| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anabsan2 | Structured version Visualization version GIF version | ||
| Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.) |
| Ref | Expression |
|---|---|
| anabsan2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) |
| Ref | Expression |
|---|---|
| anabsan2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anabsan2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) | |
| 2 | 1 | an12s 649 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | anabss7 673 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anabss3 675 anandirs 679 fvreseq 7040 funcestrcsetclem7 18162 funcsetcestrclem7 18177 lmodvsdi 20852 lmodvsdir 20853 lmodvsass 20854 lss0cl 20914 phlpropd 21628 chpdmatlem3 22795 mbfimasn 25604 slmdvsdi 33165 slmdvsdir 33166 slmdvsass 33167 metider 33868 funcringcsetcALTV2lem7 48185 funcringcsetclem7ALTV 48208 |
| Copyright terms: Public domain | W3C validator |