MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anbi1 Structured version   Visualization version   GIF version

Theorem anbi1 632
Description: Introduce a right conjunct to both sides of a logical equivalence. Theorem *4.36 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
anbi1 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))

Proof of Theorem anbi1
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21anbi1d 630 1 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  pm5.75  1029  rexeq  3330  rmoeq1  3425  ttrclselem2  9795  relexpindlem  15112  rexfiuz  15396  bnj916  34909  redundpim3  38586
  Copyright terms: Public domain W3C validator