![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anabsan2 | Structured version Visualization version GIF version |
Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.) |
Ref | Expression |
---|---|
anabsan2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) |
Ref | Expression |
---|---|
anabsan2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anabsan2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) | |
2 | 1 | an12s 639 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜓)) → 𝜒) |
3 | 2 | anabss7 663 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 |
This theorem is referenced by: anabss3 665 anandirs 669 fvreseq 6573 funcestrcsetclem7 17146 funcsetcestrclem7 17161 lmodvsdi 19249 lmodvsdir 19250 lmodvsass 19251 lss0cl 19310 phlpropd 20369 chpdmatlem3 21022 mbfimasn 23805 slmdvsdi 30309 slmdvsdir 30310 slmdvsass 30311 metider 30478 funcringcsetcALTV2lem7 42903 funcringcsetclem7ALTV 42926 |
Copyright terms: Public domain | W3C validator |