| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anidm23 | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.) |
| Ref | Expression |
|---|---|
| 3anidm23.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| 3anidm23 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm23.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) → 𝜒) |
| 3 | 2 | anabss3 675 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: supsn 9424 infsn 9458 grusn 10757 subeq0 11448 halfaddsub 12415 avglt2 12421 modabs2 13867 efsub 16068 sinmul 16140 divalgmod 16376 modgcd 16502 pythagtriplem4 16790 pythagtriplem16 16801 pltirr 18294 latjidm 18421 latmidm 18433 ipopos 18495 mulgmodid 19045 f1omvdcnv 19374 lsmss1 19595 rhmsubclem3 20596 zntoslem 21466 obsipid 21631 smadiadetlem2 22551 smadiadet 22557 ordtt1 23266 xmet0 24230 nmsq 25094 tcphcphlem3 25133 tcphcph 25137 grpoidinvlem1 30433 grpodivid 30471 nvmid 30588 ipidsq 30639 5oalem1 31583 3oalem2 31592 unopf1o 31845 unopnorm 31846 hmopre 31852 ballotlemfc0 34484 ballotlemfcc 34485 gcdabsorb 35737 cgr3rflx 36042 endofsegid 36073 tailini 36364 nnssi2 36443 nndivlub 36446 brin2 38400 opoccl 39187 opococ 39188 opexmid 39200 opnoncon 39201 cmtidN 39250 ltrniotaidvalN 40577 pell14qrexpclnn0 42854 rmxdbl 42928 rmydbl 42929 rhmsubcALTVlem3 48271 |
| Copyright terms: Public domain | W3C validator |