MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expclzlem Structured version   Visualization version   GIF version

Theorem expclzlem 13990
Description: Lemma for expclz 13991. (Contributed by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expclzlem ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ (ℂ ∖ {0}))

Proof of Theorem expclzlem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4735 . . . 4 (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
2 difss 4083 . . . . . 6 (ℂ ∖ {0}) ⊆ ℂ
3 eldifsn 4735 . . . . . . 7 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
4 eldifsn 4735 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
5 mulcl 11090 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
65ad2ant2r 747 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ∈ ℂ)
7 mulne0 11759 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0)
8 eldifsn 4735 . . . . . . . 8 ((𝑥 · 𝑦) ∈ (ℂ ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0))
96, 7, 8sylanbrc 583 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
103, 4, 9syl2anb 598 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
11 ax-1cn 11064 . . . . . . 7 1 ∈ ℂ
12 ax-1ne0 11075 . . . . . . 7 1 ≠ 0
13 eldifsn 4735 . . . . . . 7 (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ 1 ≠ 0))
1411, 12, 13mpbir2an 711 . . . . . 6 1 ∈ (ℂ ∖ {0})
15 reccl 11783 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℂ)
16 recne0 11789 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ≠ 0)
1715, 16jca 511 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) ≠ 0))
18 eldifsn 4735 . . . . . . . 8 ((1 / 𝑥) ∈ (ℂ ∖ {0}) ↔ ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) ≠ 0))
1917, 3, 183imtr4i 292 . . . . . . 7 (𝑥 ∈ (ℂ ∖ {0}) → (1 / 𝑥) ∈ (ℂ ∖ {0}))
2019adantr 480 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ (ℂ ∖ {0}))
212, 10, 14, 20expcl2lem 13980 . . . . 5 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ (ℂ ∖ {0}))
22213expia 1121 . . . 4 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ≠ 0) → (𝑁 ∈ ℤ → (𝐴𝑁) ∈ (ℂ ∖ {0})))
231, 22sylanbr 582 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≠ 0) → (𝑁 ∈ ℤ → (𝐴𝑁) ∈ (ℂ ∖ {0})))
2423anabss3 675 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑁 ∈ ℤ → (𝐴𝑁) ∈ (ℂ ∖ {0})))
25243impia 1117 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ (ℂ ∖ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2111  wne 2928  cdif 3894  {csn 4573  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   · cmul 11011   / cdiv 11774  cz 12468  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-seq 13909  df-exp 13969
This theorem is referenced by:  expclz  13991  expne0i  14001  expghm  21412
  Copyright terms: Public domain W3C validator