MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsan2 Structured version   Visualization version   GIF version

Theorem anabsan2 670
Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.)
Hypothesis
Ref Expression
anabsan2.1 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
Assertion
Ref Expression
anabsan2 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsan2
StepHypRef Expression
1 anabsan2.1 . . 3 ((𝜑 ∧ (𝜓𝜓)) → 𝜒)
21an12s 645 . 2 ((𝜓 ∧ (𝜑𝜓)) → 𝜒)
32anabss7 669 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395
This theorem is referenced by:  anabss3  671  anandirs  675  fvreseq  7040  funcestrcsetclem7  18102  funcsetcestrclem7  18117  lmodvsdi  20639  lmodvsdir  20640  lmodvsass  20641  lss0cl  20701  phlpropd  21427  chpdmatlem3  22562  mbfimasn  25381  slmdvsdi  32630  slmdvsdir  32631  slmdvsass  32632  metider  33172  funcringcsetcALTV2lem7  47028  funcringcsetclem7ALTV  47051
  Copyright terms: Public domain W3C validator