![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anabsan2 | Structured version Visualization version GIF version |
Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.) |
Ref | Expression |
---|---|
anabsan2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) |
Ref | Expression |
---|---|
anabsan2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anabsan2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) | |
2 | 1 | an12s 645 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜓)) → 𝜒) |
3 | 2 | anabss7 669 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: anabss3 671 anandirs 675 fvreseq 7040 funcestrcsetclem7 18102 funcsetcestrclem7 18117 lmodvsdi 20639 lmodvsdir 20640 lmodvsass 20641 lss0cl 20701 phlpropd 21427 chpdmatlem3 22562 mbfimasn 25381 slmdvsdi 32630 slmdvsdir 32631 slmdvsass 32632 metider 33172 funcringcsetcALTV2lem7 47028 funcringcsetclem7ALTV 47051 |
Copyright terms: Public domain | W3C validator |