MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyrem Structured version   Visualization version   GIF version

Theorem plyrem 24497
Description: The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout 15666). If a polynomial 𝐹 is divided by the linear factor 𝑥𝐴, the remainder is equal to 𝐹(𝐴), the evaluation of the polynomial at 𝐴 (interpreted as a constant polynomial). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
plyrem.1 𝐺 = (Xp𝑓 − (ℂ × {𝐴}))
plyrem.2 𝑅 = (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺)))
Assertion
Ref Expression
plyrem ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝑅 = (ℂ × {(𝐹𝐴)}))

Proof of Theorem plyrem
StepHypRef Expression
1 plyssc 24393 . . . . . . . 8 (Poly‘𝑆) ⊆ (Poly‘ℂ)
2 simpl 476 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐹 ∈ (Poly‘𝑆))
31, 2sseldi 3819 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐹 ∈ (Poly‘ℂ))
4 plyrem.1 . . . . . . . . . 10 𝐺 = (Xp𝑓 − (ℂ × {𝐴}))
54plyremlem 24496 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
65adantl 475 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
76simp1d 1133 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐺 ∈ (Poly‘ℂ))
86simp2d 1134 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝐺) = 1)
9 ax-1ne0 10341 . . . . . . . . . 10 1 ≠ 0
109a1i 11 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 1 ≠ 0)
118, 10eqnetrd 3036 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝐺) ≠ 0)
12 fveq2 6446 . . . . . . . . . 10 (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝))
13 dgr0 24455 . . . . . . . . . 10 (deg‘0𝑝) = 0
1412, 13syl6eq 2830 . . . . . . . . 9 (𝐺 = 0𝑝 → (deg‘𝐺) = 0)
1514necon3i 3001 . . . . . . . 8 ((deg‘𝐺) ≠ 0 → 𝐺 ≠ 0𝑝)
1611, 15syl 17 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐺 ≠ 0𝑝)
17 plyrem.2 . . . . . . . 8 𝑅 = (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺)))
1817quotdgr 24495 . . . . . . 7 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
193, 7, 16, 18syl3anc 1439 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
20 0lt1 10897 . . . . . . . 8 0 < 1
2120, 8syl5breqr 4924 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 0 < (deg‘𝐺))
22 fveq2 6446 . . . . . . . . 9 (𝑅 = 0𝑝 → (deg‘𝑅) = (deg‘0𝑝))
2322, 13syl6eq 2830 . . . . . . . 8 (𝑅 = 0𝑝 → (deg‘𝑅) = 0)
2423breq1d 4896 . . . . . . 7 (𝑅 = 0𝑝 → ((deg‘𝑅) < (deg‘𝐺) ↔ 0 < (deg‘𝐺)))
2521, 24syl5ibrcom 239 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝑅 = 0𝑝 → (deg‘𝑅) < (deg‘𝐺)))
26 pm2.62 886 . . . . . 6 ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) → ((𝑅 = 0𝑝 → (deg‘𝑅) < (deg‘𝐺)) → (deg‘𝑅) < (deg‘𝐺)))
2719, 25, 26sylc 65 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝑅) < (deg‘𝐺))
2827, 8breqtrd 4912 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝑅) < 1)
29 quotcl2 24494 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ))
303, 7, 16, 29syl3anc 1439 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ))
31 plymulcl 24414 . . . . . . . . 9 ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐺𝑓 · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ))
327, 30, 31syl2anc 579 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐺𝑓 · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ))
33 plysubcl 24415 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝐺𝑓 · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ)) → (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺))) ∈ (Poly‘ℂ))
343, 32, 33syl2anc 579 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺))) ∈ (Poly‘ℂ))
3517, 34syl5eqel 2863 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝑅 ∈ (Poly‘ℂ))
36 dgrcl 24426 . . . . . 6 (𝑅 ∈ (Poly‘ℂ) → (deg‘𝑅) ∈ ℕ0)
3735, 36syl 17 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝑅) ∈ ℕ0)
38 nn0lt10b 11791 . . . . 5 ((deg‘𝑅) ∈ ℕ0 → ((deg‘𝑅) < 1 ↔ (deg‘𝑅) = 0))
3937, 38syl 17 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((deg‘𝑅) < 1 ↔ (deg‘𝑅) = 0))
4028, 39mpbid 224 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝑅) = 0)
41 0dgrb 24439 . . . 4 (𝑅 ∈ (Poly‘ℂ) → ((deg‘𝑅) = 0 ↔ 𝑅 = (ℂ × {(𝑅‘0)})))
4235, 41syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((deg‘𝑅) = 0 ↔ 𝑅 = (ℂ × {(𝑅‘0)})))
4340, 42mpbid 224 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝑅 = (ℂ × {(𝑅‘0)}))
4443fveq1d 6448 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝑅𝐴) = ((ℂ × {(𝑅‘0)})‘𝐴))
4517fveq1i 6447 . . . . . . 7 (𝑅𝐴) = ((𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺)))‘𝐴)
46 plyf 24391 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
4746adantr 474 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐹:ℂ⟶ℂ)
4847ffnd 6292 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐹 Fn ℂ)
49 plyf 24391 . . . . . . . . . . . 12 (𝐺 ∈ (Poly‘ℂ) → 𝐺:ℂ⟶ℂ)
507, 49syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐺:ℂ⟶ℂ)
5150ffnd 6292 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐺 Fn ℂ)
52 plyf 24391 . . . . . . . . . . . 12 ((𝐹 quot 𝐺) ∈ (Poly‘ℂ) → (𝐹 quot 𝐺):ℂ⟶ℂ)
5330, 52syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹 quot 𝐺):ℂ⟶ℂ)
5453ffnd 6292 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹 quot 𝐺) Fn ℂ)
55 cnex 10353 . . . . . . . . . . 11 ℂ ∈ V
5655a1i 11 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ℂ ∈ V)
57 inidm 4043 . . . . . . . . . 10 (ℂ ∩ ℂ) = ℂ
5851, 54, 56, 56, 57offn 7185 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐺𝑓 · (𝐹 quot 𝐺)) Fn ℂ)
59 eqidd 2779 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) ∧ 𝐴 ∈ ℂ) → (𝐹𝐴) = (𝐹𝐴))
606simp3d 1135 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐺 “ {0}) = {𝐴})
61 ssun1 3999 . . . . . . . . . . . . . . 15 (𝐺 “ {0}) ⊆ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0}))
6260, 61syl6eqssr 3875 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → {𝐴} ⊆ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})))
63 snssg 4548 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (𝐴 ∈ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})) ↔ {𝐴} ⊆ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0}))))
6463adantl 475 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐴 ∈ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})) ↔ {𝐴} ⊆ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0}))))
6562, 64mpbird 249 . . . . . . . . . . . . 13 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})))
66 ofmulrt 24474 . . . . . . . . . . . . . 14 ((ℂ ∈ V ∧ 𝐺:ℂ⟶ℂ ∧ (𝐹 quot 𝐺):ℂ⟶ℂ) → ((𝐺𝑓 · (𝐹 quot 𝐺)) “ {0}) = ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})))
6756, 50, 53, 66syl3anc 1439 . . . . . . . . . . . . 13 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((𝐺𝑓 · (𝐹 quot 𝐺)) “ {0}) = ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})))
6865, 67eleqtrrd 2862 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ((𝐺𝑓 · (𝐹 quot 𝐺)) “ {0}))
69 fniniseg 6602 . . . . . . . . . . . . 13 ((𝐺𝑓 · (𝐹 quot 𝐺)) Fn ℂ → (𝐴 ∈ ((𝐺𝑓 · (𝐹 quot 𝐺)) “ {0}) ↔ (𝐴 ∈ ℂ ∧ ((𝐺𝑓 · (𝐹 quot 𝐺))‘𝐴) = 0)))
7058, 69syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐴 ∈ ((𝐺𝑓 · (𝐹 quot 𝐺)) “ {0}) ↔ (𝐴 ∈ ℂ ∧ ((𝐺𝑓 · (𝐹 quot 𝐺))‘𝐴) = 0)))
7168, 70mpbid 224 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐴 ∈ ℂ ∧ ((𝐺𝑓 · (𝐹 quot 𝐺))‘𝐴) = 0))
7271simprd 491 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((𝐺𝑓 · (𝐹 quot 𝐺))‘𝐴) = 0)
7372adantr 474 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) ∧ 𝐴 ∈ ℂ) → ((𝐺𝑓 · (𝐹 quot 𝐺))‘𝐴) = 0)
7448, 58, 56, 56, 57, 59, 73ofval 7183 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) ∧ 𝐴 ∈ ℂ) → ((𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺)))‘𝐴) = ((𝐹𝐴) − 0))
7574anabss3 665 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺)))‘𝐴) = ((𝐹𝐴) − 0))
7645, 75syl5eq 2826 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝑅𝐴) = ((𝐹𝐴) − 0))
7746ffvelrnda 6623 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹𝐴) ∈ ℂ)
7877subid1d 10723 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((𝐹𝐴) − 0) = (𝐹𝐴))
7976, 78eqtrd 2814 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝑅𝐴) = (𝐹𝐴))
80 fvex 6459 . . . . . . 7 (𝑅‘0) ∈ V
8180fvconst2 6741 . . . . . 6 (𝐴 ∈ ℂ → ((ℂ × {(𝑅‘0)})‘𝐴) = (𝑅‘0))
8281adantl 475 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((ℂ × {(𝑅‘0)})‘𝐴) = (𝑅‘0))
8344, 79, 823eqtr3d 2822 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹𝐴) = (𝑅‘0))
8483sneqd 4410 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → {(𝐹𝐴)} = {(𝑅‘0)})
8584xpeq2d 5385 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (ℂ × {(𝐹𝐴)}) = (ℂ × {(𝑅‘0)}))
8643, 85eqtr4d 2817 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝑅 = (ℂ × {(𝐹𝐴)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 836  w3a 1071   = wceq 1601  wcel 2107  wne 2969  Vcvv 3398  cun 3790  wss 3792  {csn 4398   class class class wbr 4886   × cxp 5353  ccnv 5354  cima 5358   Fn wfn 6130  wf 6131  cfv 6135  (class class class)co 6922  𝑓 cof 7172  cc 10270  0cc0 10272  1c1 10273   · cmul 10277   < clt 10411  cmin 10606  0cn0 11642  0𝑝c0p 23873  Polycply 24377  Xpcidp 24378  degcdgr 24380   quot cquot 24482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-rlim 14628  df-sum 14825  df-0p 23874  df-ply 24381  df-idp 24382  df-coe 24383  df-dgr 24384  df-quot 24483
This theorem is referenced by:  facth  24498
  Copyright terms: Public domain W3C validator