MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsan2 Structured version   Visualization version   GIF version

Theorem anabsan2 674
Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.)
Hypothesis
Ref Expression
anabsan2.1 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
Assertion
Ref Expression
anabsan2 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsan2
StepHypRef Expression
1 anabsan2.1 . . 3 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
21an12s 649 . 2 ((𝜓 ∧ (𝜑𝜓)) → 𝜒)
32anabss7 673 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anabss3  675  anandirs  679  fvreseq  6994  funcestrcsetclem7  18083  funcsetcestrclem7  18098  lmodvsdi  20767  lmodvsdir  20768  lmodvsass  20769  lss0cl  20829  phlpropd  21540  chpdmatlem3  22703  mbfimasn  25509  slmdvsdi  33141  slmdvsdir  33142  slmdvsass  33143  metider  33857  funcringcsetcALTV2lem7  48257  funcringcsetclem7ALTV  48280
  Copyright terms: Public domain W3C validator