Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anabsan2 | Structured version Visualization version GIF version |
Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.) |
Ref | Expression |
---|---|
anabsan2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) |
Ref | Expression |
---|---|
anabsan2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anabsan2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) | |
2 | 1 | an12s 646 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜓)) → 𝜒) |
3 | 2 | anabss7 670 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: anabss3 672 anandirs 676 fvreseq 6917 funcestrcsetclem7 17863 funcsetcestrclem7 17878 lmodvsdi 20146 lmodvsdir 20147 lmodvsass 20148 lss0cl 20208 phlpropd 20860 chpdmatlem3 21989 mbfimasn 24796 slmdvsdi 31468 slmdvsdir 31469 slmdvsass 31470 metider 31844 funcringcsetcALTV2lem7 45600 funcringcsetclem7ALTV 45623 |
Copyright terms: Public domain | W3C validator |