MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsan2 Structured version   Visualization version   GIF version

Theorem anabsan2 671
Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.)
Hypothesis
Ref Expression
anabsan2.1 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
Assertion
Ref Expression
anabsan2 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsan2
StepHypRef Expression
1 anabsan2.1 . . 3 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
21an12s 646 . 2 ((𝜓 ∧ (𝜑𝜓)) → 𝜒)
32anabss7 670 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  anabss3  672  anandirs  676  fvreseq  6917  funcestrcsetclem7  17863  funcsetcestrclem7  17878  lmodvsdi  20146  lmodvsdir  20147  lmodvsass  20148  lss0cl  20208  phlpropd  20860  chpdmatlem3  21989  mbfimasn  24796  slmdvsdi  31468  slmdvsdir  31469  slmdvsass  31470  metider  31844  funcringcsetcALTV2lem7  45600  funcringcsetclem7ALTV  45623
  Copyright terms: Public domain W3C validator