| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anbi1 | Structured version Visualization version GIF version | ||
| Description: Introduce a right conjunct to both sides of a logical equivalence. Theorem *4.36 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| anbi1 | ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | anbi1d 631 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm5.75 1030 rexeq 3305 rmoeq1 3400 ttrclselem2 9745 relexpindlem 15087 rexfiuz 15371 bnj916 34969 redundpim3 38653 |
| Copyright terms: Public domain | W3C validator |