| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anabsan2 | Structured version Visualization version GIF version | ||
| Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.) |
| Ref | Expression |
|---|---|
| anabsan2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) |
| Ref | Expression |
|---|---|
| anabsan2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anabsan2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) | |
| 2 | 1 | an12s 649 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | anabss7 673 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anabss3 675 anandirs 679 fvreseq 6974 funcestrcsetclem7 18052 funcsetcestrclem7 18067 lmodvsdi 20788 lmodvsdir 20789 lmodvsass 20790 lss0cl 20850 phlpropd 21562 chpdmatlem3 22725 mbfimasn 25531 slmdvsdi 33157 slmdvsdir 33158 slmdvsass 33159 metider 33861 funcringcsetcALTV2lem7 48280 funcringcsetclem7ALTV 48303 |
| Copyright terms: Public domain | W3C validator |