Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  loop1cycl Structured version   Visualization version   GIF version

Theorem loop1cycl 35121
Description: A hypergraph has a cycle of length one if and only if it has a loop. (Contributed by BTernaryTau, 13-Oct-2023.)
Assertion
Ref Expression
loop1cycl (𝐺 ∈ UHGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) ↔ {𝐴} ∈ (Edg‘𝐺)))
Distinct variable groups:   𝐺,𝑝   𝐴,𝑓,𝑝   𝑓,𝐺

Proof of Theorem loop1cycl
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 cyclprop 29825 . . . . . . . . . . . . 13 (𝑓(Cycles‘𝐺)𝑝 → (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓))))
2 fveq2 6906 . . . . . . . . . . . . . . . 16 ((♯‘𝑓) = 1 → (𝑝‘(♯‘𝑓)) = (𝑝‘1))
32eqeq2d 2745 . . . . . . . . . . . . . . 15 ((♯‘𝑓) = 1 → ((𝑝‘0) = (𝑝‘(♯‘𝑓)) ↔ (𝑝‘0) = (𝑝‘1)))
43anbi2d 630 . . . . . . . . . . . . . 14 ((♯‘𝑓) = 1 → ((𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓))) ↔ (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1))))
54biimpd 229 . . . . . . . . . . . . 13 ((♯‘𝑓) = 1 → ((𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓))) → (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1))))
61, 5mpan9 506 . . . . . . . . . . . 12 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)))
7 pthiswlk 29759 . . . . . . . . . . . . 13 (𝑓(Paths‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
87anim1i 615 . . . . . . . . . . . 12 ((𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)) → (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)))
96, 8syl 17 . . . . . . . . . . 11 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)))
109anim1i 615 . . . . . . . . . 10 (((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) ∧ (♯‘𝑓) = 1) → ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)) ∧ (♯‘𝑓) = 1))
1110anabss3 675 . . . . . . . . 9 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)) ∧ (♯‘𝑓) = 1))
12 df-3an 1088 . . . . . . . . 9 ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1) ∧ (♯‘𝑓) = 1) ↔ ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1)) ∧ (♯‘𝑓) = 1))
1311, 12sylibr 234 . . . . . . . 8 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1) ∧ (♯‘𝑓) = 1))
14 3ancomb 1098 . . . . . . . 8 ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘1) ∧ (♯‘𝑓) = 1) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1)))
1513, 14sylib 218 . . . . . . 7 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1)))
16 wlkl1loop 29670 . . . . . . . . . 10 (((Fun (iEdg‘𝐺) ∧ 𝑓(Walks‘𝐺)𝑝) ∧ ((♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1))) → {(𝑝‘0)} ∈ (Edg‘𝐺))
1716expl 457 . . . . . . . . 9 (Fun (iEdg‘𝐺) → ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1))) → {(𝑝‘0)} ∈ (Edg‘𝐺)))
18 eqid 2734 . . . . . . . . . 10 (iEdg‘𝐺) = (iEdg‘𝐺)
1918uhgrfun 29097 . . . . . . . . 9 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
2017, 19syl11 33 . . . . . . . 8 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1))) → (𝐺 ∈ UHGraph → {(𝑝‘0)} ∈ (Edg‘𝐺)))
21203impb 1114 . . . . . . 7 ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = (𝑝‘1)) → (𝐺 ∈ UHGraph → {(𝑝‘0)} ∈ (Edg‘𝐺)))
2215, 21syl 17 . . . . . 6 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1) → (𝐺 ∈ UHGraph → {(𝑝‘0)} ∈ (Edg‘𝐺)))
23223adant3 1131 . . . . 5 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → (𝐺 ∈ UHGraph → {(𝑝‘0)} ∈ (Edg‘𝐺)))
24 sneq 4640 . . . . . . 7 ((𝑝‘0) = 𝐴 → {(𝑝‘0)} = {𝐴})
2524eleq1d 2823 . . . . . 6 ((𝑝‘0) = 𝐴 → ({(𝑝‘0)} ∈ (Edg‘𝐺) ↔ {𝐴} ∈ (Edg‘𝐺)))
26253ad2ant3 1134 . . . . 5 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → ({(𝑝‘0)} ∈ (Edg‘𝐺) ↔ {𝐴} ∈ (Edg‘𝐺)))
2723, 26sylibd 239 . . . 4 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → (𝐺 ∈ UHGraph → {𝐴} ∈ (Edg‘𝐺)))
2827exlimivv 1929 . . 3 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → (𝐺 ∈ UHGraph → {𝐴} ∈ (Edg‘𝐺)))
2928com12 32 . 2 (𝐺 ∈ UHGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → {𝐴} ∈ (Edg‘𝐺)))
30 edgval 29080 . . . . . . . . . . . . . 14 (Edg‘𝐺) = ran (iEdg‘𝐺)
3130eleq2i 2830 . . . . . . . . . . . . 13 ({𝐴} ∈ (Edg‘𝐺) ↔ {𝐴} ∈ ran (iEdg‘𝐺))
32 elrnrexdm 7108 . . . . . . . . . . . . . 14 (Fun (iEdg‘𝐺) → ({𝐴} ∈ ran (iEdg‘𝐺) → ∃𝑗 ∈ dom (iEdg‘𝐺){𝐴} = ((iEdg‘𝐺)‘𝑗)))
33 eqcom 2741 . . . . . . . . . . . . . . 15 ({𝐴} = ((iEdg‘𝐺)‘𝑗) ↔ ((iEdg‘𝐺)‘𝑗) = {𝐴})
3433rexbii 3091 . . . . . . . . . . . . . 14 (∃𝑗 ∈ dom (iEdg‘𝐺){𝐴} = ((iEdg‘𝐺)‘𝑗) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴})
3532, 34imbitrdi 251 . . . . . . . . . . . . 13 (Fun (iEdg‘𝐺) → ({𝐴} ∈ ran (iEdg‘𝐺) → ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴}))
3631, 35biimtrid 242 . . . . . . . . . . . 12 (Fun (iEdg‘𝐺) → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴}))
3719, 36syl 17 . . . . . . . . . . 11 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴}))
38 df-rex 3068 . . . . . . . . . . 11 (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐴} ↔ ∃𝑗(𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴}))
3937, 38imbitrdi 251 . . . . . . . . . 10 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗(𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴})))
4018lp1cycl 30180 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ 𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴}) → ⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩)
41403expib 1121 . . . . . . . . . . 11 (𝐺 ∈ UHGraph → ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴}) → ⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
4241eximdv 1914 . . . . . . . . . 10 (𝐺 ∈ UHGraph → (∃𝑗(𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = {𝐴}) → ∃𝑗⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
4339, 42syld 47 . . . . . . . . 9 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
44 s1len 14640 . . . . . . . . . . 11 (♯‘⟨“𝑗”⟩) = 1
4544ax-gen 1791 . . . . . . . . . 10 𝑗(♯‘⟨“𝑗”⟩) = 1
46 19.29r 1871 . . . . . . . . . 10 ((∃𝑗⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ ∀𝑗(♯‘⟨“𝑗”⟩) = 1) → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1))
4745, 46mpan2 691 . . . . . . . . 9 (∃𝑗⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1))
4843, 47syl6 35 . . . . . . . 8 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1)))
4948imp 406 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1))
50 uhgredgn0 29159 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → {𝐴} ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
51 eldifsni 4794 . . . . . . . . . . 11 ({𝐴} ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → {𝐴} ≠ ∅)
5250, 51syl 17 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → {𝐴} ≠ ∅)
53 snnzb 4722 . . . . . . . . . 10 (𝐴 ∈ V ↔ {𝐴} ≠ ∅)
5452, 53sylibr 234 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → 𝐴 ∈ V)
55 s2fv0 14922 . . . . . . . . 9 (𝐴 ∈ V → (⟨“𝐴𝐴”⟩‘0) = 𝐴)
5654, 55syl 17 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → (⟨“𝐴𝐴”⟩‘0) = 𝐴)
5756alrimiv 1924 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∀𝑗(⟨“𝐴𝐴”⟩‘0) = 𝐴)
58 19.29r 1871 . . . . . . 7 ((∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ ∀𝑗(⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑗((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
5949, 57, 58syl2anc 584 . . . . . 6 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑗((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
60 df-3an 1088 . . . . . . 7 ((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) ↔ ((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
6160exbii 1844 . . . . . 6 (∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) ↔ ∃𝑗((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1) ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
6259, 61sylibr 234 . . . . 5 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
63 s1cli 14639 . . . . . . . 8 ⟨“𝑗”⟩ ∈ Word V
64 breq1 5150 . . . . . . . . . 10 (𝑓 = ⟨“𝑗”⟩ → (𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ↔ ⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
65 fveqeq2 6915 . . . . . . . . . 10 (𝑓 = ⟨“𝑗”⟩ → ((♯‘𝑓) = 1 ↔ (♯‘⟨“𝑗”⟩) = 1))
6664, 653anbi12d 1436 . . . . . . . . 9 (𝑓 = ⟨“𝑗”⟩ → ((𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) ↔ (⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴)))
6766rspcev 3621 . . . . . . . 8 ((⟨“𝑗”⟩ ∈ Word V ∧ (⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴)) → ∃𝑓 ∈ Word V(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
6863, 67mpan 690 . . . . . . 7 ((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓 ∈ Word V(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
69 rexex 3073 . . . . . . 7 (∃𝑓 ∈ Word V(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
7068, 69syl 17 . . . . . 6 ((⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
7170exlimiv 1927 . . . . 5 (∃𝑗(⟨“𝑗”⟩(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘⟨“𝑗”⟩) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
7262, 71syl 17 . . . 4 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
73 s2cli 14915 . . . . . . 7 ⟨“𝐴𝐴”⟩ ∈ Word V
74 breq2 5151 . . . . . . . . 9 (𝑝 = ⟨“𝐴𝐴”⟩ → (𝑓(Cycles‘𝐺)𝑝𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩))
75 fveq1 6905 . . . . . . . . . 10 (𝑝 = ⟨“𝐴𝐴”⟩ → (𝑝‘0) = (⟨“𝐴𝐴”⟩‘0))
7675eqeq1d 2736 . . . . . . . . 9 (𝑝 = ⟨“𝐴𝐴”⟩ → ((𝑝‘0) = 𝐴 ↔ (⟨“𝐴𝐴”⟩‘0) = 𝐴))
7774, 763anbi13d 1437 . . . . . . . 8 (𝑝 = ⟨“𝐴𝐴”⟩ → ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) ↔ (𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴)))
7877rspcev 3621 . . . . . . 7 ((⟨“𝐴𝐴”⟩ ∈ Word V ∧ (𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴)) → ∃𝑝 ∈ Word V(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
7973, 78mpan 690 . . . . . 6 ((𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑝 ∈ Word V(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
80 rexex 3073 . . . . . 6 (∃𝑝 ∈ Word V(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) → ∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
8179, 80syl 17 . . . . 5 ((𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
8281eximi 1831 . . . 4 (∃𝑓(𝑓(Cycles‘𝐺)⟨“𝐴𝐴”⟩ ∧ (♯‘𝑓) = 1 ∧ (⟨“𝐴𝐴”⟩‘0) = 𝐴) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
8372, 82syl 17 . . 3 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edg‘𝐺)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴))
8483ex 412 . 2 (𝐺 ∈ UHGraph → ({𝐴} ∈ (Edg‘𝐺) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴)))
8529, 84impbid 212 1 (𝐺 ∈ UHGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) ↔ {𝐴} ∈ (Edg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1534   = wceq 1536  wex 1775  wcel 2105  wne 2937  wrex 3067  Vcvv 3477  cdif 3959  c0 4338  𝒫 cpw 4604  {csn 4630   class class class wbr 5147  dom cdm 5688  ran crn 5689  Fun wfun 6556  cfv 6562  0cc0 11152  1c1 11153  chash 14365  Word cword 14548  ⟨“cs1 14629  ⟨“cs2 14876  Vtxcvtx 29027  iEdgciedg 29028  Edgcedg 29078  UHGraphcuhgr 29087  Walkscwlks 29628  Pathscpths 29744  Cyclesccycls 29817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-hash 14366  df-word 14549  df-concat 14605  df-s1 14630  df-s2 14883  df-edg 29079  df-uhgr 29089  df-wlks 29631  df-wlkson 29632  df-trls 29724  df-trlson 29725  df-pths 29748  df-pthson 29750  df-cycls 29819
This theorem is referenced by:  acycgrislfgr  35136
  Copyright terms: Public domain W3C validator