MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsan2 Structured version   Visualization version   GIF version

Theorem anabsan2 673
Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.)
Hypothesis
Ref Expression
anabsan2.1 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
Assertion
Ref Expression
anabsan2 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsan2
StepHypRef Expression
1 anabsan2.1 . . 3 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
21an12s 648 . 2 ((𝜓 ∧ (𝜑𝜓)) → 𝜒)
32anabss7 672 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  anabss3  674  anandirs  678  fvreseq  7042  funcestrcsetclem7  18098  funcsetcestrclem7  18113  lmodvsdi  20495  lmodvsdir  20496  lmodvsass  20497  lss0cl  20557  phlpropd  21208  chpdmatlem3  22342  mbfimasn  25149  slmdvsdi  32360  slmdvsdir  32361  slmdvsass  32362  metider  32874  funcringcsetcALTV2lem7  46940  funcringcsetclem7ALTV  46963
  Copyright terms: Public domain W3C validator