| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anabsan2 | Structured version Visualization version GIF version | ||
| Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.) |
| Ref | Expression |
|---|---|
| anabsan2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) |
| Ref | Expression |
|---|---|
| anabsan2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anabsan2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) | |
| 2 | 1 | an12s 649 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | anabss7 673 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anabss3 675 anandirs 679 fvreseq 7015 funcestrcsetclem7 18114 funcsetcestrclem7 18129 lmodvsdi 20798 lmodvsdir 20799 lmodvsass 20800 lss0cl 20860 phlpropd 21571 chpdmatlem3 22734 mbfimasn 25540 slmdvsdi 33175 slmdvsdir 33176 slmdvsass 33177 metider 33891 funcringcsetcALTV2lem7 48288 funcringcsetclem7ALTV 48311 |
| Copyright terms: Public domain | W3C validator |