Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anidm23 | Structured version Visualization version GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.) |
Ref | Expression |
---|---|
3anidm23.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
3anidm23 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm23.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) | |
2 | 1 | 3expa 1117 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) → 𝜒) |
3 | 2 | anabss3 672 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: supsn 9220 infsn 9253 grusn 10549 subeq0 11236 halfaddsub 12195 avglt2 12201 modabs2 13614 efsub 15798 sinmul 15870 divalgmod 16104 modgcd 16229 prmdvdssqOLD 16413 pythagtriplem4 16509 pythagtriplem16 16520 pltirr 18042 latjidm 18169 latmidm 18181 ipopos 18243 mulgmodid 18731 f1omvdcnv 19041 lsmss1 19260 zntoslem 20753 obsipid 20918 smadiadetlem2 21802 smadiadet 21808 ordtt1 22519 xmet0 23484 nmsq 24347 tcphcphlem3 24386 tcphcph 24390 grpoidinvlem1 28853 grpodivid 28891 nvmid 29008 ipidsq 29059 5oalem1 30003 3oalem2 30012 unopf1o 30265 unopnorm 30266 hmopre 30272 ballotlemfc0 32446 ballotlemfcc 32447 gcdabsorb 33703 cgr3rflx 34343 endofsegid 34374 tailini 34552 nnssi2 34631 nndivlub 34634 brin2 36522 opoccl 37195 opococ 37196 opexmid 37208 opnoncon 37209 cmtidN 37258 ltrniotaidvalN 38584 pell14qrexpclnn0 40675 rmxdbl 40748 rmydbl 40749 rhmsubclem3 45603 rhmsubcALTVlem3 45621 |
Copyright terms: Public domain | W3C validator |