MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsan2 Structured version   Visualization version   GIF version

Theorem anabsan2 674
Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.)
Hypothesis
Ref Expression
anabsan2.1 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
Assertion
Ref Expression
anabsan2 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsan2
StepHypRef Expression
1 anabsan2.1 . . 3 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
21an12s 649 . 2 ((𝜓 ∧ (𝜑𝜓)) → 𝜒)
32anabss7 673 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anabss3  675  anandirs  679  fvreseq  7012  funcestrcsetclem7  18107  funcsetcestrclem7  18122  lmodvsdi  20791  lmodvsdir  20792  lmodvsass  20793  lss0cl  20853  phlpropd  21564  chpdmatlem3  22727  mbfimasn  25533  slmdvsdi  33168  slmdvsdir  33169  slmdvsass  33170  metider  33884  funcringcsetcALTV2lem7  48284  funcringcsetclem7ALTV  48307
  Copyright terms: Public domain W3C validator