| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anidm23 | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.) |
| Ref | Expression |
|---|---|
| 3anidm23.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| 3anidm23 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm23.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) → 𝜒) |
| 3 | 2 | anabss3 675 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: supsn 9357 infsn 9391 grusn 10695 subeq0 11387 halfaddsub 12354 avglt2 12360 modabs2 13809 efsub 16009 sinmul 16081 divalgmod 16317 modgcd 16443 pythagtriplem4 16731 pythagtriplem16 16742 pltirr 18239 latjidm 18368 latmidm 18380 ipopos 18442 mulgmodid 19026 f1omvdcnv 19356 lsmss1 19577 rhmsubclem3 20602 zntoslem 21493 obsipid 21659 smadiadetlem2 22579 smadiadet 22585 ordtt1 23294 xmet0 24257 nmsq 25121 tcphcphlem3 25160 tcphcph 25164 grpoidinvlem1 30484 grpodivid 30522 nvmid 30639 ipidsq 30690 5oalem1 31634 3oalem2 31643 unopf1o 31896 unopnorm 31897 hmopre 31903 ballotlemfc0 34506 ballotlemfcc 34507 gcdabsorb 35794 cgr3rflx 36098 endofsegid 36129 tailini 36420 nnssi2 36499 nndivlub 36502 brin2 38461 opoccl 39292 opococ 39293 opexmid 39305 opnoncon 39306 cmtidN 39355 ltrniotaidvalN 40681 pell14qrexpclnn0 42958 rmxdbl 43031 rmydbl 43032 rhmsubcALTVlem3 48382 |
| Copyright terms: Public domain | W3C validator |