MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyrem Structured version   Visualization version   GIF version

Theorem plyrem 24279
Description: The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout 15467). If a polynomial 𝐹 is divided by the linear factor 𝑥𝐴, the remainder is equal to 𝐹(𝐴), the evaluation of the polynomial at 𝐴 (interpreted as a constant polynomial). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
plyrem.1 𝐺 = (Xp𝑓 − (ℂ × {𝐴}))
plyrem.2 𝑅 = (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺)))
Assertion
Ref Expression
plyrem ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝑅 = (ℂ × {(𝐹𝐴)}))

Proof of Theorem plyrem
StepHypRef Expression
1 plyssc 24175 . . . . . . . 8 (Poly‘𝑆) ⊆ (Poly‘ℂ)
2 simpl 468 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐹 ∈ (Poly‘𝑆))
31, 2sseldi 3750 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐹 ∈ (Poly‘ℂ))
4 plyrem.1 . . . . . . . . . 10 𝐺 = (Xp𝑓 − (ℂ × {𝐴}))
54plyremlem 24278 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
65adantl 467 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
76simp1d 1136 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐺 ∈ (Poly‘ℂ))
86simp2d 1137 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝐺) = 1)
9 ax-1ne0 10210 . . . . . . . . . 10 1 ≠ 0
109a1i 11 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 1 ≠ 0)
118, 10eqnetrd 3010 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝐺) ≠ 0)
12 fveq2 6333 . . . . . . . . . 10 (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝))
13 dgr0 24237 . . . . . . . . . 10 (deg‘0𝑝) = 0
1412, 13syl6eq 2821 . . . . . . . . 9 (𝐺 = 0𝑝 → (deg‘𝐺) = 0)
1514necon3i 2975 . . . . . . . 8 ((deg‘𝐺) ≠ 0 → 𝐺 ≠ 0𝑝)
1611, 15syl 17 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐺 ≠ 0𝑝)
17 plyrem.2 . . . . . . . 8 𝑅 = (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺)))
1817quotdgr 24277 . . . . . . 7 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
193, 7, 16, 18syl3anc 1476 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
20 0lt1 10755 . . . . . . . 8 0 < 1
2120, 8syl5breqr 4825 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 0 < (deg‘𝐺))
22 fveq2 6333 . . . . . . . . 9 (𝑅 = 0𝑝 → (deg‘𝑅) = (deg‘0𝑝))
2322, 13syl6eq 2821 . . . . . . . 8 (𝑅 = 0𝑝 → (deg‘𝑅) = 0)
2423breq1d 4797 . . . . . . 7 (𝑅 = 0𝑝 → ((deg‘𝑅) < (deg‘𝐺) ↔ 0 < (deg‘𝐺)))
2521, 24syl5ibrcom 237 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝑅 = 0𝑝 → (deg‘𝑅) < (deg‘𝐺)))
26 pm2.62 885 . . . . . 6 ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) → ((𝑅 = 0𝑝 → (deg‘𝑅) < (deg‘𝐺)) → (deg‘𝑅) < (deg‘𝐺)))
2719, 25, 26sylc 65 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝑅) < (deg‘𝐺))
2827, 8breqtrd 4813 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝑅) < 1)
29 quotcl2 24276 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ))
303, 7, 16, 29syl3anc 1476 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ))
31 plymulcl 24196 . . . . . . . . 9 ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐺𝑓 · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ))
327, 30, 31syl2anc 573 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐺𝑓 · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ))
33 plysubcl 24197 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝐺𝑓 · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ)) → (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺))) ∈ (Poly‘ℂ))
343, 32, 33syl2anc 573 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺))) ∈ (Poly‘ℂ))
3517, 34syl5eqel 2854 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝑅 ∈ (Poly‘ℂ))
36 dgrcl 24208 . . . . . 6 (𝑅 ∈ (Poly‘ℂ) → (deg‘𝑅) ∈ ℕ0)
3735, 36syl 17 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝑅) ∈ ℕ0)
38 nn0lt10b 11645 . . . . 5 ((deg‘𝑅) ∈ ℕ0 → ((deg‘𝑅) < 1 ↔ (deg‘𝑅) = 0))
3937, 38syl 17 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((deg‘𝑅) < 1 ↔ (deg‘𝑅) = 0))
4028, 39mpbid 222 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝑅) = 0)
41 0dgrb 24221 . . . 4 (𝑅 ∈ (Poly‘ℂ) → ((deg‘𝑅) = 0 ↔ 𝑅 = (ℂ × {(𝑅‘0)})))
4235, 41syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((deg‘𝑅) = 0 ↔ 𝑅 = (ℂ × {(𝑅‘0)})))
4340, 42mpbid 222 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝑅 = (ℂ × {(𝑅‘0)}))
4443fveq1d 6335 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝑅𝐴) = ((ℂ × {(𝑅‘0)})‘𝐴))
4517fveq1i 6334 . . . . . . 7 (𝑅𝐴) = ((𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺)))‘𝐴)
46 plyf 24173 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
4746adantr 466 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐹:ℂ⟶ℂ)
4847ffnd 6185 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐹 Fn ℂ)
49 plyf 24173 . . . . . . . . . . . 12 (𝐺 ∈ (Poly‘ℂ) → 𝐺:ℂ⟶ℂ)
507, 49syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐺:ℂ⟶ℂ)
5150ffnd 6185 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐺 Fn ℂ)
52 plyf 24173 . . . . . . . . . . . 12 ((𝐹 quot 𝐺) ∈ (Poly‘ℂ) → (𝐹 quot 𝐺):ℂ⟶ℂ)
5330, 52syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹 quot 𝐺):ℂ⟶ℂ)
5453ffnd 6185 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹 quot 𝐺) Fn ℂ)
55 cnex 10222 . . . . . . . . . . 11 ℂ ∈ V
5655a1i 11 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ℂ ∈ V)
57 inidm 3971 . . . . . . . . . 10 (ℂ ∩ ℂ) = ℂ
5851, 54, 56, 56, 57offn 7058 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐺𝑓 · (𝐹 quot 𝐺)) Fn ℂ)
59 eqidd 2772 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) ∧ 𝐴 ∈ ℂ) → (𝐹𝐴) = (𝐹𝐴))
606simp3d 1138 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐺 “ {0}) = {𝐴})
61 ssun1 3927 . . . . . . . . . . . . . . 15 (𝐺 “ {0}) ⊆ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0}))
6260, 61syl6eqssr 3805 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → {𝐴} ⊆ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})))
63 snssg 4451 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (𝐴 ∈ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})) ↔ {𝐴} ⊆ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0}))))
6463adantl 467 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐴 ∈ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})) ↔ {𝐴} ⊆ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0}))))
6562, 64mpbird 247 . . . . . . . . . . . . 13 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})))
66 ofmulrt 24256 . . . . . . . . . . . . . 14 ((ℂ ∈ V ∧ 𝐺:ℂ⟶ℂ ∧ (𝐹 quot 𝐺):ℂ⟶ℂ) → ((𝐺𝑓 · (𝐹 quot 𝐺)) “ {0}) = ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})))
6756, 50, 53, 66syl3anc 1476 . . . . . . . . . . . . 13 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((𝐺𝑓 · (𝐹 quot 𝐺)) “ {0}) = ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})))
6865, 67eleqtrrd 2853 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ((𝐺𝑓 · (𝐹 quot 𝐺)) “ {0}))
69 fniniseg 6483 . . . . . . . . . . . . 13 ((𝐺𝑓 · (𝐹 quot 𝐺)) Fn ℂ → (𝐴 ∈ ((𝐺𝑓 · (𝐹 quot 𝐺)) “ {0}) ↔ (𝐴 ∈ ℂ ∧ ((𝐺𝑓 · (𝐹 quot 𝐺))‘𝐴) = 0)))
7058, 69syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐴 ∈ ((𝐺𝑓 · (𝐹 quot 𝐺)) “ {0}) ↔ (𝐴 ∈ ℂ ∧ ((𝐺𝑓 · (𝐹 quot 𝐺))‘𝐴) = 0)))
7168, 70mpbid 222 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐴 ∈ ℂ ∧ ((𝐺𝑓 · (𝐹 quot 𝐺))‘𝐴) = 0))
7271simprd 483 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((𝐺𝑓 · (𝐹 quot 𝐺))‘𝐴) = 0)
7372adantr 466 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) ∧ 𝐴 ∈ ℂ) → ((𝐺𝑓 · (𝐹 quot 𝐺))‘𝐴) = 0)
7448, 58, 56, 56, 57, 59, 73ofval 7056 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) ∧ 𝐴 ∈ ℂ) → ((𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺)))‘𝐴) = ((𝐹𝐴) − 0))
7574anabss3 654 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺)))‘𝐴) = ((𝐹𝐴) − 0))
7645, 75syl5eq 2817 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝑅𝐴) = ((𝐹𝐴) − 0))
7746ffvelrnda 6504 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹𝐴) ∈ ℂ)
7877subid1d 10586 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((𝐹𝐴) − 0) = (𝐹𝐴))
7976, 78eqtrd 2805 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝑅𝐴) = (𝐹𝐴))
80 fvex 6344 . . . . . . 7 (𝑅‘0) ∈ V
8180fvconst2 6615 . . . . . 6 (𝐴 ∈ ℂ → ((ℂ × {(𝑅‘0)})‘𝐴) = (𝑅‘0))
8281adantl 467 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((ℂ × {(𝑅‘0)})‘𝐴) = (𝑅‘0))
8344, 79, 823eqtr3d 2813 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹𝐴) = (𝑅‘0))
8483sneqd 4329 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → {(𝐹𝐴)} = {(𝑅‘0)})
8584xpeq2d 5279 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (ℂ × {(𝐹𝐴)}) = (ℂ × {(𝑅‘0)}))
8643, 85eqtr4d 2808 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝑅 = (ℂ × {(𝐹𝐴)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 836  w3a 1071   = wceq 1631  wcel 2145  wne 2943  Vcvv 3351  cun 3721  wss 3723  {csn 4317   class class class wbr 4787   × cxp 5248  ccnv 5249  cima 5253   Fn wfn 6025  wf 6026  cfv 6030  (class class class)co 6795  𝑓 cof 7045  cc 10139  0cc0 10141  1c1 10142   · cmul 10146   < clt 10279  cmin 10471  0cn0 11498  0𝑝c0p 23655  Polycply 24159  Xpcidp 24160  degcdgr 24162   quot cquot 24264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-inf2 8705  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219  ax-addf 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-of 7047  df-om 7216  df-1st 7318  df-2nd 7319  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-1o 7716  df-oadd 7720  df-er 7899  df-map 8014  df-pm 8015  df-en 8113  df-dom 8114  df-sdom 8115  df-fin 8116  df-sup 8507  df-inf 8508  df-oi 8574  df-card 8968  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-n0 11499  df-z 11584  df-uz 11893  df-rp 12035  df-fz 12533  df-fzo 12673  df-fl 12800  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-rlim 14427  df-sum 14624  df-0p 23656  df-ply 24163  df-idp 24164  df-coe 24165  df-dgr 24166  df-quot 24265
This theorem is referenced by:  facth  24280
  Copyright terms: Public domain W3C validator