Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  loop1cycl Structured version   Visualization version   GIF version

Theorem loop1cycl 35192
Description: A hypergraph has a cycle of length one if and only if it has a loop. (Contributed by BTernaryTau, 13-Oct-2023.)
Assertion
Ref Expression
loop1cycl (𝐺 ∈ UHGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) ↔ {𝐴} ∈ (Edg‘𝐺)))
Distinct variable groups:   𝐺,𝑝   𝐴,𝑓,𝑝   𝑓,𝐺

Proof of Theorem loop1cycl
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 cyclprop 29782 . . . . . . . . . . . . 13 (𝑓(Cycles‘𝐺)𝑝 → (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓))))
2 fveq2 6831 . . . . . . . . . . . . . . . 16 ((♯‘𝑓) = 1 → (𝑝‘(♯‘𝑓)) = (𝑝‘1))
32eqeq2d 2744 . . . . . . . . . . . . . . 15 ((♯‘𝑓) = 1 → ((𝑝‘0) = (𝑝‘(♯‘𝑓)) ↔ (𝑝‘0) = (𝑝‘1)))
43anbi2d 630 . . . . . . . . . . . . . 14 ((♯‘𝑓) = 1 → ((𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓))) ↔ (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1))))
54biimpd 229 . . . . . . . . . . . . 13 ((♯‘𝑓) = 1 → ((𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓))) → (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1))))
61, 5mpan9 506 . . . . . . . . . . . 12 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)))
7 pthiswlk 29714 . . . . . . . . . . . . 13 (𝑓(Paths‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
87anim1i 615 . . . . . . . . . . . 12 ((𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)) → (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)))
96, 8syl 17 . . . . . . . . . . 11 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)))
109anim1i 615 . . . . . . . . . 10 (((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) ∧ (♯‘𝑓) = 1) → ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)) ∧ (♯‘𝑓) = 1))
1110anabss3 675 . . . . . . . . 9 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)) ∧ (♯‘𝑓) = 1))
12 df-3an 1088 . . . . . . . . 9 ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1) ∧ (♯‘𝑓) = 1) ↔ ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)) ∧ (♯‘𝑓) = 1))
1311, 12sylibr 234 . . . . . . . 8 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1) ∧ (♯‘𝑓) = 1))
14 3ancomb 1098 . . . . . . . 8 ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1) ∧ (♯‘𝑓) = 1) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1)))
1513, 14sylib 218 . . . . . . 7 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1)))
16 wlkl1loop 29627 . . . . . . . . . 10 (((Fun (iEdg‘𝐺) ∧ 𝑓(Walks‘𝐺)𝑝) ∧ ((♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1))) → {(𝑝‘0)} ∈ (Edg‘𝐺))
1716expl 457 . . . . . . . . 9 (Fun (iEdg‘𝐺) → ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1))) → {(𝑝‘0)} ∈ (Edg‘𝐺)))
18 eqid 2733 . . . . . . . . . 10 (iEdg‘𝐺) = (iEdg‘𝐺)
1918uhgrfun 29055 . . . . . . . . 9 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
2017, 19syl11 33 . . . . . . . 8 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1))) → (𝐺 ∈ UHGraph → {(𝑝‘0)} ∈ (Edg‘𝐺)))
21203impb 1114 . . . . . . 7 ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1)) → (𝐺 ∈ UHGraph → {(𝑝‘0)} ∈ (Edg‘𝐺)))
2215, 21syl 17 . . . . . 6 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝐺 ∈ UHGraph → {(𝑝‘0)} ∈ (Edg‘𝐺)))
23223adant3 1132 . . . . 5 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → (𝐺 ∈ UHGraph → {(𝑝‘0)} ∈ (Edg‘𝐺)))
24 sneq 4587 . . . . . . 7 ((𝑝‘0) = 𝐴 → {(𝑝‘0)} = {𝐴})
2524eleq1d 2818 . . . . . 6 ((𝑝‘0) = 𝐴 → ({(𝑝‘0)} ∈ (Edg‘𝐺) ↔ {𝐴} ∈ (Edg‘𝐺)))
26253ad2ant3 1135 . . . . 5 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → ({(𝑝‘0)} ∈ (Edg‘𝐺) ↔ {𝐴} ∈ (Edg‘𝐺)))
2723, 26sylibd 239 . . . 4 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → (𝐺 ∈ UHGraph → {𝐴} ∈ (Edg‘𝐺)))
2827exlimivv 1933 . . 3 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → (𝐺 ∈ UHGraph → {𝐴} ∈ (Edg‘𝐺)))
2928com12 32 . 2 (𝐺 ∈ UHGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → {𝐴} ∈ (Edg‘𝐺)))
30 edgval 29038 . . . . . . . . . . . . . 14 (Edg‘𝐺) = ran (iEdg‘𝐺)
3130eleq2i 2825 . . . . . . . . . . . . 13 ({𝐴} ∈ (Edg‘𝐺) ↔ {𝐴} ∈ ran (iEdg‘𝐺))
32 elrnrexdm 7031 . . . . . . . . . . . . . 14 (Fun (iEdg‘𝐺) → ({𝐴} ∈ ran (iEdg‘𝐺) → ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴} = ((iEdg‘𝐺)‘𝑗)))
33 eqcom 2740 . . . . . . . . . . . . . . 15 ({𝐴} = ((iEdg‘𝐺)‘𝑗) ↔ ((iEdg‘𝐺)‘𝑗) = {𝐴})
3433rexbii 3081 . . . . . . . . . . . . . 14 (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴} = ((iEdg‘𝐺)‘𝑗) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴})
3532, 34imbitrdi 251 . . . . . . . . . . . . 13 (Fun (iEdg‘𝐺) → ({𝐴} ∈ ran (iEdg‘𝐺) → ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴}))
3631, 35biimtrid 242 . . . . . . . . . . . 12 (Fun (iEdg‘𝐺) → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴}))
3719, 36syl 17 . . . . . . . . . . 11 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴}))
38 df-rex 3059 . . . . . . . . . . 11 (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴} ↔ ∃𝑗(𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴}))
3937, 38imbitrdi 251 . . . . . . . . . 10 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗(𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴})))
4018lp1cycl 30143 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ 𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴}) → ⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩)
41403expib 1122 . . . . . . . . . . 11 (𝐺 ∈ UHGraph → ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴}) → ⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
4241eximdv 1918 . . . . . . . . . 10 (𝐺 ∈ UHGraph → (∃𝑗(𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴}) → ∃𝑗⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
4339, 42syld 47 . . . . . . . . 9 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
44 s1len 14524 . . . . . . . . . . 11 (♯‘⟨“𝑗”⟩) = 1
4544ax-gen 1796 . . . . . . . . . 10 𝑗(♯‘⟨“𝑗”⟩) = 1
46 19.29r 1875 . . . . . . . . . 10 ((∃𝑗⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ ∀𝑗(♯‘⟨“𝑗”⟩) = 1) → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1))
4745, 46mpan2 691 . . . . . . . . 9 (∃𝑗⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1))
4843, 47syl6 35 . . . . . . . 8 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1)))
4948imp 406 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1))
50 uhgredgn0 29117 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → {𝐴} ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
51 eldifsni 4743 . . . . . . . . . . 11 ({𝐴} ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → {𝐴} ≠ ∅)
5250, 51syl 17 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → {𝐴} ≠ ∅)
53 snnzb 4672 . . . . . . . . . 10 (𝐴 ∈ V ↔ {𝐴} ≠ ∅)
5452, 53sylibr 234 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → 𝐴 ∈ V)
55 s2fv0 14804 . . . . . . . . 9 (𝐴 ∈ V → (⟨“𝐴𝐴”⟩‘0) = 𝐴)
5654, 55syl 17 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → (⟨“𝐴𝐴”⟩‘0) = 𝐴)
5756alrimiv 1928 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∀𝑗(⟨“𝐴𝐴”⟩‘0) = 𝐴)
58 19.29r 1875 . . . . . . 7 ((∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ ∀𝑗(⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑗((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
5949, 57, 58syl2anc 584 . . . . . 6 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑗((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
60 df-3an 1088 . . . . . . 7 ((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) ↔ ((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
6160exbii 1849 . . . . . 6 (∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) ↔ ∃𝑗((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
6259, 61sylibr 234 . . . . 5 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
63 s1cli 14523 . . . . . . . 8 ⟨“𝑗”⟩ ∈ Word V
64 breq1 5098 . . . . . . . . . 10 (𝑓 = ⟨“𝑗”⟩ → (𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ↔ ⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
65 fveqeq2 6840 . . . . . . . . . 10 (𝑓 = ⟨“𝑗”⟩ → ((♯‘𝑓) = 1 ↔ (♯‘⟨“𝑗”⟩) = 1))
6664, 653anbi12d 1439 . . . . . . . . 9 (𝑓 = ⟨“𝑗”⟩ → ((𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) ↔ (⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴)))
6766rspcev 3574 . . . . . . . 8 ((⟨“𝑗”⟩ ∈ Word V ∧ (⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴)) → ∃𝑓 ∈ Word V(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
6863, 67mpan 690 . . . . . . 7 ((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓 ∈ Word V(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
69 rexex 3064 . . . . . . 7 (∃𝑓 ∈ Word V(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
7068, 69syl 17 . . . . . 6 ((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
7170exlimiv 1931 . . . . 5 (∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
7262, 71syl 17 . . . 4 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
73 s2cli 14797 . . . . . . 7 ⟨“𝐴𝐴”⟩ ∈ Word V
74 breq2 5099 . . . . . . . . 9 (𝑝 = ⟨“𝐴𝐴”⟩ → (𝑓(Cycles‘𝐺)𝑝𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
75 fveq1 6830 . . . . . . . . . 10 (𝑝 = ⟨“𝐴𝐴”⟩ → (𝑝‘0) = (⟨“𝐴𝐴”⟩‘0))
7675eqeq1d 2735 . . . . . . . . 9 (𝑝 = ⟨“𝐴𝐴”⟩ → ((𝑝‘0) = 𝐴 ↔ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
7774, 763anbi13d 1440 . . . . . . . 8 (𝑝 = ⟨“𝐴𝐴”⟩ → ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) ↔ (𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴)))
7877rspcev 3574 . . . . . . 7 ((⟨“𝐴𝐴”⟩ ∈ Word V ∧ (𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴)) → ∃𝑝 ∈ Word V(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
7973, 78mpan 690 . . . . . 6 ((𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑝 ∈ Word V(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
80 rexex 3064 . . . . . 6 (∃𝑝 ∈ Word V(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → ∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
8179, 80syl 17 . . . . 5 ((𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
8281eximi 1836 . . . 4 (∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
8372, 82syl 17 . . 3 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
8483ex 412 . 2 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴)))
8529, 84impbid 212 1 (𝐺 ∈ UHGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) ↔ {𝐴} ∈ (Edg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wex 1780  wcel 2113  wne 2930  wrex 3058  Vcvv 3438  cdif 3896  c0 4284  𝒫 cpw 4551  {csn 4577   class class class wbr 5095  dom cdm 5621  ran crn 5622  Fun wfun 6483  cfv 6489  0cc0 11016  1c1 11017  chash 14247  Word cword 14430  ⟨“cs1 14513  ⟨“cs2 14758  Vtxcvtx 28985  iEdgciedg 28986  Edgcedg 29036  UHGraphcuhgr 29045  Walkscwlks 29586  Pathscpths 29699  Cyclesccycls 29774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-pm 8762  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-n0 12392  df-z 12479  df-uz 12743  df-fz 13418  df-fzo 13565  df-hash 14248  df-word 14431  df-concat 14488  df-s1 14514  df-s2 14765  df-edg 29037  df-uhgr 29047  df-wlks 29589  df-wlkson 29590  df-trls 29680  df-trlson 29681  df-pths 29703  df-pthson 29705  df-cycls 29776
This theorem is referenced by:  acycgrislfgr  35207
  Copyright terms: Public domain W3C validator