MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsan2 Structured version   Visualization version   GIF version

Theorem anabsan2 673
Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.)
Hypothesis
Ref Expression
anabsan2.1 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
Assertion
Ref Expression
anabsan2 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsan2
StepHypRef Expression
1 anabsan2.1 . . 3 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
21an12s 648 . 2 ((𝜓 ∧ (𝜑𝜓)) → 𝜒)
32anabss7 672 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anabss3  674  anandirs  678  fvreseq  7073  funcestrcsetclem7  18215  funcsetcestrclem7  18230  lmodvsdi  20905  lmodvsdir  20906  lmodvsass  20907  lss0cl  20968  phlpropd  21696  chpdmatlem3  22867  mbfimasn  25686  slmdvsdi  33194  slmdvsdir  33195  slmdvsass  33196  metider  33840  funcringcsetcALTV2lem7  48019  funcringcsetclem7ALTV  48042
  Copyright terms: Public domain W3C validator