Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  loop1cycl Structured version   Visualization version   GIF version

Theorem loop1cycl 35105
Description: A hypergraph has a cycle of length one if and only if it has a loop. (Contributed by BTernaryTau, 13-Oct-2023.)
Assertion
Ref Expression
loop1cycl (𝐺 ∈ UHGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) ↔ {𝐴} ∈ (Edg‘𝐺)))
Distinct variable groups:   𝐺,𝑝   𝐴,𝑓,𝑝   𝑓,𝐺

Proof of Theorem loop1cycl
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 cyclprop 29829 . . . . . . . . . . . . 13 (𝑓(Cycles‘𝐺)𝑝 → (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓))))
2 fveq2 6920 . . . . . . . . . . . . . . . 16 ((♯‘𝑓) = 1 → (𝑝‘(♯‘𝑓)) = (𝑝‘1))
32eqeq2d 2751 . . . . . . . . . . . . . . 15 ((♯‘𝑓) = 1 → ((𝑝‘0) = (𝑝‘(♯‘𝑓)) ↔ (𝑝‘0) = (𝑝‘1)))
43anbi2d 629 . . . . . . . . . . . . . 14 ((♯‘𝑓) = 1 → ((𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓))) ↔ (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1))))
54biimpd 229 . . . . . . . . . . . . 13 ((♯‘𝑓) = 1 → ((𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓))) → (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1))))
61, 5mpan9 506 . . . . . . . . . . . 12 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)))
7 pthiswlk 29763 . . . . . . . . . . . . 13 (𝑓(Paths‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
87anim1i 614 . . . . . . . . . . . 12 ((𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)) → (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)))
96, 8syl 17 . . . . . . . . . . 11 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)))
109anim1i 614 . . . . . . . . . 10 (((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) ∧ (♯‘𝑓) = 1) → ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)) ∧ (♯‘𝑓) = 1))
1110anabss3 674 . . . . . . . . 9 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)) ∧ (♯‘𝑓) = 1))
12 df-3an 1089 . . . . . . . . 9 ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1) ∧ (♯‘𝑓) = 1) ↔ ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)) ∧ (♯‘𝑓) = 1))
1311, 12sylibr 234 . . . . . . . 8 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1) ∧ (♯‘𝑓) = 1))
14 3ancomb 1099 . . . . . . . 8 ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1) ∧ (♯‘𝑓) = 1) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1)))
1513, 14sylib 218 . . . . . . 7 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1)))
16 wlkl1loop 29674 . . . . . . . . . 10 (((Fun (iEdg‘𝐺) ∧ 𝑓(Walks‘𝐺)𝑝) ∧ ((♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1))) → {(𝑝‘0)} ∈ (Edg‘𝐺))
1716expl 457 . . . . . . . . 9 (Fun (iEdg‘𝐺) → ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1))) → {(𝑝‘0)} ∈ (Edg‘𝐺)))
18 eqid 2740 . . . . . . . . . 10 (iEdg‘𝐺) = (iEdg‘𝐺)
1918uhgrfun 29101 . . . . . . . . 9 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
2017, 19syl11 33 . . . . . . . 8 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1))) → (𝐺 ∈ UHGraph → {(𝑝‘0)} ∈ (Edg‘𝐺)))
21203impb 1115 . . . . . . 7 ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1)) → (𝐺 ∈ UHGraph → {(𝑝‘0)} ∈ (Edg‘𝐺)))
2215, 21syl 17 . . . . . 6 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝐺 ∈ UHGraph → {(𝑝‘0)} ∈ (Edg‘𝐺)))
23223adant3 1132 . . . . 5 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → (𝐺 ∈ UHGraph → {(𝑝‘0)} ∈ (Edg‘𝐺)))
24 sneq 4658 . . . . . . 7 ((𝑝‘0) = 𝐴 → {(𝑝‘0)} = {𝐴})
2524eleq1d 2829 . . . . . 6 ((𝑝‘0) = 𝐴 → ({(𝑝‘0)} ∈ (Edg‘𝐺) ↔ {𝐴} ∈ (Edg‘𝐺)))
26253ad2ant3 1135 . . . . 5 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → ({(𝑝‘0)} ∈ (Edg‘𝐺) ↔ {𝐴} ∈ (Edg‘𝐺)))
2723, 26sylibd 239 . . . 4 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → (𝐺 ∈ UHGraph → {𝐴} ∈ (Edg‘𝐺)))
2827exlimivv 1931 . . 3 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → (𝐺 ∈ UHGraph → {𝐴} ∈ (Edg‘𝐺)))
2928com12 32 . 2 (𝐺 ∈ UHGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → {𝐴} ∈ (Edg‘𝐺)))
30 edgval 29084 . . . . . . . . . . . . . 14 (Edg‘𝐺) = ran (iEdg‘𝐺)
3130eleq2i 2836 . . . . . . . . . . . . 13 ({𝐴} ∈ (Edg‘𝐺) ↔ {𝐴} ∈ ran (iEdg‘𝐺))
32 elrnrexdm 7123 . . . . . . . . . . . . . 14 (Fun (iEdg‘𝐺) → ({𝐴} ∈ ran (iEdg‘𝐺) → ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴} = ((iEdg‘𝐺)‘𝑗)))
33 eqcom 2747 . . . . . . . . . . . . . . 15 ({𝐴} = ((iEdg‘𝐺)‘𝑗) ↔ ((iEdg‘𝐺)‘𝑗) = {𝐴})
3433rexbii 3100 . . . . . . . . . . . . . 14 (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴} = ((iEdg‘𝐺)‘𝑗) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴})
3532, 34imbitrdi 251 . . . . . . . . . . . . 13 (Fun (iEdg‘𝐺) → ({𝐴} ∈ ran (iEdg‘𝐺) → ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴}))
3631, 35biimtrid 242 . . . . . . . . . . . 12 (Fun (iEdg‘𝐺) → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴}))
3719, 36syl 17 . . . . . . . . . . 11 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴}))
38 df-rex 3077 . . . . . . . . . . 11 (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴} ↔ ∃𝑗(𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴}))
3937, 38imbitrdi 251 . . . . . . . . . 10 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗(𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴})))
4018lp1cycl 30184 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ 𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴}) → ⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩)
41403expib 1122 . . . . . . . . . . 11 (𝐺 ∈ UHGraph → ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴}) → ⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
4241eximdv 1916 . . . . . . . . . 10 (𝐺 ∈ UHGraph → (∃𝑗(𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴}) → ∃𝑗⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
4339, 42syld 47 . . . . . . . . 9 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
44 s1len 14654 . . . . . . . . . . 11 (♯‘⟨“𝑗”⟩) = 1
4544ax-gen 1793 . . . . . . . . . 10 𝑗(♯‘⟨“𝑗”⟩) = 1
46 19.29r 1873 . . . . . . . . . 10 ((∃𝑗⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ ∀𝑗(♯‘⟨“𝑗”⟩) = 1) → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1))
4745, 46mpan2 690 . . . . . . . . 9 (∃𝑗⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1))
4843, 47syl6 35 . . . . . . . 8 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1)))
4948imp 406 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1))
50 uhgredgn0 29163 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → {𝐴} ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
51 eldifsni 4815 . . . . . . . . . . 11 ({𝐴} ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → {𝐴} ≠ ∅)
5250, 51syl 17 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → {𝐴} ≠ ∅)
53 snnzb 4743 . . . . . . . . . 10 (𝐴 ∈ V ↔ {𝐴} ≠ ∅)
5452, 53sylibr 234 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → 𝐴 ∈ V)
55 s2fv0 14936 . . . . . . . . 9 (𝐴 ∈ V → (⟨“𝐴𝐴”⟩‘0) = 𝐴)
5654, 55syl 17 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → (⟨“𝐴𝐴”⟩‘0) = 𝐴)
5756alrimiv 1926 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∀𝑗(⟨“𝐴𝐴”⟩‘0) = 𝐴)
58 19.29r 1873 . . . . . . 7 ((∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ ∀𝑗(⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑗((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
5949, 57, 58syl2anc 583 . . . . . 6 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑗((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
60 df-3an 1089 . . . . . . 7 ((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) ↔ ((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
6160exbii 1846 . . . . . 6 (∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) ↔ ∃𝑗((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
6259, 61sylibr 234 . . . . 5 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
63 s1cli 14653 . . . . . . . 8 ⟨“𝑗”⟩ ∈ Word V
64 breq1 5169 . . . . . . . . . 10 (𝑓 = ⟨“𝑗”⟩ → (𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ↔ ⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
65 fveqeq2 6929 . . . . . . . . . 10 (𝑓 = ⟨“𝑗”⟩ → ((♯‘𝑓) = 1 ↔ (♯‘⟨“𝑗”⟩) = 1))
6664, 653anbi12d 1437 . . . . . . . . 9 (𝑓 = ⟨“𝑗”⟩ → ((𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) ↔ (⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴)))
6766rspcev 3635 . . . . . . . 8 ((⟨“𝑗”⟩ ∈ Word V ∧ (⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴)) → ∃𝑓 ∈ Word V(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
6863, 67mpan 689 . . . . . . 7 ((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓 ∈ Word V(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
69 rexex 3082 . . . . . . 7 (∃𝑓 ∈ Word V(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
7068, 69syl 17 . . . . . 6 ((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
7170exlimiv 1929 . . . . 5 (∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
7262, 71syl 17 . . . 4 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
73 s2cli 14929 . . . . . . 7 ⟨“𝐴𝐴”⟩ ∈ Word V
74 breq2 5170 . . . . . . . . 9 (𝑝 = ⟨“𝐴𝐴”⟩ → (𝑓(Cycles‘𝐺)𝑝𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
75 fveq1 6919 . . . . . . . . . 10 (𝑝 = ⟨“𝐴𝐴”⟩ → (𝑝‘0) = (⟨“𝐴𝐴”⟩‘0))
7675eqeq1d 2742 . . . . . . . . 9 (𝑝 = ⟨“𝐴𝐴”⟩ → ((𝑝‘0) = 𝐴 ↔ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
7774, 763anbi13d 1438 . . . . . . . 8 (𝑝 = ⟨“𝐴𝐴”⟩ → ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) ↔ (𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴)))
7877rspcev 3635 . . . . . . 7 ((⟨“𝐴𝐴”⟩ ∈ Word V ∧ (𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴)) → ∃𝑝 ∈ Word V(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
7973, 78mpan 689 . . . . . 6 ((𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑝 ∈ Word V(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
80 rexex 3082 . . . . . 6 (∃𝑝 ∈ Word V(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → ∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
8179, 80syl 17 . . . . 5 ((𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
8281eximi 1833 . . . 4 (∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
8372, 82syl 17 . . 3 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
8483ex 412 . 2 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴)))
8529, 84impbid 212 1 (𝐺 ∈ UHGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) ↔ {𝐴} ∈ (Edg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1535   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  Vcvv 3488  cdif 3973  c0 4352  𝒫 cpw 4622  {csn 4648   class class class wbr 5166  dom cdm 5700  ran crn 5701  Fun wfun 6567  cfv 6573  0cc0 11184  1c1 11185  chash 14379  Word cword 14562  ⟨“cs1 14643  ⟨“cs2 14890  Vtxcvtx 29031  iEdgciedg 29032  Edgcedg 29082  UHGraphcuhgr 29091  Walkscwlks 29632  Pathscpths 29748  Cyclesccycls 29821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-edg 29083  df-uhgr 29093  df-wlks 29635  df-wlkson 29636  df-trls 29728  df-trlson 29729  df-pths 29752  df-pthson 29754  df-cycls 29823
This theorem is referenced by:  acycgrislfgr  35120
  Copyright terms: Public domain W3C validator