MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsan2 Structured version   Visualization version   GIF version

Theorem anabsan2 664
Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.)
Hypothesis
Ref Expression
anabsan2.1 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
Assertion
Ref Expression
anabsan2 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsan2
StepHypRef Expression
1 anabsan2.1 . . 3 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
21an12s 639 . 2 ((𝜓 ∧ (𝜑𝜓)) → 𝜒)
32anabss7 663 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387
This theorem is referenced by:  anabss3  665  anandirs  669  fvreseq  6573  funcestrcsetclem7  17146  funcsetcestrclem7  17161  lmodvsdi  19249  lmodvsdir  19250  lmodvsass  19251  lss0cl  19310  phlpropd  20369  chpdmatlem3  21022  mbfimasn  23805  slmdvsdi  30309  slmdvsdir  30310  slmdvsass  30311  metider  30478  funcringcsetcALTV2lem7  42903  funcringcsetclem7ALTV  42926
  Copyright terms: Public domain W3C validator