| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anabsan2 | Structured version Visualization version GIF version | ||
| Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.) |
| Ref | Expression |
|---|---|
| anabsan2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) |
| Ref | Expression |
|---|---|
| anabsan2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anabsan2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) | |
| 2 | 1 | an12s 649 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | anabss7 673 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anabss3 675 anandirs 679 fvreseq 6968 funcestrcsetclem7 18047 funcsetcestrclem7 18062 lmodvsdi 20813 lmodvsdir 20814 lmodvsass 20815 lss0cl 20875 phlpropd 21587 chpdmatlem3 22750 mbfimasn 25555 slmdvsdi 33176 slmdvsdir 33177 slmdvsass 33178 metider 33899 funcringcsetcALTV2lem7 48327 funcringcsetclem7ALTV 48350 |
| Copyright terms: Public domain | W3C validator |