MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsan2 Structured version   Visualization version   GIF version

Theorem anabsan2 674
Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.)
Hypothesis
Ref Expression
anabsan2.1 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
Assertion
Ref Expression
anabsan2 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsan2
StepHypRef Expression
1 anabsan2.1 . . 3 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
21an12s 649 . 2 ((𝜓 ∧ (𝜑𝜓)) → 𝜒)
32anabss7 673 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anabss3  675  anandirs  679  fvreseq  7040  funcestrcsetclem7  18162  funcsetcestrclem7  18177  lmodvsdi  20852  lmodvsdir  20853  lmodvsass  20854  lss0cl  20914  phlpropd  21628  chpdmatlem3  22795  mbfimasn  25604  slmdvsdi  33165  slmdvsdir  33166  slmdvsass  33167  metider  33868  funcringcsetcALTV2lem7  48185  funcringcsetclem7ALTV  48208
  Copyright terms: Public domain W3C validator