| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anabsan2 | Structured version Visualization version GIF version | ||
| Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.) |
| Ref | Expression |
|---|---|
| anabsan2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) |
| Ref | Expression |
|---|---|
| anabsan2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anabsan2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) | |
| 2 | 1 | an12s 649 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | anabss7 673 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anabss3 675 anandirs 679 fvreseq 7012 funcestrcsetclem7 18107 funcsetcestrclem7 18122 lmodvsdi 20791 lmodvsdir 20792 lmodvsass 20793 lss0cl 20853 phlpropd 21564 chpdmatlem3 22727 mbfimasn 25533 slmdvsdi 33168 slmdvsdir 33169 slmdvsass 33170 metider 33884 funcringcsetcALTV2lem7 48284 funcringcsetclem7ALTV 48307 |
| Copyright terms: Public domain | W3C validator |