| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expclzlem | Structured version Visualization version GIF version | ||
| Description: Lemma for expclz 14025. (Contributed by Mario Carneiro, 4-Jun-2014.) |
| Ref | Expression |
|---|---|
| expclzlem | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ (ℂ ∖ {0})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 4746 | . . . 4 ⊢ (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) | |
| 2 | difss 4095 | . . . . . 6 ⊢ (ℂ ∖ {0}) ⊆ ℂ | |
| 3 | eldifsn 4746 | . . . . . . 7 ⊢ (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) | |
| 4 | eldifsn 4746 | . . . . . . 7 ⊢ (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) | |
| 5 | mulcl 11128 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
| 6 | 5 | ad2ant2r 747 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ∈ ℂ) |
| 7 | mulne0 11796 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0) | |
| 8 | eldifsn 4746 | . . . . . . . 8 ⊢ ((𝑥 · 𝑦) ∈ (ℂ ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0)) | |
| 9 | 6, 7, 8 | sylanbrc 583 | . . . . . . 7 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0})) |
| 10 | 3, 4, 9 | syl2anb 598 | . . . . . 6 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0})) |
| 11 | ax-1cn 11102 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 12 | ax-1ne0 11113 | . . . . . . 7 ⊢ 1 ≠ 0 | |
| 13 | eldifsn 4746 | . . . . . . 7 ⊢ (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ 1 ≠ 0)) | |
| 14 | 11, 12, 13 | mpbir2an 711 | . . . . . 6 ⊢ 1 ∈ (ℂ ∖ {0}) |
| 15 | reccl 11820 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℂ) | |
| 16 | recne0 11826 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ≠ 0) | |
| 17 | 15, 16 | jca 511 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) ≠ 0)) |
| 18 | eldifsn 4746 | . . . . . . . 8 ⊢ ((1 / 𝑥) ∈ (ℂ ∖ {0}) ↔ ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) ≠ 0)) | |
| 19 | 17, 3, 18 | 3imtr4i 292 | . . . . . . 7 ⊢ (𝑥 ∈ (ℂ ∖ {0}) → (1 / 𝑥) ∈ (ℂ ∖ {0})) |
| 20 | 19 | adantr 480 | . . . . . 6 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ (ℂ ∖ {0})) |
| 21 | 2, 10, 14, 20 | expcl2lem 14014 | . . . . 5 ⊢ ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ (ℂ ∖ {0})) |
| 22 | 21 | 3expia 1121 | . . . 4 ⊢ ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ≠ 0) → (𝑁 ∈ ℤ → (𝐴↑𝑁) ∈ (ℂ ∖ {0}))) |
| 23 | 1, 22 | sylanbr 582 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≠ 0) → (𝑁 ∈ ℤ → (𝐴↑𝑁) ∈ (ℂ ∖ {0}))) |
| 24 | 23 | anabss3 675 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑁 ∈ ℤ → (𝐴↑𝑁) ∈ (ℂ ∖ {0}))) |
| 25 | 24 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ (ℂ ∖ {0})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3908 {csn 4585 (class class class)co 7369 ℂcc 11042 0cc0 11044 1c1 11045 · cmul 11049 / cdiv 11811 ℤcz 12505 ↑cexp 14002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-seq 13943 df-exp 14003 |
| This theorem is referenced by: expclz 14025 expne0i 14035 expghm 21417 |
| Copyright terms: Public domain | W3C validator |