qrexpclnn0 40668 rmxdbl 40741 rmydbl 40742 rhmsubclem3 45598 rhmsubcALTVlem3 45616 |
Copyright terms: Public domain | W3C validator |