Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  loop1cycl Structured version   Visualization version   GIF version

Theorem loop1cycl 35131
Description: A hypergraph has a cycle of length one if and only if it has a loop. (Contributed by BTernaryTau, 13-Oct-2023.)
Assertion
Ref Expression
loop1cycl (𝐺 ∈ UHGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) ↔ {𝐴} ∈ (Edg‘𝐺)))
Distinct variable groups:   𝐺,𝑝   𝐴,𝑓,𝑝   𝑓,𝐺

Proof of Theorem loop1cycl
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 cyclprop 29730 . . . . . . . . . . . . 13 (𝑓(Cycles‘𝐺)𝑝 → (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓))))
2 fveq2 6861 . . . . . . . . . . . . . . . 16 ((♯‘𝑓) = 1 → (𝑝‘(♯‘𝑓)) = (𝑝‘1))
32eqeq2d 2741 . . . . . . . . . . . . . . 15 ((♯‘𝑓) = 1 → ((𝑝‘0) = (𝑝‘(♯‘𝑓)) ↔ (𝑝‘0) = (𝑝‘1)))
43anbi2d 630 . . . . . . . . . . . . . 14 ((♯‘𝑓) = 1 → ((𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓))) ↔ (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1))))
54biimpd 229 . . . . . . . . . . . . 13 ((♯‘𝑓) = 1 → ((𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓))) → (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1))))
61, 5mpan9 506 . . . . . . . . . . . 12 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)))
7 pthiswlk 29662 . . . . . . . . . . . . 13 (𝑓(Paths‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
87anim1i 615 . . . . . . . . . . . 12 ((𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)) → (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)))
96, 8syl 17 . . . . . . . . . . 11 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)))
109anim1i 615 . . . . . . . . . 10 (((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) ∧ (♯‘𝑓) = 1) → ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)) ∧ (♯‘𝑓) = 1))
1110anabss3 675 . . . . . . . . 9 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)) ∧ (♯‘𝑓) = 1))
12 df-3an 1088 . . . . . . . . 9 ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1) ∧ (♯‘𝑓) = 1) ↔ ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)) ∧ (♯‘𝑓) = 1))
1311, 12sylibr 234 . . . . . . . 8 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1) ∧ (♯‘𝑓) = 1))
14 3ancomb 1098 . . . . . . . 8 ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1) ∧ (♯‘𝑓) = 1) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1)))
1513, 14sylib 218 . . . . . . 7 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1)))
16 wlkl1loop 29573 . . . . . . . . . 10 (((Fun (iEdg‘𝐺) ∧ 𝑓(Walks‘𝐺)𝑝) ∧ ((♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1))) → {(𝑝‘0)} ∈ (Edg‘𝐺))
1716expl 457 . . . . . . . . 9 (Fun (iEdg‘𝐺) → ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1))) → {(𝑝‘0)} ∈ (Edg‘𝐺)))
18 eqid 2730 . . . . . . . . . 10 (iEdg‘𝐺) = (iEdg‘𝐺)
1918uhgrfun 29000 . . . . . . . . 9 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
2017, 19syl11 33 . . . . . . . 8 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1))) → (𝐺 ∈ UHGraph → {(𝑝‘0)} ∈ (Edg‘𝐺)))
21203impb 1114 . . . . . . 7 ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1)) → (𝐺 ∈ UHGraph → {(𝑝‘0)} ∈ (Edg‘𝐺)))
2215, 21syl 17 . . . . . 6 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝐺 ∈ UHGraph → {(𝑝‘0)} ∈ (Edg‘𝐺)))
23223adant3 1132 . . . . 5 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → (𝐺 ∈ UHGraph → {(𝑝‘0)} ∈ (Edg‘𝐺)))
24 sneq 4602 . . . . . . 7 ((𝑝‘0) = 𝐴 → {(𝑝‘0)} = {𝐴})
2524eleq1d 2814 . . . . . 6 ((𝑝‘0) = 𝐴 → ({(𝑝‘0)} ∈ (Edg‘𝐺) ↔ {𝐴} ∈ (Edg‘𝐺)))
26253ad2ant3 1135 . . . . 5 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → ({(𝑝‘0)} ∈ (Edg‘𝐺) ↔ {𝐴} ∈ (Edg‘𝐺)))
2723, 26sylibd 239 . . . 4 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → (𝐺 ∈ UHGraph → {𝐴} ∈ (Edg‘𝐺)))
2827exlimivv 1932 . . 3 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → (𝐺 ∈ UHGraph → {𝐴} ∈ (Edg‘𝐺)))
2928com12 32 . 2 (𝐺 ∈ UHGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → {𝐴} ∈ (Edg‘𝐺)))
30 edgval 28983 . . . . . . . . . . . . . 14 (Edg‘𝐺) = ran (iEdg‘𝐺)
3130eleq2i 2821 . . . . . . . . . . . . 13 ({𝐴} ∈ (Edg‘𝐺) ↔ {𝐴} ∈ ran (iEdg‘𝐺))
32 elrnrexdm 7064 . . . . . . . . . . . . . 14 (Fun (iEdg‘𝐺) → ({𝐴} ∈ ran (iEdg‘𝐺) → ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴} = ((iEdg‘𝐺)‘𝑗)))
33 eqcom 2737 . . . . . . . . . . . . . . 15 ({𝐴} = ((iEdg‘𝐺)‘𝑗) ↔ ((iEdg‘𝐺)‘𝑗) = {𝐴})
3433rexbii 3077 . . . . . . . . . . . . . 14 (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴} = ((iEdg‘𝐺)‘𝑗) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴})
3532, 34imbitrdi 251 . . . . . . . . . . . . 13 (Fun (iEdg‘𝐺) → ({𝐴} ∈ ran (iEdg‘𝐺) → ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴}))
3631, 35biimtrid 242 . . . . . . . . . . . 12 (Fun (iEdg‘𝐺) → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴}))
3719, 36syl 17 . . . . . . . . . . 11 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴}))
38 df-rex 3055 . . . . . . . . . . 11 (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴} ↔ ∃𝑗(𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴}))
3937, 38imbitrdi 251 . . . . . . . . . 10 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗(𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴})))
4018lp1cycl 30088 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ 𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴}) → ⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩)
41403expib 1122 . . . . . . . . . . 11 (𝐺 ∈ UHGraph → ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴}) → ⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
4241eximdv 1917 . . . . . . . . . 10 (𝐺 ∈ UHGraph → (∃𝑗(𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴}) → ∃𝑗⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
4339, 42syld 47 . . . . . . . . 9 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
44 s1len 14578 . . . . . . . . . . 11 (♯‘⟨“𝑗”⟩) = 1
4544ax-gen 1795 . . . . . . . . . 10 𝑗(♯‘⟨“𝑗”⟩) = 1
46 19.29r 1874 . . . . . . . . . 10 ((∃𝑗⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ ∀𝑗(♯‘⟨“𝑗”⟩) = 1) → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1))
4745, 46mpan2 691 . . . . . . . . 9 (∃𝑗⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1))
4843, 47syl6 35 . . . . . . . 8 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1)))
4948imp 406 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1))
50 uhgredgn0 29062 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → {𝐴} ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
51 eldifsni 4757 . . . . . . . . . . 11 ({𝐴} ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → {𝐴} ≠ ∅)
5250, 51syl 17 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → {𝐴} ≠ ∅)
53 snnzb 4685 . . . . . . . . . 10 (𝐴 ∈ V ↔ {𝐴} ≠ ∅)
5452, 53sylibr 234 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → 𝐴 ∈ V)
55 s2fv0 14860 . . . . . . . . 9 (𝐴 ∈ V → (⟨“𝐴𝐴”⟩‘0) = 𝐴)
5654, 55syl 17 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → (⟨“𝐴𝐴”⟩‘0) = 𝐴)
5756alrimiv 1927 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∀𝑗(⟨“𝐴𝐴”⟩‘0) = 𝐴)
58 19.29r 1874 . . . . . . 7 ((∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ ∀𝑗(⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑗((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
5949, 57, 58syl2anc 584 . . . . . 6 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑗((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
60 df-3an 1088 . . . . . . 7 ((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) ↔ ((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
6160exbii 1848 . . . . . 6 (∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) ↔ ∃𝑗((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
6259, 61sylibr 234 . . . . 5 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
63 s1cli 14577 . . . . . . . 8 ⟨“𝑗”⟩ ∈ Word V
64 breq1 5113 . . . . . . . . . 10 (𝑓 = ⟨“𝑗”⟩ → (𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ↔ ⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
65 fveqeq2 6870 . . . . . . . . . 10 (𝑓 = ⟨“𝑗”⟩ → ((♯‘𝑓) = 1 ↔ (♯‘⟨“𝑗”⟩) = 1))
6664, 653anbi12d 1439 . . . . . . . . 9 (𝑓 = ⟨“𝑗”⟩ → ((𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) ↔ (⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴)))
6766rspcev 3591 . . . . . . . 8 ((⟨“𝑗”⟩ ∈ Word V ∧ (⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴)) → ∃𝑓 ∈ Word V(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
6863, 67mpan 690 . . . . . . 7 ((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓 ∈ Word V(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
69 rexex 3060 . . . . . . 7 (∃𝑓 ∈ Word V(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
7068, 69syl 17 . . . . . 6 ((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
7170exlimiv 1930 . . . . 5 (∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
7262, 71syl 17 . . . 4 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
73 s2cli 14853 . . . . . . 7 ⟨“𝐴𝐴”⟩ ∈ Word V
74 breq2 5114 . . . . . . . . 9 (𝑝 = ⟨“𝐴𝐴”⟩ → (𝑓(Cycles‘𝐺)𝑝𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
75 fveq1 6860 . . . . . . . . . 10 (𝑝 = ⟨“𝐴𝐴”⟩ → (𝑝‘0) = (⟨“𝐴𝐴”⟩‘0))
7675eqeq1d 2732 . . . . . . . . 9 (𝑝 = ⟨“𝐴𝐴”⟩ → ((𝑝‘0) = 𝐴 ↔ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
7774, 763anbi13d 1440 . . . . . . . 8 (𝑝 = ⟨“𝐴𝐴”⟩ → ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) ↔ (𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴)))
7877rspcev 3591 . . . . . . 7 ((⟨“𝐴𝐴”⟩ ∈ Word V ∧ (𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴)) → ∃𝑝 ∈ Word V(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
7973, 78mpan 690 . . . . . 6 ((𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑝 ∈ Word V(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
80 rexex 3060 . . . . . 6 (∃𝑝 ∈ Word V(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → ∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
8179, 80syl 17 . . . . 5 ((𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
8281eximi 1835 . . . 4 (∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
8372, 82syl 17 . . 3 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
8483ex 412 . 2 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴)))
8529, 84impbid 212 1 (𝐺 ∈ UHGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) ↔ {𝐴} ∈ (Edg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2926  wrex 3054  Vcvv 3450  cdif 3914  c0 4299  𝒫 cpw 4566  {csn 4592   class class class wbr 5110  dom cdm 5641  ran crn 5642  Fun wfun 6508  cfv 6514  0cc0 11075  1c1 11076  chash 14302  Word cword 14485  ⟨“cs1 14567  ⟨“cs2 14814  Vtxcvtx 28930  iEdgciedg 28931  Edgcedg 28981  UHGraphcuhgr 28990  Walkscwlks 29531  Pathscpths 29647  Cyclesccycls 29722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821  df-edg 28982  df-uhgr 28992  df-wlks 29534  df-wlkson 29535  df-trls 29627  df-trlson 29628  df-pths 29651  df-pthson 29653  df-cycls 29724
This theorem is referenced by:  acycgrislfgr  35146
  Copyright terms: Public domain W3C validator