MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsan2 Structured version   Visualization version   GIF version

Theorem anabsan2 674
Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.)
Hypothesis
Ref Expression
anabsan2.1 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
Assertion
Ref Expression
anabsan2 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsan2
StepHypRef Expression
1 anabsan2.1 . . 3 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
21an12s 649 . 2 ((𝜓 ∧ (𝜑𝜓)) → 𝜒)
32anabss7 673 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anabss3  675  anandirs  679  fvreseq  6974  funcestrcsetclem7  18052  funcsetcestrclem7  18067  lmodvsdi  20788  lmodvsdir  20789  lmodvsass  20790  lss0cl  20850  phlpropd  21562  chpdmatlem3  22725  mbfimasn  25531  slmdvsdi  33157  slmdvsdir  33158  slmdvsass  33159  metider  33861  funcringcsetcALTV2lem7  48280  funcringcsetclem7ALTV  48303
  Copyright terms: Public domain W3C validator