MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyrem Structured version   Visualization version   GIF version

Theorem plyrem 24894
Description: The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout 15891). If a polynomial 𝐹 is divided by the linear factor 𝑥𝐴, the remainder is equal to 𝐹(𝐴), the evaluation of the polynomial at 𝐴 (interpreted as a constant polynomial). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
plyrem.1 𝐺 = (Xpf − (ℂ × {𝐴}))
plyrem.2 𝑅 = (𝐹f − (𝐺f · (𝐹 quot 𝐺)))
Assertion
Ref Expression
plyrem ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝑅 = (ℂ × {(𝐹𝐴)}))

Proof of Theorem plyrem
StepHypRef Expression
1 plyssc 24790 . . . . . . . 8 (Poly‘𝑆) ⊆ (Poly‘ℂ)
2 simpl 485 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐹 ∈ (Poly‘𝑆))
31, 2sseldi 3965 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐹 ∈ (Poly‘ℂ))
4 plyrem.1 . . . . . . . . . 10 𝐺 = (Xpf − (ℂ × {𝐴}))
54plyremlem 24893 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
65adantl 484 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
76simp1d 1138 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐺 ∈ (Poly‘ℂ))
86simp2d 1139 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝐺) = 1)
9 ax-1ne0 10606 . . . . . . . . . 10 1 ≠ 0
109a1i 11 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 1 ≠ 0)
118, 10eqnetrd 3083 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝐺) ≠ 0)
12 fveq2 6670 . . . . . . . . . 10 (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝))
13 dgr0 24852 . . . . . . . . . 10 (deg‘0𝑝) = 0
1412, 13syl6eq 2872 . . . . . . . . 9 (𝐺 = 0𝑝 → (deg‘𝐺) = 0)
1514necon3i 3048 . . . . . . . 8 ((deg‘𝐺) ≠ 0 → 𝐺 ≠ 0𝑝)
1611, 15syl 17 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐺 ≠ 0𝑝)
17 plyrem.2 . . . . . . . 8 𝑅 = (𝐹f − (𝐺f · (𝐹 quot 𝐺)))
1817quotdgr 24892 . . . . . . 7 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
193, 7, 16, 18syl3anc 1367 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
20 0lt1 11162 . . . . . . . 8 0 < 1
2120, 8breqtrrid 5104 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 0 < (deg‘𝐺))
22 fveq2 6670 . . . . . . . . 9 (𝑅 = 0𝑝 → (deg‘𝑅) = (deg‘0𝑝))
2322, 13syl6eq 2872 . . . . . . . 8 (𝑅 = 0𝑝 → (deg‘𝑅) = 0)
2423breq1d 5076 . . . . . . 7 (𝑅 = 0𝑝 → ((deg‘𝑅) < (deg‘𝐺) ↔ 0 < (deg‘𝐺)))
2521, 24syl5ibrcom 249 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝑅 = 0𝑝 → (deg‘𝑅) < (deg‘𝐺)))
26 pm2.62 896 . . . . . 6 ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) → ((𝑅 = 0𝑝 → (deg‘𝑅) < (deg‘𝐺)) → (deg‘𝑅) < (deg‘𝐺)))
2719, 25, 26sylc 65 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝑅) < (deg‘𝐺))
2827, 8breqtrd 5092 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝑅) < 1)
29 quotcl2 24891 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ))
303, 7, 16, 29syl3anc 1367 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ))
31 plymulcl 24811 . . . . . . . . 9 ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐺f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ))
327, 30, 31syl2anc 586 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐺f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ))
33 plysubcl 24812 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝐺f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ)) → (𝐹f − (𝐺f · (𝐹 quot 𝐺))) ∈ (Poly‘ℂ))
343, 32, 33syl2anc 586 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹f − (𝐺f · (𝐹 quot 𝐺))) ∈ (Poly‘ℂ))
3517, 34eqeltrid 2917 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝑅 ∈ (Poly‘ℂ))
36 dgrcl 24823 . . . . . 6 (𝑅 ∈ (Poly‘ℂ) → (deg‘𝑅) ∈ ℕ0)
3735, 36syl 17 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝑅) ∈ ℕ0)
38 nn0lt10b 12045 . . . . 5 ((deg‘𝑅) ∈ ℕ0 → ((deg‘𝑅) < 1 ↔ (deg‘𝑅) = 0))
3937, 38syl 17 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((deg‘𝑅) < 1 ↔ (deg‘𝑅) = 0))
4028, 39mpbid 234 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝑅) = 0)
41 0dgrb 24836 . . . 4 (𝑅 ∈ (Poly‘ℂ) → ((deg‘𝑅) = 0 ↔ 𝑅 = (ℂ × {(𝑅‘0)})))
4235, 41syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((deg‘𝑅) = 0 ↔ 𝑅 = (ℂ × {(𝑅‘0)})))
4340, 42mpbid 234 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝑅 = (ℂ × {(𝑅‘0)}))
4443fveq1d 6672 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝑅𝐴) = ((ℂ × {(𝑅‘0)})‘𝐴))
4517fveq1i 6671 . . . . . . 7 (𝑅𝐴) = ((𝐹f − (𝐺f · (𝐹 quot 𝐺)))‘𝐴)
46 plyf 24788 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
4746adantr 483 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐹:ℂ⟶ℂ)
4847ffnd 6515 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐹 Fn ℂ)
49 plyf 24788 . . . . . . . . . . . 12 (𝐺 ∈ (Poly‘ℂ) → 𝐺:ℂ⟶ℂ)
507, 49syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐺:ℂ⟶ℂ)
5150ffnd 6515 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐺 Fn ℂ)
52 plyf 24788 . . . . . . . . . . . 12 ((𝐹 quot 𝐺) ∈ (Poly‘ℂ) → (𝐹 quot 𝐺):ℂ⟶ℂ)
5330, 52syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹 quot 𝐺):ℂ⟶ℂ)
5453ffnd 6515 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹 quot 𝐺) Fn ℂ)
55 cnex 10618 . . . . . . . . . . 11 ℂ ∈ V
5655a1i 11 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ℂ ∈ V)
57 inidm 4195 . . . . . . . . . 10 (ℂ ∩ ℂ) = ℂ
5851, 54, 56, 56, 57offn 7420 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐺f · (𝐹 quot 𝐺)) Fn ℂ)
59 eqidd 2822 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) ∧ 𝐴 ∈ ℂ) → (𝐹𝐴) = (𝐹𝐴))
606simp3d 1140 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐺 “ {0}) = {𝐴})
61 ssun1 4148 . . . . . . . . . . . . . . 15 (𝐺 “ {0}) ⊆ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0}))
6260, 61eqsstrrdi 4022 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → {𝐴} ⊆ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})))
63 snssg 4717 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (𝐴 ∈ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})) ↔ {𝐴} ⊆ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0}))))
6463adantl 484 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐴 ∈ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})) ↔ {𝐴} ⊆ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0}))))
6562, 64mpbird 259 . . . . . . . . . . . . 13 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})))
66 ofmulrt 24871 . . . . . . . . . . . . . 14 ((ℂ ∈ V ∧ 𝐺:ℂ⟶ℂ ∧ (𝐹 quot 𝐺):ℂ⟶ℂ) → ((𝐺f · (𝐹 quot 𝐺)) “ {0}) = ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})))
6756, 50, 53, 66syl3anc 1367 . . . . . . . . . . . . 13 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((𝐺f · (𝐹 quot 𝐺)) “ {0}) = ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})))
6865, 67eleqtrrd 2916 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ((𝐺f · (𝐹 quot 𝐺)) “ {0}))
69 fniniseg 6830 . . . . . . . . . . . . 13 ((𝐺f · (𝐹 quot 𝐺)) Fn ℂ → (𝐴 ∈ ((𝐺f · (𝐹 quot 𝐺)) “ {0}) ↔ (𝐴 ∈ ℂ ∧ ((𝐺f · (𝐹 quot 𝐺))‘𝐴) = 0)))
7058, 69syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐴 ∈ ((𝐺f · (𝐹 quot 𝐺)) “ {0}) ↔ (𝐴 ∈ ℂ ∧ ((𝐺f · (𝐹 quot 𝐺))‘𝐴) = 0)))
7168, 70mpbid 234 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐴 ∈ ℂ ∧ ((𝐺f · (𝐹 quot 𝐺))‘𝐴) = 0))
7271simprd 498 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((𝐺f · (𝐹 quot 𝐺))‘𝐴) = 0)
7372adantr 483 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) ∧ 𝐴 ∈ ℂ) → ((𝐺f · (𝐹 quot 𝐺))‘𝐴) = 0)
7448, 58, 56, 56, 57, 59, 73ofval 7418 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) ∧ 𝐴 ∈ ℂ) → ((𝐹f − (𝐺f · (𝐹 quot 𝐺)))‘𝐴) = ((𝐹𝐴) − 0))
7574anabss3 673 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((𝐹f − (𝐺f · (𝐹 quot 𝐺)))‘𝐴) = ((𝐹𝐴) − 0))
7645, 75syl5eq 2868 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝑅𝐴) = ((𝐹𝐴) − 0))
7746ffvelrnda 6851 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹𝐴) ∈ ℂ)
7877subid1d 10986 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((𝐹𝐴) − 0) = (𝐹𝐴))
7976, 78eqtrd 2856 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝑅𝐴) = (𝐹𝐴))
80 fvex 6683 . . . . . . 7 (𝑅‘0) ∈ V
8180fvconst2 6966 . . . . . 6 (𝐴 ∈ ℂ → ((ℂ × {(𝑅‘0)})‘𝐴) = (𝑅‘0))
8281adantl 484 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((ℂ × {(𝑅‘0)})‘𝐴) = (𝑅‘0))
8344, 79, 823eqtr3d 2864 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹𝐴) = (𝑅‘0))
8483sneqd 4579 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → {(𝐹𝐴)} = {(𝑅‘0)})
8584xpeq2d 5585 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (ℂ × {(𝐹𝐴)}) = (ℂ × {(𝑅‘0)}))
8643, 85eqtr4d 2859 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝑅 = (ℂ × {(𝐹𝐴)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  Vcvv 3494  cun 3934  wss 3936  {csn 4567   class class class wbr 5066   × cxp 5553  ccnv 5554  cima 5558   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  f cof 7407  cc 10535  0cc0 10537  1c1 10538   · cmul 10542   < clt 10675  cmin 10870  0cn0 11898  0𝑝c0p 24270  Polycply 24774  Xpcidp 24775  degcdgr 24777   quot cquot 24879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-0p 24271  df-ply 24778  df-idp 24779  df-coe 24780  df-dgr 24781  df-quot 24880
This theorem is referenced by:  facth  24895
  Copyright terms: Public domain W3C validator