| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anidm23 | Structured version Visualization version GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.) |
| Ref | Expression |
|---|---|
| 3anidm23.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| 3anidm23 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm23.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) → 𝜒) |
| 3 | 2 | anabss3 675 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: supsn 9485 infsn 9519 grusn 10818 subeq0 11509 halfaddsub 12474 avglt2 12480 modabs2 13922 efsub 16118 sinmul 16190 divalgmod 16425 modgcd 16551 pythagtriplem4 16839 pythagtriplem16 16850 pltirr 18345 latjidm 18472 latmidm 18484 ipopos 18546 mulgmodid 19096 f1omvdcnv 19425 lsmss1 19646 rhmsubclem3 20647 zntoslem 21517 obsipid 21682 smadiadetlem2 22602 smadiadet 22608 ordtt1 23317 xmet0 24281 nmsq 25146 tcphcphlem3 25185 tcphcph 25189 grpoidinvlem1 30485 grpodivid 30523 nvmid 30640 ipidsq 30691 5oalem1 31635 3oalem2 31644 unopf1o 31897 unopnorm 31898 hmopre 31904 ballotlemfc0 34525 ballotlemfcc 34526 gcdabsorb 35767 cgr3rflx 36072 endofsegid 36103 tailini 36394 nnssi2 36473 nndivlub 36476 brin2 38427 opoccl 39212 opococ 39213 opexmid 39225 opnoncon 39226 cmtidN 39275 ltrniotaidvalN 40602 pell14qrexpclnn0 42889 rmxdbl 42963 rmydbl 42964 rhmsubcALTVlem3 48258 |
| Copyright terms: Public domain | W3C validator |