MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsan2 Structured version   Visualization version   GIF version

Theorem anabsan2 674
Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.)
Hypothesis
Ref Expression
anabsan2.1 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
Assertion
Ref Expression
anabsan2 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsan2
StepHypRef Expression
1 anabsan2.1 . . 3 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
21an12s 649 . 2 ((𝜓 ∧ (𝜑𝜓)) → 𝜒)
32anabss7 673 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anabss3  675  anandirs  679  fvreseq  7015  funcestrcsetclem7  18114  funcsetcestrclem7  18129  lmodvsdi  20798  lmodvsdir  20799  lmodvsass  20800  lss0cl  20860  phlpropd  21571  chpdmatlem3  22734  mbfimasn  25540  slmdvsdi  33175  slmdvsdir  33176  slmdvsass  33177  metider  33891  funcringcsetcALTV2lem7  48288  funcringcsetclem7ALTV  48311
  Copyright terms: Public domain W3C validator