MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyrem Structured version   Visualization version   GIF version

Theorem plyrem 26246
Description: The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout 16489). If a polynomial 𝐹 is divided by the linear factor 𝑥𝐴, the remainder is equal to 𝐹(𝐴), the evaluation of the polynomial at 𝐴 (interpreted as a constant polynomial). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
plyrem.1 𝐺 = (Xpf − (ℂ × {𝐴}))
plyrem.2 𝑅 = (𝐹f − (𝐺f · (𝐹 quot 𝐺)))
Assertion
Ref Expression
plyrem ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝑅 = (ℂ × {(𝐹𝐴)}))

Proof of Theorem plyrem
StepHypRef Expression
1 plyssc 26138 . . . . . . . 8 (Poly‘𝑆) ⊆ (Poly‘ℂ)
2 simpl 482 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐹 ∈ (Poly‘𝑆))
31, 2sselid 3941 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐹 ∈ (Poly‘ℂ))
4 plyrem.1 . . . . . . . . . 10 𝐺 = (Xpf − (ℂ × {𝐴}))
54plyremlem 26245 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
65adantl 481 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (𝐺 “ {0}) = {𝐴}))
76simp1d 1142 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐺 ∈ (Poly‘ℂ))
86simp2d 1143 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝐺) = 1)
9 ax-1ne0 11113 . . . . . . . . . 10 1 ≠ 0
109a1i 11 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 1 ≠ 0)
118, 10eqnetrd 2992 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝐺) ≠ 0)
12 fveq2 6840 . . . . . . . . . 10 (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝))
13 dgr0 26201 . . . . . . . . . 10 (deg‘0𝑝) = 0
1412, 13eqtrdi 2780 . . . . . . . . 9 (𝐺 = 0𝑝 → (deg‘𝐺) = 0)
1514necon3i 2957 . . . . . . . 8 ((deg‘𝐺) ≠ 0 → 𝐺 ≠ 0𝑝)
1611, 15syl 17 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐺 ≠ 0𝑝)
17 plyrem.2 . . . . . . . 8 𝑅 = (𝐹f − (𝐺f · (𝐹 quot 𝐺)))
1817quotdgr 26244 . . . . . . 7 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
193, 7, 16, 18syl3anc 1373 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
20 0lt1 11676 . . . . . . . 8 0 < 1
2120, 8breqtrrid 5140 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 0 < (deg‘𝐺))
22 fveq2 6840 . . . . . . . . 9 (𝑅 = 0𝑝 → (deg‘𝑅) = (deg‘0𝑝))
2322, 13eqtrdi 2780 . . . . . . . 8 (𝑅 = 0𝑝 → (deg‘𝑅) = 0)
2423breq1d 5112 . . . . . . 7 (𝑅 = 0𝑝 → ((deg‘𝑅) < (deg‘𝐺) ↔ 0 < (deg‘𝐺)))
2521, 24syl5ibrcom 247 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝑅 = 0𝑝 → (deg‘𝑅) < (deg‘𝐺)))
26 pm2.62 899 . . . . . 6 ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) → ((𝑅 = 0𝑝 → (deg‘𝑅) < (deg‘𝐺)) → (deg‘𝑅) < (deg‘𝐺)))
2719, 25, 26sylc 65 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝑅) < (deg‘𝐺))
2827, 8breqtrd 5128 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝑅) < 1)
29 quotcl2 26243 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ))
303, 7, 16, 29syl3anc 1373 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ))
31 plymulcl 26159 . . . . . . . . 9 ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐺f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ))
327, 30, 31syl2anc 584 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐺f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ))
33 plysubcl 26160 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝐺f · (𝐹 quot 𝐺)) ∈ (Poly‘ℂ)) → (𝐹f − (𝐺f · (𝐹 quot 𝐺))) ∈ (Poly‘ℂ))
343, 32, 33syl2anc 584 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹f − (𝐺f · (𝐹 quot 𝐺))) ∈ (Poly‘ℂ))
3517, 34eqeltrid 2832 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝑅 ∈ (Poly‘ℂ))
36 dgrcl 26171 . . . . . 6 (𝑅 ∈ (Poly‘ℂ) → (deg‘𝑅) ∈ ℕ0)
3735, 36syl 17 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝑅) ∈ ℕ0)
38 nn0lt10b 12572 . . . . 5 ((deg‘𝑅) ∈ ℕ0 → ((deg‘𝑅) < 1 ↔ (deg‘𝑅) = 0))
3937, 38syl 17 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((deg‘𝑅) < 1 ↔ (deg‘𝑅) = 0))
4028, 39mpbid 232 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (deg‘𝑅) = 0)
41 0dgrb 26184 . . . 4 (𝑅 ∈ (Poly‘ℂ) → ((deg‘𝑅) = 0 ↔ 𝑅 = (ℂ × {(𝑅‘0)})))
4235, 41syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((deg‘𝑅) = 0 ↔ 𝑅 = (ℂ × {(𝑅‘0)})))
4340, 42mpbid 232 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝑅 = (ℂ × {(𝑅‘0)}))
4443fveq1d 6842 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝑅𝐴) = ((ℂ × {(𝑅‘0)})‘𝐴))
4517fveq1i 6841 . . . . . . 7 (𝑅𝐴) = ((𝐹f − (𝐺f · (𝐹 quot 𝐺)))‘𝐴)
46 plyf 26136 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
4746adantr 480 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐹:ℂ⟶ℂ)
4847ffnd 6671 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐹 Fn ℂ)
49 plyf 26136 . . . . . . . . . . . 12 (𝐺 ∈ (Poly‘ℂ) → 𝐺:ℂ⟶ℂ)
507, 49syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐺:ℂ⟶ℂ)
5150ffnd 6671 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐺 Fn ℂ)
52 plyf 26136 . . . . . . . . . . . 12 ((𝐹 quot 𝐺) ∈ (Poly‘ℂ) → (𝐹 quot 𝐺):ℂ⟶ℂ)
5330, 52syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹 quot 𝐺):ℂ⟶ℂ)
5453ffnd 6671 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹 quot 𝐺) Fn ℂ)
55 cnex 11125 . . . . . . . . . . 11 ℂ ∈ V
5655a1i 11 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ℂ ∈ V)
57 inidm 4186 . . . . . . . . . 10 (ℂ ∩ ℂ) = ℂ
5851, 54, 56, 56, 57offn 7646 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐺f · (𝐹 quot 𝐺)) Fn ℂ)
59 eqidd 2730 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) ∧ 𝐴 ∈ ℂ) → (𝐹𝐴) = (𝐹𝐴))
606simp3d 1144 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐺 “ {0}) = {𝐴})
61 ssun1 4137 . . . . . . . . . . . . . . 15 (𝐺 “ {0}) ⊆ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0}))
6260, 61eqsstrrdi 3989 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → {𝐴} ⊆ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})))
63 snssg 4743 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (𝐴 ∈ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})) ↔ {𝐴} ⊆ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0}))))
6463adantl 481 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐴 ∈ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})) ↔ {𝐴} ⊆ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0}))))
6562, 64mpbird 257 . . . . . . . . . . . . 13 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})))
66 ofmulrt 26222 . . . . . . . . . . . . . 14 ((ℂ ∈ V ∧ 𝐺:ℂ⟶ℂ ∧ (𝐹 quot 𝐺):ℂ⟶ℂ) → ((𝐺f · (𝐹 quot 𝐺)) “ {0}) = ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})))
6756, 50, 53, 66syl3anc 1373 . . . . . . . . . . . . 13 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((𝐺f · (𝐹 quot 𝐺)) “ {0}) = ((𝐺 “ {0}) ∪ ((𝐹 quot 𝐺) “ {0})))
6865, 67eleqtrrd 2831 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ((𝐺f · (𝐹 quot 𝐺)) “ {0}))
69 fniniseg 7014 . . . . . . . . . . . . 13 ((𝐺f · (𝐹 quot 𝐺)) Fn ℂ → (𝐴 ∈ ((𝐺f · (𝐹 quot 𝐺)) “ {0}) ↔ (𝐴 ∈ ℂ ∧ ((𝐺f · (𝐹 quot 𝐺))‘𝐴) = 0)))
7058, 69syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐴 ∈ ((𝐺f · (𝐹 quot 𝐺)) “ {0}) ↔ (𝐴 ∈ ℂ ∧ ((𝐺f · (𝐹 quot 𝐺))‘𝐴) = 0)))
7168, 70mpbid 232 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐴 ∈ ℂ ∧ ((𝐺f · (𝐹 quot 𝐺))‘𝐴) = 0))
7271simprd 495 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((𝐺f · (𝐹 quot 𝐺))‘𝐴) = 0)
7372adantr 480 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) ∧ 𝐴 ∈ ℂ) → ((𝐺f · (𝐹 quot 𝐺))‘𝐴) = 0)
7448, 58, 56, 56, 57, 59, 73ofval 7644 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) ∧ 𝐴 ∈ ℂ) → ((𝐹f − (𝐺f · (𝐹 quot 𝐺)))‘𝐴) = ((𝐹𝐴) − 0))
7574anabss3 675 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((𝐹f − (𝐺f · (𝐹 quot 𝐺)))‘𝐴) = ((𝐹𝐴) − 0))
7645, 75eqtrid 2776 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝑅𝐴) = ((𝐹𝐴) − 0))
7746ffvelcdmda 7038 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹𝐴) ∈ ℂ)
7877subid1d 11498 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((𝐹𝐴) − 0) = (𝐹𝐴))
7976, 78eqtrd 2764 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝑅𝐴) = (𝐹𝐴))
80 fvex 6853 . . . . . . 7 (𝑅‘0) ∈ V
8180fvconst2 7160 . . . . . 6 (𝐴 ∈ ℂ → ((ℂ × {(𝑅‘0)})‘𝐴) = (𝑅‘0))
8281adantl 481 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → ((ℂ × {(𝑅‘0)})‘𝐴) = (𝑅‘0))
8344, 79, 823eqtr3d 2772 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (𝐹𝐴) = (𝑅‘0))
8483sneqd 4597 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → {(𝐹𝐴)} = {(𝑅‘0)})
8584xpeq2d 5661 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → (ℂ × {(𝐹𝐴)}) = (ℂ × {(𝑅‘0)}))
8643, 85eqtr4d 2767 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝑅 = (ℂ × {(𝐹𝐴)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  cun 3909  wss 3911  {csn 4585   class class class wbr 5102   × cxp 5629  ccnv 5630  cima 5634   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  cc 11042  0cc0 11044  1c1 11045   · cmul 11049   < clt 11184  cmin 11381  0cn0 12418  0𝑝c0p 25603  Polycply 26122  Xpcidp 26123  degcdgr 26125   quot cquot 26231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-0p 25604  df-ply 26126  df-idp 26127  df-coe 26128  df-dgr 26129  df-quot 26232
This theorem is referenced by:  facth  26247
  Copyright terms: Public domain W3C validator