Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anabsan2 | Structured version Visualization version GIF version |
Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.) |
Ref | Expression |
---|---|
anabsan2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) |
Ref | Expression |
---|---|
anabsan2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anabsan2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) | |
2 | 1 | an12s 645 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜓)) → 𝜒) |
3 | 2 | anabss7 669 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: anabss3 671 anandirs 675 fvreseq 6899 funcestrcsetclem7 17779 funcsetcestrclem7 17794 lmodvsdi 20061 lmodvsdir 20062 lmodvsass 20063 lss0cl 20123 phlpropd 20772 chpdmatlem3 21897 mbfimasn 24701 slmdvsdi 31370 slmdvsdir 31371 slmdvsass 31372 metider 31746 funcringcsetcALTV2lem7 45488 funcringcsetclem7ALTV 45511 |
Copyright terms: Public domain | W3C validator |