MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsan2 Structured version   Visualization version   GIF version

Theorem anabsan2 670
Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.)
Hypothesis
Ref Expression
anabsan2.1 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
Assertion
Ref Expression
anabsan2 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsan2
StepHypRef Expression
1 anabsan2.1 . . 3 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
21an12s 645 . 2 ((𝜓 ∧ (𝜑𝜓)) → 𝜒)
32anabss7 669 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  anabss3  671  anandirs  675  fvreseq  6899  funcestrcsetclem7  17779  funcsetcestrclem7  17794  lmodvsdi  20061  lmodvsdir  20062  lmodvsass  20063  lss0cl  20123  phlpropd  20772  chpdmatlem3  21897  mbfimasn  24701  slmdvsdi  31370  slmdvsdir  31371  slmdvsass  31372  metider  31746  funcringcsetcALTV2lem7  45488  funcringcsetclem7ALTV  45511
  Copyright terms: Public domain W3C validator