Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  loop1cycl Structured version   Visualization version   GIF version

Theorem loop1cycl 35105
Description: A hypergraph has a cycle of length one if and only if it has a loop. (Contributed by BTernaryTau, 13-Oct-2023.)
Assertion
Ref Expression
loop1cycl (𝐺 ∈ UHGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) ↔ {𝐴} ∈ (Edg‘𝐺)))
Distinct variable groups:   𝐺,𝑝   𝐴,𝑓,𝑝   𝑓,𝐺

Proof of Theorem loop1cycl
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 cyclprop 29721 . . . . . . . . . . . . 13 (𝑓(Cycles‘𝐺)𝑝 → (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓))))
2 fveq2 6875 . . . . . . . . . . . . . . . 16 ((♯‘𝑓) = 1 → (𝑝‘(♯‘𝑓)) = (𝑝‘1))
32eqeq2d 2746 . . . . . . . . . . . . . . 15 ((♯‘𝑓) = 1 → ((𝑝‘0) = (𝑝‘(♯‘𝑓)) ↔ (𝑝‘0) = (𝑝‘1)))
43anbi2d 630 . . . . . . . . . . . . . 14 ((♯‘𝑓) = 1 → ((𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓))) ↔ (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1))))
54biimpd 229 . . . . . . . . . . . . 13 ((♯‘𝑓) = 1 → ((𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓))) → (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1))))
61, 5mpan9 506 . . . . . . . . . . . 12 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)))
7 pthiswlk 29653 . . . . . . . . . . . . 13 (𝑓(Paths‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
87anim1i 615 . . . . . . . . . . . 12 ((𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)) → (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)))
96, 8syl 17 . . . . . . . . . . 11 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)))
109anim1i 615 . . . . . . . . . 10 (((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) ∧ (♯‘𝑓) = 1) → ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)) ∧ (♯‘𝑓) = 1))
1110anabss3 675 . . . . . . . . 9 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)) ∧ (♯‘𝑓) = 1))
12 df-3an 1088 . . . . . . . . 9 ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1) ∧ (♯‘𝑓) = 1) ↔ ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)) ∧ (♯‘𝑓) = 1))
1311, 12sylibr 234 . . . . . . . 8 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1) ∧ (♯‘𝑓) = 1))
14 3ancomb 1098 . . . . . . . 8 ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1) ∧ (♯‘𝑓) = 1) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1)))
1513, 14sylib 218 . . . . . . 7 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1)))
16 wlkl1loop 29564 . . . . . . . . . 10 (((Fun (iEdg‘𝐺) ∧ 𝑓(Walks‘𝐺)𝑝) ∧ ((♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1))) → {(𝑝‘0)} ∈ (Edg‘𝐺))
1716expl 457 . . . . . . . . 9 (Fun (iEdg‘𝐺) → ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1))) → {(𝑝‘0)} ∈ (Edg‘𝐺)))
18 eqid 2735 . . . . . . . . . 10 (iEdg‘𝐺) = (iEdg‘𝐺)
1918uhgrfun 28991 . . . . . . . . 9 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
2017, 19syl11 33 . . . . . . . 8 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1))) → (𝐺 ∈ UHGraph → {(𝑝‘0)} ∈ (Edg‘𝐺)))
21203impb 1114 . . . . . . 7 ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1)) → (𝐺 ∈ UHGraph → {(𝑝‘0)} ∈ (Edg‘𝐺)))
2215, 21syl 17 . . . . . 6 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝐺 ∈ UHGraph → {(𝑝‘0)} ∈ (Edg‘𝐺)))
23223adant3 1132 . . . . 5 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → (𝐺 ∈ UHGraph → {(𝑝‘0)} ∈ (Edg‘𝐺)))
24 sneq 4611 . . . . . . 7 ((𝑝‘0) = 𝐴 → {(𝑝‘0)} = {𝐴})
2524eleq1d 2819 . . . . . 6 ((𝑝‘0) = 𝐴 → ({(𝑝‘0)} ∈ (Edg‘𝐺) ↔ {𝐴} ∈ (Edg‘𝐺)))
26253ad2ant3 1135 . . . . 5 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → ({(𝑝‘0)} ∈ (Edg‘𝐺) ↔ {𝐴} ∈ (Edg‘𝐺)))
2723, 26sylibd 239 . . . 4 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → (𝐺 ∈ UHGraph → {𝐴} ∈ (Edg‘𝐺)))
2827exlimivv 1932 . . 3 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → (𝐺 ∈ UHGraph → {𝐴} ∈ (Edg‘𝐺)))
2928com12 32 . 2 (𝐺 ∈ UHGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → {𝐴} ∈ (Edg‘𝐺)))
30 edgval 28974 . . . . . . . . . . . . . 14 (Edg‘𝐺) = ran (iEdg‘𝐺)
3130eleq2i 2826 . . . . . . . . . . . . 13 ({𝐴} ∈ (Edg‘𝐺) ↔ {𝐴} ∈ ran (iEdg‘𝐺))
32 elrnrexdm 7078 . . . . . . . . . . . . . 14 (Fun (iEdg‘𝐺) → ({𝐴} ∈ ran (iEdg‘𝐺) → ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴} = ((iEdg‘𝐺)‘𝑗)))
33 eqcom 2742 . . . . . . . . . . . . . . 15 ({𝐴} = ((iEdg‘𝐺)‘𝑗) ↔ ((iEdg‘𝐺)‘𝑗) = {𝐴})
3433rexbii 3083 . . . . . . . . . . . . . 14 (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴} = ((iEdg‘𝐺)‘𝑗) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴})
3532, 34imbitrdi 251 . . . . . . . . . . . . 13 (Fun (iEdg‘𝐺) → ({𝐴} ∈ ran (iEdg‘𝐺) → ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴}))
3631, 35biimtrid 242 . . . . . . . . . . . 12 (Fun (iEdg‘𝐺) → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴}))
3719, 36syl 17 . . . . . . . . . . 11 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴}))
38 df-rex 3061 . . . . . . . . . . 11 (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴} ↔ ∃𝑗(𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴}))
3937, 38imbitrdi 251 . . . . . . . . . 10 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗(𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴})))
4018lp1cycl 30079 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ 𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴}) → ⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩)
41403expib 1122 . . . . . . . . . . 11 (𝐺 ∈ UHGraph → ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴}) → ⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
4241eximdv 1917 . . . . . . . . . 10 (𝐺 ∈ UHGraph → (∃𝑗(𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴}) → ∃𝑗⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
4339, 42syld 47 . . . . . . . . 9 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
44 s1len 14622 . . . . . . . . . . 11 (♯‘⟨“𝑗”⟩) = 1
4544ax-gen 1795 . . . . . . . . . 10 𝑗(♯‘⟨“𝑗”⟩) = 1
46 19.29r 1874 . . . . . . . . . 10 ((∃𝑗⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ ∀𝑗(♯‘⟨“𝑗”⟩) = 1) → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1))
4745, 46mpan2 691 . . . . . . . . 9 (∃𝑗⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1))
4843, 47syl6 35 . . . . . . . 8 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1)))
4948imp 406 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1))
50 uhgredgn0 29053 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → {𝐴} ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
51 eldifsni 4766 . . . . . . . . . . 11 ({𝐴} ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → {𝐴} ≠ ∅)
5250, 51syl 17 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → {𝐴} ≠ ∅)
53 snnzb 4694 . . . . . . . . . 10 (𝐴 ∈ V ↔ {𝐴} ≠ ∅)
5452, 53sylibr 234 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → 𝐴 ∈ V)
55 s2fv0 14904 . . . . . . . . 9 (𝐴 ∈ V → (⟨“𝐴𝐴”⟩‘0) = 𝐴)
5654, 55syl 17 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → (⟨“𝐴𝐴”⟩‘0) = 𝐴)
5756alrimiv 1927 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∀𝑗(⟨“𝐴𝐴”⟩‘0) = 𝐴)
58 19.29r 1874 . . . . . . 7 ((∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ ∀𝑗(⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑗((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
5949, 57, 58syl2anc 584 . . . . . 6 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑗((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
60 df-3an 1088 . . . . . . 7 ((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) ↔ ((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
6160exbii 1848 . . . . . 6 (∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) ↔ ∃𝑗((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
6259, 61sylibr 234 . . . . 5 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
63 s1cli 14621 . . . . . . . 8 ⟨“𝑗”⟩ ∈ Word V
64 breq1 5122 . . . . . . . . . 10 (𝑓 = ⟨“𝑗”⟩ → (𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ↔ ⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
65 fveqeq2 6884 . . . . . . . . . 10 (𝑓 = ⟨“𝑗”⟩ → ((♯‘𝑓) = 1 ↔ (♯‘⟨“𝑗”⟩) = 1))
6664, 653anbi12d 1439 . . . . . . . . 9 (𝑓 = ⟨“𝑗”⟩ → ((𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) ↔ (⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴)))
6766rspcev 3601 . . . . . . . 8 ((⟨“𝑗”⟩ ∈ Word V ∧ (⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴)) → ∃𝑓 ∈ Word V(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
6863, 67mpan 690 . . . . . . 7 ((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓 ∈ Word V(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
69 rexex 3066 . . . . . . 7 (∃𝑓 ∈ Word V(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
7068, 69syl 17 . . . . . 6 ((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
7170exlimiv 1930 . . . . 5 (∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
7262, 71syl 17 . . . 4 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
73 s2cli 14897 . . . . . . 7 ⟨“𝐴𝐴”⟩ ∈ Word V
74 breq2 5123 . . . . . . . . 9 (𝑝 = ⟨“𝐴𝐴”⟩ → (𝑓(Cycles‘𝐺)𝑝𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
75 fveq1 6874 . . . . . . . . . 10 (𝑝 = ⟨“𝐴𝐴”⟩ → (𝑝‘0) = (⟨“𝐴𝐴”⟩‘0))
7675eqeq1d 2737 . . . . . . . . 9 (𝑝 = ⟨“𝐴𝐴”⟩ → ((𝑝‘0) = 𝐴 ↔ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
7774, 763anbi13d 1440 . . . . . . . 8 (𝑝 = ⟨“𝐴𝐴”⟩ → ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) ↔ (𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴)))
7877rspcev 3601 . . . . . . 7 ((⟨“𝐴𝐴”⟩ ∈ Word V ∧ (𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴)) → ∃𝑝 ∈ Word V(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
7973, 78mpan 690 . . . . . 6 ((𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑝 ∈ Word V(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
80 rexex 3066 . . . . . 6 (∃𝑝 ∈ Word V(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → ∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
8179, 80syl 17 . . . . 5 ((𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
8281eximi 1835 . . . 4 (∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
8372, 82syl 17 . . 3 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
8483ex 412 . 2 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴)))
8529, 84impbid 212 1 (𝐺 ∈ UHGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) ↔ {𝐴} ∈ (Edg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2108  wne 2932  wrex 3060  Vcvv 3459  cdif 3923  c0 4308  𝒫 cpw 4575  {csn 4601   class class class wbr 5119  dom cdm 5654  ran crn 5655  Fun wfun 6524  cfv 6530  0cc0 11127  1c1 11128  chash 14346  Word cword 14529  ⟨“cs1 14611  ⟨“cs2 14858  Vtxcvtx 28921  iEdgciedg 28922  Edgcedg 28972  UHGraphcuhgr 28981  Walkscwlks 29522  Pathscpths 29638  Cyclesccycls 29713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-n0 12500  df-z 12587  df-uz 12851  df-fz 13523  df-fzo 13670  df-hash 14347  df-word 14530  df-concat 14587  df-s1 14612  df-s2 14865  df-edg 28973  df-uhgr 28983  df-wlks 29525  df-wlkson 29526  df-trls 29618  df-trlson 29619  df-pths 29642  df-pthson 29644  df-cycls 29715
This theorem is referenced by:  acycgrislfgr  35120
  Copyright terms: Public domain W3C validator