Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  loop1cycl Structured version   Visualization version   GIF version

Theorem loop1cycl 34804
Description: A hypergraph has a cycle of length one if and only if it has a loop. (Contributed by BTernaryTau, 13-Oct-2023.)
Assertion
Ref Expression
loop1cycl (𝐺 ∈ UHGraph β†’ (βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = 𝐴) ↔ {𝐴} ∈ (Edgβ€˜πΊ)))
Distinct variable groups:   𝐺,𝑝   𝐴,𝑓,𝑝   𝑓,𝐺

Proof of Theorem loop1cycl
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 cyclprop 29651 . . . . . . . . . . . . 13 (𝑓(Cyclesβ€˜πΊ)𝑝 β†’ (𝑓(Pathsβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = (π‘β€˜(β™―β€˜π‘“))))
2 fveq2 6892 . . . . . . . . . . . . . . . 16 ((β™―β€˜π‘“) = 1 β†’ (π‘β€˜(β™―β€˜π‘“)) = (π‘β€˜1))
32eqeq2d 2736 . . . . . . . . . . . . . . 15 ((β™―β€˜π‘“) = 1 β†’ ((π‘β€˜0) = (π‘β€˜(β™―β€˜π‘“)) ↔ (π‘β€˜0) = (π‘β€˜1)))
43anbi2d 628 . . . . . . . . . . . . . 14 ((β™―β€˜π‘“) = 1 β†’ ((𝑓(Pathsβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = (π‘β€˜(β™―β€˜π‘“))) ↔ (𝑓(Pathsβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = (π‘β€˜1))))
54biimpd 228 . . . . . . . . . . . . 13 ((β™―β€˜π‘“) = 1 β†’ ((𝑓(Pathsβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = (π‘β€˜(β™―β€˜π‘“))) β†’ (𝑓(Pathsβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = (π‘β€˜1))))
61, 5mpan9 505 . . . . . . . . . . . 12 ((𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1) β†’ (𝑓(Pathsβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = (π‘β€˜1)))
7 pthiswlk 29585 . . . . . . . . . . . . 13 (𝑓(Pathsβ€˜πΊ)𝑝 β†’ 𝑓(Walksβ€˜πΊ)𝑝)
87anim1i 613 . . . . . . . . . . . 12 ((𝑓(Pathsβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = (π‘β€˜1)) β†’ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = (π‘β€˜1)))
96, 8syl 17 . . . . . . . . . . 11 ((𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1) β†’ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = (π‘β€˜1)))
109anim1i 613 . . . . . . . . . 10 (((𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1) ∧ (β™―β€˜π‘“) = 1) β†’ ((𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = (π‘β€˜1)) ∧ (β™―β€˜π‘“) = 1))
1110anabss3 673 . . . . . . . . 9 ((𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1) β†’ ((𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = (π‘β€˜1)) ∧ (β™―β€˜π‘“) = 1))
12 df-3an 1086 . . . . . . . . 9 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = (π‘β€˜1) ∧ (β™―β€˜π‘“) = 1) ↔ ((𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = (π‘β€˜1)) ∧ (β™―β€˜π‘“) = 1))
1311, 12sylibr 233 . . . . . . . 8 ((𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1) β†’ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = (π‘β€˜1) ∧ (β™―β€˜π‘“) = 1))
14 3ancomb 1096 . . . . . . . 8 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = (π‘β€˜1) ∧ (β™―β€˜π‘“) = 1) ↔ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = (π‘β€˜1)))
1513, 14sylib 217 . . . . . . 7 ((𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1) β†’ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = (π‘β€˜1)))
16 wlkl1loop 29496 . . . . . . . . . 10 (((Fun (iEdgβ€˜πΊ) ∧ 𝑓(Walksβ€˜πΊ)𝑝) ∧ ((β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = (π‘β€˜1))) β†’ {(π‘β€˜0)} ∈ (Edgβ€˜πΊ))
1716expl 456 . . . . . . . . 9 (Fun (iEdgβ€˜πΊ) β†’ ((𝑓(Walksβ€˜πΊ)𝑝 ∧ ((β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = (π‘β€˜1))) β†’ {(π‘β€˜0)} ∈ (Edgβ€˜πΊ)))
18 eqid 2725 . . . . . . . . . 10 (iEdgβ€˜πΊ) = (iEdgβ€˜πΊ)
1918uhgrfun 28923 . . . . . . . . 9 (𝐺 ∈ UHGraph β†’ Fun (iEdgβ€˜πΊ))
2017, 19syl11 33 . . . . . . . 8 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ ((β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = (π‘β€˜1))) β†’ (𝐺 ∈ UHGraph β†’ {(π‘β€˜0)} ∈ (Edgβ€˜πΊ)))
21203impb 1112 . . . . . . 7 ((𝑓(Walksβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = (π‘β€˜1)) β†’ (𝐺 ∈ UHGraph β†’ {(π‘β€˜0)} ∈ (Edgβ€˜πΊ)))
2215, 21syl 17 . . . . . 6 ((𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1) β†’ (𝐺 ∈ UHGraph β†’ {(π‘β€˜0)} ∈ (Edgβ€˜πΊ)))
23223adant3 1129 . . . . 5 ((𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = 𝐴) β†’ (𝐺 ∈ UHGraph β†’ {(π‘β€˜0)} ∈ (Edgβ€˜πΊ)))
24 sneq 4634 . . . . . . 7 ((π‘β€˜0) = 𝐴 β†’ {(π‘β€˜0)} = {𝐴})
2524eleq1d 2810 . . . . . 6 ((π‘β€˜0) = 𝐴 β†’ ({(π‘β€˜0)} ∈ (Edgβ€˜πΊ) ↔ {𝐴} ∈ (Edgβ€˜πΊ)))
26253ad2ant3 1132 . . . . 5 ((𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = 𝐴) β†’ ({(π‘β€˜0)} ∈ (Edgβ€˜πΊ) ↔ {𝐴} ∈ (Edgβ€˜πΊ)))
2723, 26sylibd 238 . . . 4 ((𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = 𝐴) β†’ (𝐺 ∈ UHGraph β†’ {𝐴} ∈ (Edgβ€˜πΊ)))
2827exlimivv 1927 . . 3 (βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = 𝐴) β†’ (𝐺 ∈ UHGraph β†’ {𝐴} ∈ (Edgβ€˜πΊ)))
2928com12 32 . 2 (𝐺 ∈ UHGraph β†’ (βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = 𝐴) β†’ {𝐴} ∈ (Edgβ€˜πΊ)))
30 edgval 28906 . . . . . . . . . . . . . 14 (Edgβ€˜πΊ) = ran (iEdgβ€˜πΊ)
3130eleq2i 2817 . . . . . . . . . . . . 13 ({𝐴} ∈ (Edgβ€˜πΊ) ↔ {𝐴} ∈ ran (iEdgβ€˜πΊ))
32 elrnrexdm 7094 . . . . . . . . . . . . . 14 (Fun (iEdgβ€˜πΊ) β†’ ({𝐴} ∈ ran (iEdgβ€˜πΊ) β†’ βˆƒπ‘— ∈ dom (iEdgβ€˜πΊ){𝐴} = ((iEdgβ€˜πΊ)β€˜π‘—)))
33 eqcom 2732 . . . . . . . . . . . . . . 15 ({𝐴} = ((iEdgβ€˜πΊ)β€˜π‘—) ↔ ((iEdgβ€˜πΊ)β€˜π‘—) = {𝐴})
3433rexbii 3084 . . . . . . . . . . . . . 14 (βˆƒπ‘— ∈ dom (iEdgβ€˜πΊ){𝐴} = ((iEdgβ€˜πΊ)β€˜π‘—) ↔ βˆƒπ‘— ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘—) = {𝐴})
3532, 34imbitrdi 250 . . . . . . . . . . . . 13 (Fun (iEdgβ€˜πΊ) β†’ ({𝐴} ∈ ran (iEdgβ€˜πΊ) β†’ βˆƒπ‘— ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘—) = {𝐴}))
3631, 35biimtrid 241 . . . . . . . . . . . 12 (Fun (iEdgβ€˜πΊ) β†’ ({𝐴} ∈ (Edgβ€˜πΊ) β†’ βˆƒπ‘— ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘—) = {𝐴}))
3719, 36syl 17 . . . . . . . . . . 11 (𝐺 ∈ UHGraph β†’ ({𝐴} ∈ (Edgβ€˜πΊ) β†’ βˆƒπ‘— ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘—) = {𝐴}))
38 df-rex 3061 . . . . . . . . . . 11 (βˆƒπ‘— ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘—) = {𝐴} ↔ βˆƒπ‘—(𝑗 ∈ dom (iEdgβ€˜πΊ) ∧ ((iEdgβ€˜πΊ)β€˜π‘—) = {𝐴}))
3937, 38imbitrdi 250 . . . . . . . . . 10 (𝐺 ∈ UHGraph β†’ ({𝐴} ∈ (Edgβ€˜πΊ) β†’ βˆƒπ‘—(𝑗 ∈ dom (iEdgβ€˜πΊ) ∧ ((iEdgβ€˜πΊ)β€˜π‘—) = {𝐴})))
4018lp1cycl 30006 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ 𝑗 ∈ dom (iEdgβ€˜πΊ) ∧ ((iEdgβ€˜πΊ)β€˜π‘—) = {𝐴}) β†’ βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ©)
41403expib 1119 . . . . . . . . . . 11 (𝐺 ∈ UHGraph β†’ ((𝑗 ∈ dom (iEdgβ€˜πΊ) ∧ ((iEdgβ€˜πΊ)β€˜π‘—) = {𝐴}) β†’ βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ©))
4241eximdv 1912 . . . . . . . . . 10 (𝐺 ∈ UHGraph β†’ (βˆƒπ‘—(𝑗 ∈ dom (iEdgβ€˜πΊ) ∧ ((iEdgβ€˜πΊ)β€˜π‘—) = {𝐴}) β†’ βˆƒπ‘—βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ©))
4339, 42syld 47 . . . . . . . . 9 (𝐺 ∈ UHGraph β†’ ({𝐴} ∈ (Edgβ€˜πΊ) β†’ βˆƒπ‘—βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ©))
44 s1len 14588 . . . . . . . . . . 11 (β™―β€˜βŸ¨β€œπ‘—β€βŸ©) = 1
4544ax-gen 1789 . . . . . . . . . 10 βˆ€π‘—(β™―β€˜βŸ¨β€œπ‘—β€βŸ©) = 1
46 19.29r 1869 . . . . . . . . . 10 ((βˆƒπ‘—βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ βˆ€π‘—(β™―β€˜βŸ¨β€œπ‘—β€βŸ©) = 1) β†’ βˆƒπ‘—(βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜βŸ¨β€œπ‘—β€βŸ©) = 1))
4745, 46mpan2 689 . . . . . . . . 9 (βˆƒπ‘—βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© β†’ βˆƒπ‘—(βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜βŸ¨β€œπ‘—β€βŸ©) = 1))
4843, 47syl6 35 . . . . . . . 8 (𝐺 ∈ UHGraph β†’ ({𝐴} ∈ (Edgβ€˜πΊ) β†’ βˆƒπ‘—(βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜βŸ¨β€œπ‘—β€βŸ©) = 1)))
4948imp 405 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edgβ€˜πΊ)) β†’ βˆƒπ‘—(βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜βŸ¨β€œπ‘—β€βŸ©) = 1))
50 uhgredgn0 28985 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edgβ€˜πΊ)) β†’ {𝐴} ∈ (𝒫 (Vtxβ€˜πΊ) βˆ– {βˆ…}))
51 eldifsni 4789 . . . . . . . . . . 11 ({𝐴} ∈ (𝒫 (Vtxβ€˜πΊ) βˆ– {βˆ…}) β†’ {𝐴} β‰  βˆ…)
5250, 51syl 17 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edgβ€˜πΊ)) β†’ {𝐴} β‰  βˆ…)
53 snnzb 4718 . . . . . . . . . 10 (𝐴 ∈ V ↔ {𝐴} β‰  βˆ…)
5452, 53sylibr 233 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edgβ€˜πΊ)) β†’ 𝐴 ∈ V)
55 s2fv0 14870 . . . . . . . . 9 (𝐴 ∈ V β†’ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴)
5654, 55syl 17 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edgβ€˜πΊ)) β†’ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴)
5756alrimiv 1922 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edgβ€˜πΊ)) β†’ βˆ€π‘—(βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴)
58 19.29r 1869 . . . . . . 7 ((βˆƒπ‘—(βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜βŸ¨β€œπ‘—β€βŸ©) = 1) ∧ βˆ€π‘—(βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴) β†’ βˆƒπ‘—((βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜βŸ¨β€œπ‘—β€βŸ©) = 1) ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴))
5949, 57, 58syl2anc 582 . . . . . 6 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edgβ€˜πΊ)) β†’ βˆƒπ‘—((βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜βŸ¨β€œπ‘—β€βŸ©) = 1) ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴))
60 df-3an 1086 . . . . . . 7 ((βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜βŸ¨β€œπ‘—β€βŸ©) = 1 ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴) ↔ ((βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜βŸ¨β€œπ‘—β€βŸ©) = 1) ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴))
6160exbii 1842 . . . . . 6 (βˆƒπ‘—(βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜βŸ¨β€œπ‘—β€βŸ©) = 1 ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴) ↔ βˆƒπ‘—((βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜βŸ¨β€œπ‘—β€βŸ©) = 1) ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴))
6259, 61sylibr 233 . . . . 5 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edgβ€˜πΊ)) β†’ βˆƒπ‘—(βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜βŸ¨β€œπ‘—β€βŸ©) = 1 ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴))
63 s1cli 14587 . . . . . . . 8 βŸ¨β€œπ‘—β€βŸ© ∈ Word V
64 breq1 5146 . . . . . . . . . 10 (𝑓 = βŸ¨β€œπ‘—β€βŸ© β†’ (𝑓(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ↔ βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ©))
65 fveqeq2 6901 . . . . . . . . . 10 (𝑓 = βŸ¨β€œπ‘—β€βŸ© β†’ ((β™―β€˜π‘“) = 1 ↔ (β™―β€˜βŸ¨β€œπ‘—β€βŸ©) = 1))
6664, 653anbi12d 1433 . . . . . . . . 9 (𝑓 = βŸ¨β€œπ‘—β€βŸ© β†’ ((𝑓(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜π‘“) = 1 ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴) ↔ (βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜βŸ¨β€œπ‘—β€βŸ©) = 1 ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴)))
6766rspcev 3601 . . . . . . . 8 ((βŸ¨β€œπ‘—β€βŸ© ∈ Word V ∧ (βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜βŸ¨β€œπ‘—β€βŸ©) = 1 ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴)) β†’ βˆƒπ‘“ ∈ Word V(𝑓(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜π‘“) = 1 ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴))
6863, 67mpan 688 . . . . . . 7 ((βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜βŸ¨β€œπ‘—β€βŸ©) = 1 ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴) β†’ βˆƒπ‘“ ∈ Word V(𝑓(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜π‘“) = 1 ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴))
69 rexex 3066 . . . . . . 7 (βˆƒπ‘“ ∈ Word V(𝑓(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜π‘“) = 1 ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴) β†’ βˆƒπ‘“(𝑓(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜π‘“) = 1 ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴))
7068, 69syl 17 . . . . . 6 ((βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜βŸ¨β€œπ‘—β€βŸ©) = 1 ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴) β†’ βˆƒπ‘“(𝑓(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜π‘“) = 1 ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴))
7170exlimiv 1925 . . . . 5 (βˆƒπ‘—(βŸ¨β€œπ‘—β€βŸ©(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜βŸ¨β€œπ‘—β€βŸ©) = 1 ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴) β†’ βˆƒπ‘“(𝑓(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜π‘“) = 1 ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴))
7262, 71syl 17 . . . 4 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edgβ€˜πΊ)) β†’ βˆƒπ‘“(𝑓(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜π‘“) = 1 ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴))
73 s2cli 14863 . . . . . . 7 βŸ¨β€œπ΄π΄β€βŸ© ∈ Word V
74 breq2 5147 . . . . . . . . 9 (𝑝 = βŸ¨β€œπ΄π΄β€βŸ© β†’ (𝑓(Cyclesβ€˜πΊ)𝑝 ↔ 𝑓(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ©))
75 fveq1 6891 . . . . . . . . . 10 (𝑝 = βŸ¨β€œπ΄π΄β€βŸ© β†’ (π‘β€˜0) = (βŸ¨β€œπ΄π΄β€βŸ©β€˜0))
7675eqeq1d 2727 . . . . . . . . 9 (𝑝 = βŸ¨β€œπ΄π΄β€βŸ© β†’ ((π‘β€˜0) = 𝐴 ↔ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴))
7774, 763anbi13d 1434 . . . . . . . 8 (𝑝 = βŸ¨β€œπ΄π΄β€βŸ© β†’ ((𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = 𝐴) ↔ (𝑓(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜π‘“) = 1 ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴)))
7877rspcev 3601 . . . . . . 7 ((βŸ¨β€œπ΄π΄β€βŸ© ∈ Word V ∧ (𝑓(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜π‘“) = 1 ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴)) β†’ βˆƒπ‘ ∈ Word V(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = 𝐴))
7973, 78mpan 688 . . . . . 6 ((𝑓(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜π‘“) = 1 ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴) β†’ βˆƒπ‘ ∈ Word V(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = 𝐴))
80 rexex 3066 . . . . . 6 (βˆƒπ‘ ∈ Word V(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = 𝐴) β†’ βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = 𝐴))
8179, 80syl 17 . . . . 5 ((𝑓(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜π‘“) = 1 ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴) β†’ βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = 𝐴))
8281eximi 1829 . . . 4 (βˆƒπ‘“(𝑓(Cyclesβ€˜πΊ)βŸ¨β€œπ΄π΄β€βŸ© ∧ (β™―β€˜π‘“) = 1 ∧ (βŸ¨β€œπ΄π΄β€βŸ©β€˜0) = 𝐴) β†’ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = 𝐴))
8372, 82syl 17 . . 3 ((𝐺 ∈ UHGraph ∧ {𝐴} ∈ (Edgβ€˜πΊ)) β†’ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = 𝐴))
8483ex 411 . 2 (𝐺 ∈ UHGraph β†’ ({𝐴} ∈ (Edgβ€˜πΊ) β†’ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = 𝐴)))
8529, 84impbid 211 1 (𝐺 ∈ UHGraph β†’ (βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 1 ∧ (π‘β€˜0) = 𝐴) ↔ {𝐴} ∈ (Edgβ€˜πΊ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084  βˆ€wal 1531   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098   β‰  wne 2930  βˆƒwrex 3060  Vcvv 3463   βˆ– cdif 3936  βˆ…c0 4318  π’« cpw 4598  {csn 4624   class class class wbr 5143  dom cdm 5672  ran crn 5673  Fun wfun 6537  β€˜cfv 6543  0cc0 11138  1c1 11139  β™―chash 14321  Word cword 14496  βŸ¨β€œcs1 14577  βŸ¨β€œcs2 14824  Vtxcvtx 28853  iEdgciedg 28854  Edgcedg 28904  UHGraphcuhgr 28913  Walkscwlks 29454  Pathscpths 29570  Cyclesccycls 29643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7991  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-map 8845  df-pm 8846  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-fzo 13660  df-hash 14322  df-word 14497  df-concat 14553  df-s1 14578  df-s2 14831  df-edg 28905  df-uhgr 28915  df-wlks 29457  df-wlkson 29458  df-trls 29550  df-trlson 29551  df-pths 29574  df-pthson 29576  df-cycls 29645
This theorem is referenced by:  acycgrislfgr  34819
  Copyright terms: Public domain W3C validator