Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expclzlem | Structured version Visualization version GIF version |
Description: Closure law for integer exponentiation. (Contributed by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
expclzlem | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ (ℂ ∖ {0})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4720 | . . . 4 ⊢ (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) | |
2 | difss 4066 | . . . . . 6 ⊢ (ℂ ∖ {0}) ⊆ ℂ | |
3 | eldifsn 4720 | . . . . . . 7 ⊢ (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) | |
4 | eldifsn 4720 | . . . . . . 7 ⊢ (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) | |
5 | mulcl 10955 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
6 | 5 | ad2ant2r 744 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ∈ ℂ) |
7 | mulne0 11617 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0) | |
8 | eldifsn 4720 | . . . . . . . 8 ⊢ ((𝑥 · 𝑦) ∈ (ℂ ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0)) | |
9 | 6, 7, 8 | sylanbrc 583 | . . . . . . 7 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0})) |
10 | 3, 4, 9 | syl2anb 598 | . . . . . 6 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0})) |
11 | ax-1cn 10929 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
12 | ax-1ne0 10940 | . . . . . . 7 ⊢ 1 ≠ 0 | |
13 | eldifsn 4720 | . . . . . . 7 ⊢ (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ 1 ≠ 0)) | |
14 | 11, 12, 13 | mpbir2an 708 | . . . . . 6 ⊢ 1 ∈ (ℂ ∖ {0}) |
15 | reccl 11640 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℂ) | |
16 | recne0 11646 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ≠ 0) | |
17 | 15, 16 | jca 512 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) ≠ 0)) |
18 | eldifsn 4720 | . . . . . . . 8 ⊢ ((1 / 𝑥) ∈ (ℂ ∖ {0}) ↔ ((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑥) ≠ 0)) | |
19 | 17, 3, 18 | 3imtr4i 292 | . . . . . . 7 ⊢ (𝑥 ∈ (ℂ ∖ {0}) → (1 / 𝑥) ∈ (ℂ ∖ {0})) |
20 | 19 | adantr 481 | . . . . . 6 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ (ℂ ∖ {0})) |
21 | 2, 10, 14, 20 | expcl2lem 13794 | . . . . 5 ⊢ ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ (ℂ ∖ {0})) |
22 | 21 | 3expia 1120 | . . . 4 ⊢ ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐴 ≠ 0) → (𝑁 ∈ ℤ → (𝐴↑𝑁) ∈ (ℂ ∖ {0}))) |
23 | 1, 22 | sylanbr 582 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐴 ≠ 0) → (𝑁 ∈ ℤ → (𝐴↑𝑁) ∈ (ℂ ∖ {0}))) |
24 | 23 | anabss3 672 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑁 ∈ ℤ → (𝐴↑𝑁) ∈ (ℂ ∖ {0}))) |
25 | 24 | 3impia 1116 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ (ℂ ∖ {0})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 {csn 4561 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 · cmul 10876 / cdiv 11632 ℤcz 12319 ↑cexp 13782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-seq 13722 df-exp 13783 |
This theorem is referenced by: expclz 13807 expne0i 13815 expghm 20697 |
Copyright terms: Public domain | W3C validator |