| Step | Hyp | Ref
| Expression |
| 1 | | suceq 6449 |
. . . . . . . . . . . 12
⊢ (𝑚 = ∅ → suc 𝑚 = suc ∅) |
| 2 | | df-1o 8507 |
. . . . . . . . . . . 12
⊢
1o = suc ∅ |
| 3 | 1, 2 | eqtr4di 2794 |
. . . . . . . . . . 11
⊢ (𝑚 = ∅ → suc 𝑚 =
1o) |
| 4 | | suceq 6449 |
. . . . . . . . . . 11
⊢ (suc
𝑚 = 1o →
suc suc 𝑚 = suc
1o) |
| 5 | 3, 4 | syl 17 |
. . . . . . . . . 10
⊢ (𝑚 = ∅ → suc suc 𝑚 = suc
1o) |
| 6 | 5 | fneq2d 6661 |
. . . . . . . . 9
⊢ (𝑚 = ∅ → (𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc 1o)) |
| 7 | 3 | fveqeq2d 6913 |
. . . . . . . . . 10
⊢ (𝑚 = ∅ → ((𝑓‘suc 𝑚) = 𝑋 ↔ (𝑓‘1o) = 𝑋)) |
| 8 | 7 | anbi2d 630 |
. . . . . . . . 9
⊢ (𝑚 = ∅ → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋))) |
| 9 | | df1o2 8514 |
. . . . . . . . . . . 12
⊢
1o = {∅} |
| 10 | 3, 9 | eqtrdi 2792 |
. . . . . . . . . . 11
⊢ (𝑚 = ∅ → suc 𝑚 = {∅}) |
| 11 | 10 | raleqdv 3325 |
. . . . . . . . . 10
⊢ (𝑚 = ∅ → (∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ {∅} (𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) |
| 12 | | 0ex 5306 |
. . . . . . . . . . 11
⊢ ∅
∈ V |
| 13 | | fveq2 6905 |
. . . . . . . . . . . 12
⊢ (𝑎 = ∅ → (𝑓‘𝑎) = (𝑓‘∅)) |
| 14 | | suceq 6449 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = ∅ → suc 𝑎 = suc ∅) |
| 15 | 14, 2 | eqtr4di 2794 |
. . . . . . . . . . . . 13
⊢ (𝑎 = ∅ → suc 𝑎 =
1o) |
| 16 | 15 | fveq2d 6909 |
. . . . . . . . . . . 12
⊢ (𝑎 = ∅ → (𝑓‘suc 𝑎) = (𝑓‘1o)) |
| 17 | 13, 16 | breq12d 5155 |
. . . . . . . . . . 11
⊢ (𝑎 = ∅ → ((𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o))) |
| 18 | 12, 17 | ralsn 4680 |
. . . . . . . . . 10
⊢
(∀𝑎 ∈
{∅} (𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) |
| 19 | 11, 18 | bitrdi 287 |
. . . . . . . . 9
⊢ (𝑚 = ∅ → (∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o))) |
| 20 | 6, 8, 19 | 3anbi123d 1437 |
. . . . . . . 8
⊢ (𝑚 = ∅ → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)))) |
| 21 | 20 | exbidv 1920 |
. . . . . . 7
⊢ (𝑚 = ∅ → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)))) |
| 22 | | fveq2 6905 |
. . . . . . . 8
⊢ (𝑚 = ∅ → (𝐹‘𝑚) = (𝐹‘∅)) |
| 23 | 22 | eleq2d 2826 |
. . . . . . 7
⊢ (𝑚 = ∅ → (𝑦 ∈ (𝐹‘𝑚) ↔ 𝑦 ∈ (𝐹‘∅))) |
| 24 | 21, 23 | bibi12d 345 |
. . . . . 6
⊢ (𝑚 = ∅ → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚)) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ 𝑦 ∈ (𝐹‘∅)))) |
| 25 | 24 | albidv 1919 |
. . . . 5
⊢ (𝑚 = ∅ → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚)) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ 𝑦 ∈ (𝐹‘∅)))) |
| 26 | 25 | imbi2d 340 |
. . . 4
⊢ (𝑚 = ∅ → (((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚))) ↔ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ 𝑦 ∈ (𝐹‘∅))))) |
| 27 | | suceq 6449 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑛 → suc 𝑚 = suc 𝑛) |
| 28 | | suceq 6449 |
. . . . . . . . . . . . 13
⊢ (suc
𝑚 = suc 𝑛 → suc suc 𝑚 = suc suc 𝑛) |
| 29 | 27, 28 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → suc suc 𝑚 = suc suc 𝑛) |
| 30 | 29 | fneq2d 6661 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc suc 𝑛)) |
| 31 | 27 | fveqeq2d 6913 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → ((𝑓‘suc 𝑚) = 𝑋 ↔ (𝑓‘suc 𝑛) = 𝑋)) |
| 32 | 31 | anbi2d 630 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋))) |
| 33 | 27 | raleqdv 3325 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) |
| 34 | | fveq2 6905 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑐 → (𝑓‘𝑎) = (𝑓‘𝑐)) |
| 35 | | suceq 6449 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑐 → suc 𝑎 = suc 𝑐) |
| 36 | 35 | fveq2d 6909 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑐 → (𝑓‘suc 𝑎) = (𝑓‘suc 𝑐)) |
| 37 | 34, 36 | breq12d 5155 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑐 → ((𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑐))) |
| 38 | 37 | cbvralvw 3236 |
. . . . . . . . . . . 12
⊢
(∀𝑎 ∈
suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑐 ∈ suc 𝑛(𝑓‘𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑐)) |
| 39 | 33, 38 | bitrdi 287 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑐 ∈ suc 𝑛(𝑓‘𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑐))) |
| 40 | 30, 32, 39 | 3anbi123d 1437 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑓‘𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑐)))) |
| 41 | 40 | exbidv 1920 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑓‘𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑐)))) |
| 42 | | fneq1 6658 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (𝑓 Fn suc suc 𝑛 ↔ 𝑔 Fn suc suc 𝑛)) |
| 43 | | fveq1 6904 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝑓‘∅) = (𝑔‘∅)) |
| 44 | 43 | eqeq1d 2738 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝑓‘∅) = 𝑦 ↔ (𝑔‘∅) = 𝑦)) |
| 45 | | fveq1 6904 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝑓‘suc 𝑛) = (𝑔‘suc 𝑛)) |
| 46 | 45 | eqeq1d 2738 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝑓‘suc 𝑛) = 𝑋 ↔ (𝑔‘suc 𝑛) = 𝑋)) |
| 47 | 44, 46 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋) ↔ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋))) |
| 48 | | fveq1 6904 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝑓‘𝑐) = (𝑔‘𝑐)) |
| 49 | | fveq1 6904 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝑓‘suc 𝑐) = (𝑔‘suc 𝑐)) |
| 50 | 48, 49 | breq12d 5155 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝑓‘𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑐) ↔ (𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐))) |
| 51 | 50 | ralbidv 3177 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (∀𝑐 ∈ suc 𝑛(𝑓‘𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑐) ↔ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐))) |
| 52 | 42, 47, 51 | 3anbi123d 1437 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → ((𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑓‘𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑐)) ↔ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)))) |
| 53 | 52 | cbvexvw 2035 |
. . . . . . . . 9
⊢
(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑓‘𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑐)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐))) |
| 54 | 41, 53 | bitrdi 287 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)))) |
| 55 | | fveq2 6905 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (𝐹‘𝑚) = (𝐹‘𝑛)) |
| 56 | 55 | eleq2d 2826 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (𝑦 ∈ (𝐹‘𝑚) ↔ 𝑦 ∈ (𝐹‘𝑛))) |
| 57 | 54, 56 | bibi12d 345 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚)) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑦 ∈ (𝐹‘𝑛)))) |
| 58 | 57 | albidv 1919 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚)) ↔ ∀𝑦(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑦 ∈ (𝐹‘𝑛)))) |
| 59 | | eqeq2 2748 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → ((𝑔‘∅) = 𝑦 ↔ (𝑔‘∅) = 𝑧)) |
| 60 | 59 | anbi1d 631 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ↔ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋))) |
| 61 | 60 | 3anbi2d 1442 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → ((𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)))) |
| 62 | 61 | exbidv 1920 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)))) |
| 63 | | eleq1 2828 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝑦 ∈ (𝐹‘𝑛) ↔ 𝑧 ∈ (𝐹‘𝑛))) |
| 64 | 62, 63 | bibi12d 345 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑦 ∈ (𝐹‘𝑛)) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛)))) |
| 65 | 64 | cbvalvw 2034 |
. . . . . 6
⊢
(∀𝑦(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑦 ∈ (𝐹‘𝑛)) ↔ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛))) |
| 66 | 58, 65 | bitrdi 287 |
. . . . 5
⊢ (𝑚 = 𝑛 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚)) ↔ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛)))) |
| 67 | 66 | imbi2d 340 |
. . . 4
⊢ (𝑚 = 𝑛 → (((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚))) ↔ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛))))) |
| 68 | | suceq 6449 |
. . . . . . . . . . 11
⊢ (𝑚 = suc 𝑛 → suc 𝑚 = suc suc 𝑛) |
| 69 | | suceq 6449 |
. . . . . . . . . . 11
⊢ (suc
𝑚 = suc suc 𝑛 → suc suc 𝑚 = suc suc suc 𝑛) |
| 70 | 68, 69 | syl 17 |
. . . . . . . . . 10
⊢ (𝑚 = suc 𝑛 → suc suc 𝑚 = suc suc suc 𝑛) |
| 71 | 70 | fneq2d 6661 |
. . . . . . . . 9
⊢ (𝑚 = suc 𝑛 → (𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc suc suc 𝑛)) |
| 72 | 68 | fveqeq2d 6913 |
. . . . . . . . . 10
⊢ (𝑚 = suc 𝑛 → ((𝑓‘suc 𝑚) = 𝑋 ↔ (𝑓‘suc suc 𝑛) = 𝑋)) |
| 73 | 72 | anbi2d 630 |
. . . . . . . . 9
⊢ (𝑚 = suc 𝑛 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋))) |
| 74 | 68 | raleqdv 3325 |
. . . . . . . . 9
⊢ (𝑚 = suc 𝑛 → (∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) |
| 75 | 71, 73, 74 | 3anbi123d 1437 |
. . . . . . . 8
⊢ (𝑚 = suc 𝑛 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)))) |
| 76 | 75 | exbidv 1920 |
. . . . . . 7
⊢ (𝑚 = suc 𝑛 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)))) |
| 77 | | fveq2 6905 |
. . . . . . . 8
⊢ (𝑚 = suc 𝑛 → (𝐹‘𝑚) = (𝐹‘suc 𝑛)) |
| 78 | 77 | eleq2d 2826 |
. . . . . . 7
⊢ (𝑚 = suc 𝑛 → (𝑦 ∈ (𝐹‘𝑚) ↔ 𝑦 ∈ (𝐹‘suc 𝑛))) |
| 79 | 76, 78 | bibi12d 345 |
. . . . . 6
⊢ (𝑚 = suc 𝑛 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚)) ↔ (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛)))) |
| 80 | 79 | albidv 1919 |
. . . . 5
⊢ (𝑚 = suc 𝑛 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚)) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛)))) |
| 81 | 80 | imbi2d 340 |
. . . 4
⊢ (𝑚 = suc 𝑛 → (((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚))) ↔ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛))))) |
| 82 | | suceq 6449 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑁 → suc 𝑚 = suc 𝑁) |
| 83 | | suceq 6449 |
. . . . . . . . . . 11
⊢ (suc
𝑚 = suc 𝑁 → suc suc 𝑚 = suc suc 𝑁) |
| 84 | 82, 83 | syl 17 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑁 → suc suc 𝑚 = suc suc 𝑁) |
| 85 | 84 | fneq2d 6661 |
. . . . . . . . 9
⊢ (𝑚 = 𝑁 → (𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc suc 𝑁)) |
| 86 | 82 | fveqeq2d 6913 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑁 → ((𝑓‘suc 𝑚) = 𝑋 ↔ (𝑓‘suc 𝑁) = 𝑋)) |
| 87 | 86 | anbi2d 630 |
. . . . . . . . 9
⊢ (𝑚 = 𝑁 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋))) |
| 88 | 82 | raleqdv 3325 |
. . . . . . . . 9
⊢ (𝑚 = 𝑁 → (∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑁(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) |
| 89 | 85, 87, 88 | 3anbi123d 1437 |
. . . . . . . 8
⊢ (𝑚 = 𝑁 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)))) |
| 90 | 89 | exbidv 1920 |
. . . . . . 7
⊢ (𝑚 = 𝑁 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)))) |
| 91 | | fveq2 6905 |
. . . . . . . 8
⊢ (𝑚 = 𝑁 → (𝐹‘𝑚) = (𝐹‘𝑁)) |
| 92 | 91 | eleq2d 2826 |
. . . . . . 7
⊢ (𝑚 = 𝑁 → (𝑦 ∈ (𝐹‘𝑚) ↔ 𝑦 ∈ (𝐹‘𝑁))) |
| 93 | 90, 92 | bibi12d 345 |
. . . . . 6
⊢ (𝑚 = 𝑁 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚)) ↔ (∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑁)))) |
| 94 | 93 | albidv 1919 |
. . . . 5
⊢ (𝑚 = 𝑁 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚)) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑁)))) |
| 95 | 94 | imbi2d 340 |
. . . 4
⊢ (𝑚 = 𝑁 → (((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚))) ↔ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑁))))) |
| 96 | | eqeq2 2748 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑋 → ((𝑓‘1o) = 𝑥 ↔ (𝑓‘1o) = 𝑋)) |
| 97 | 96 | anbi2d 630 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋))) |
| 98 | 97 | anbi2d 630 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥)) ↔ (𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)))) |
| 99 | 98 | exbidv 1920 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥)) ↔ ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)))) |
| 100 | | vex 3483 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
| 101 | | vex 3483 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
| 102 | 100, 101 | ifex 4575 |
. . . . . . . . . . . 12
⊢ if(𝑏 = ∅, 𝑦, 𝑥) ∈ V |
| 103 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ suc 1o
↦ if(𝑏 = ∅,
𝑦, 𝑥)) = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) |
| 104 | 102, 103 | fnmpti 6710 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ suc 1o
↦ if(𝑏 = ∅,
𝑦, 𝑥)) Fn suc 1o |
| 105 | | equid 2010 |
. . . . . . . . . . . 12
⊢ 𝑦 = 𝑦 |
| 106 | | equid 2010 |
. . . . . . . . . . . 12
⊢ 𝑥 = 𝑥 |
| 107 | 105, 106 | pm3.2i 470 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑦 ∧ 𝑥 = 𝑥) |
| 108 | | 1oex 8517 |
. . . . . . . . . . . . . 14
⊢
1o ∈ V |
| 109 | 108 | sucex 7827 |
. . . . . . . . . . . . 13
⊢ suc
1o ∈ V |
| 110 | 109 | mptex 7244 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ suc 1o
↦ if(𝑏 = ∅,
𝑦, 𝑥)) ∈ V |
| 111 | | fneq1 6658 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (𝑓 Fn suc 1o ↔ (𝑏 ∈ suc 1o
↦ if(𝑏 = ∅,
𝑦, 𝑥)) Fn suc 1o)) |
| 112 | | fveq1 6904 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (𝑓‘∅) = ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))‘∅)) |
| 113 | | 1on 8519 |
. . . . . . . . . . . . . . . . . 18
⊢
1o ∈ On |
| 114 | 113 | onordi 6494 |
. . . . . . . . . . . . . . . . 17
⊢ Ord
1o |
| 115 | | 0elsuc 7856 |
. . . . . . . . . . . . . . . . 17
⊢ (Ord
1o → ∅ ∈ suc 1o) |
| 116 | | iftrue 4530 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = ∅ → if(𝑏 = ∅, 𝑦, 𝑥) = 𝑦) |
| 117 | 116, 103,
100 | fvmpt 7015 |
. . . . . . . . . . . . . . . . 17
⊢ (∅
∈ suc 1o → ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))‘∅) = 𝑦) |
| 118 | 114, 115,
117 | mp2b 10 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 ∈ suc 1o
↦ if(𝑏 = ∅,
𝑦, 𝑥))‘∅) = 𝑦 |
| 119 | 112, 118 | eqtrdi 2792 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (𝑓‘∅) = 𝑦) |
| 120 | 119 | eqeq1d 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → ((𝑓‘∅) = 𝑦 ↔ 𝑦 = 𝑦)) |
| 121 | | fveq1 6904 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (𝑓‘1o) = ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))‘1o)) |
| 122 | 108 | sucid 6465 |
. . . . . . . . . . . . . . . . 17
⊢
1o ∈ suc 1o |
| 123 | | eqeq1 2740 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = 1o → (𝑏 = ∅ ↔ 1o
= ∅)) |
| 124 | 123 | ifbid 4548 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 1o → if(𝑏 = ∅, 𝑦, 𝑥) = if(1o = ∅, 𝑦, 𝑥)) |
| 125 | | 1n0 8527 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
1o ≠ ∅ |
| 126 | 125 | neii 2941 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ¬
1o = ∅ |
| 127 | 126 | iffalsei 4534 |
. . . . . . . . . . . . . . . . . . 19
⊢
if(1o = ∅, 𝑦, 𝑥) = 𝑥 |
| 128 | 124, 127 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 1o → if(𝑏 = ∅, 𝑦, 𝑥) = 𝑥) |
| 129 | 128, 103,
101 | fvmpt 7015 |
. . . . . . . . . . . . . . . . 17
⊢
(1o ∈ suc 1o → ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))‘1o) = 𝑥) |
| 130 | 122, 129 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 ∈ suc 1o
↦ if(𝑏 = ∅,
𝑦, 𝑥))‘1o) = 𝑥 |
| 131 | 121, 130 | eqtrdi 2792 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (𝑓‘1o) = 𝑥) |
| 132 | 131 | eqeq1d 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → ((𝑓‘1o) = 𝑥 ↔ 𝑥 = 𝑥)) |
| 133 | 120, 132 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥) ↔ (𝑦 = 𝑦 ∧ 𝑥 = 𝑥))) |
| 134 | 111, 133 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥)) ↔ ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) Fn suc 1o ∧ (𝑦 = 𝑦 ∧ 𝑥 = 𝑥)))) |
| 135 | 110, 134 | spcev 3605 |
. . . . . . . . . . 11
⊢ (((𝑏 ∈ suc 1o
↦ if(𝑏 = ∅,
𝑦, 𝑥)) Fn suc 1o ∧ (𝑦 = 𝑦 ∧ 𝑥 = 𝑥)) → ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥))) |
| 136 | 104, 107,
135 | mp2an 692 |
. . . . . . . . . 10
⊢
∃𝑓(𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥)) |
| 137 | 99, 136 | vtoclg 3553 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝐴 → ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋))) |
| 138 | 137 | adantl 481 |
. . . . . . . 8
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋))) |
| 139 | 138 | biantrurd 532 |
. . . . . . 7
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑋) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑋)))) |
| 140 | 100 | elpred 6337 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐴 → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑋))) |
| 141 | 140 | adantl 481 |
. . . . . . 7
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑋))) |
| 142 | | brres 6003 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝐴 → (𝑦(𝑅 ↾ 𝐴)𝑋 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑋))) |
| 143 | 142 | adantl 481 |
. . . . . . . 8
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑦(𝑅 ↾ 𝐴)𝑋 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑋))) |
| 144 | 143 | anbi2d 630 |
. . . . . . 7
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ((∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑋) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑋)))) |
| 145 | 139, 141,
144 | 3bitr4rd 312 |
. . . . . 6
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ((∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑋) ↔ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑋))) |
| 146 | | df-3an 1088 |
. . . . . . . . . 10
⊢ ((𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ ((𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o))) |
| 147 | | breq12 5147 |
. . . . . . . . . . . 12
⊢ (((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) → ((𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o) ↔ 𝑦(𝑅 ↾ 𝐴)𝑋)) |
| 148 | 147 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) → ((𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o) ↔ 𝑦(𝑅 ↾ 𝐴)𝑋)) |
| 149 | 148 | pm5.32i 574 |
. . . . . . . . . 10
⊢ (((𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ ((𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑋)) |
| 150 | 146, 149 | bitri 275 |
. . . . . . . . 9
⊢ ((𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ ((𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑋)) |
| 151 | 150 | exbii 1847 |
. . . . . . . 8
⊢
(∃𝑓(𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ ∃𝑓((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑋)) |
| 152 | | 19.41v 1948 |
. . . . . . . 8
⊢
(∃𝑓((𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑋) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑋)) |
| 153 | 151, 152 | bitri 275 |
. . . . . . 7
⊢
(∃𝑓(𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑋)) |
| 154 | 153 | a1i 11 |
. . . . . 6
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑋))) |
| 155 | | ttrclselem.1 |
. . . . . . . . 9
⊢ 𝐹 = rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋)) |
| 156 | 155 | fveq1i 6906 |
. . . . . . . 8
⊢ (𝐹‘∅) = (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) |
| 157 | | setlikespec 6345 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V) |
| 158 | 157 | ancoms 458 |
. . . . . . . . 9
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V) |
| 159 | | rdg0g 8468 |
. . . . . . . . 9
⊢
(Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) = Pred(𝑅, 𝐴, 𝑋)) |
| 160 | 158, 159 | syl 17 |
. . . . . . . 8
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) = Pred(𝑅, 𝐴, 𝑋)) |
| 161 | 156, 160 | eqtrid 2788 |
. . . . . . 7
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹‘∅) = Pred(𝑅, 𝐴, 𝑋)) |
| 162 | 161 | eleq2d 2826 |
. . . . . 6
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑦 ∈ (𝐹‘∅) ↔ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑋))) |
| 163 | 145, 154,
162 | 3bitr4d 311 |
. . . . 5
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ 𝑦 ∈ (𝐹‘∅))) |
| 164 | 163 | alrimiv 1926 |
. . . 4
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ 𝑦 ∈ (𝐹‘∅))) |
| 165 | | eliun 4994 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) ↔ ∃𝑧 ∈ (𝐹‘𝑛)𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)) |
| 166 | | df-rex 3070 |
. . . . . . . . . 10
⊢
(∃𝑧 ∈
(𝐹‘𝑛)𝑦 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ ∃𝑧(𝑧 ∈ (𝐹‘𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧))) |
| 167 | 165, 166 | bitri 275 |
. . . . . . . . 9
⊢ (𝑦 ∈ ∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) ↔ ∃𝑧(𝑧 ∈ (𝐹‘𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧))) |
| 168 | 100 | elpred 6337 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ V → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧))) |
| 169 | 168 | elv 3484 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)) |
| 170 | 169 | anbi2i 623 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ (𝐹‘𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)) ↔ (𝑧 ∈ (𝐹‘𝑛) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧))) |
| 171 | | anbi1 633 |
. . . . . . . . . . . 12
⊢
((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛)) → ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)) ↔ (𝑧 ∈ (𝐹‘𝑛) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
| 172 | 170, 171 | bitr4id 290 |
. . . . . . . . . . 11
⊢
((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛)) → ((𝑧 ∈ (𝐹‘𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
| 173 | 172 | alexbii 1832 |
. . . . . . . . . 10
⊢
(∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛)) → (∃𝑧(𝑧 ∈ (𝐹‘𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
| 174 | 173 | 3ad2ant3 1135 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛))) → (∃𝑧(𝑧 ∈ (𝐹‘𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
| 175 | 167, 174 | bitrid 283 |
. . . . . . . 8
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛))) → (𝑦 ∈ ∪
𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
| 176 | | nnon 7894 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ω → 𝑛 ∈ On) |
| 177 | | fvex 6918 |
. . . . . . . . . . . 12
⊢ (𝐹‘𝑛) ∈ V |
| 178 | 155 | ttrclselem1 9766 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ω → (𝐹‘𝑛) ⊆ 𝐴) |
| 179 | 178 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ω ∧ 𝑅 Se 𝐴) → (𝐹‘𝑛) ⊆ 𝐴) |
| 180 | | dfse3 6356 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 Se 𝐴 ↔ ∀𝑧 ∈ 𝐴 Pred(𝑅, 𝐴, 𝑧) ∈ V) |
| 181 | 180 | biimpi 216 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 Se 𝐴 → ∀𝑧 ∈ 𝐴 Pred(𝑅, 𝐴, 𝑧) ∈ V) |
| 182 | 181 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ω ∧ 𝑅 Se 𝐴) → ∀𝑧 ∈ 𝐴 Pred(𝑅, 𝐴, 𝑧) ∈ V) |
| 183 | | ssralv 4051 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑛) ⊆ 𝐴 → (∀𝑧 ∈ 𝐴 Pred(𝑅, 𝐴, 𝑧) ∈ V → ∀𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V)) |
| 184 | 179, 182,
183 | sylc 65 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ω ∧ 𝑅 Se 𝐴) → ∀𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V) |
| 185 | 184 | adantrr 717 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴)) → ∀𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V) |
| 186 | | iunexg 7989 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑛) ∈ V ∧ ∀𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V) → ∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V) |
| 187 | 177, 185,
186 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴)) → ∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V) |
| 188 | | nfcv 2904 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏Pred(𝑅, 𝐴, 𝑋) |
| 189 | | nfcv 2904 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏𝑛 |
| 190 | | nfmpt1 5249 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑏(𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)) |
| 191 | 190, 188 | nfrdg 8455 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋)) |
| 192 | 155, 191 | nfcxfr 2902 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏𝐹 |
| 193 | 192, 189 | nffv 6915 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏(𝐹‘𝑛) |
| 194 | | nfcv 2904 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏Pred(𝑅, 𝐴, 𝑧) |
| 195 | 193, 194 | nfiun 5022 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) |
| 196 | | predeq3 6324 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑧 → Pred(𝑅, 𝐴, 𝑤) = Pred(𝑅, 𝐴, 𝑧)) |
| 197 | 196 | cbviunv 5039 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤) = ∪ 𝑧 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑧) |
| 198 | | iuneq1 5007 |
. . . . . . . . . . . . 13
⊢ (𝑏 = (𝐹‘𝑛) → ∪
𝑧 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑧) = ∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧)) |
| 199 | 197, 198 | eqtrid 2788 |
. . . . . . . . . . . 12
⊢ (𝑏 = (𝐹‘𝑛) → ∪
𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤) = ∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧)) |
| 200 | 188, 189,
195, 155, 199 | rdgsucmptf 8469 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ On ∧ ∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V) → (𝐹‘suc 𝑛) = ∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧)) |
| 201 | 176, 187,
200 | syl2an2r 685 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝐹‘suc 𝑛) = ∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧)) |
| 202 | 201 | 3adant3 1132 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛))) → (𝐹‘suc 𝑛) = ∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧)) |
| 203 | 202 | eleq2d 2826 |
. . . . . . . 8
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛))) → (𝑦 ∈ (𝐹‘suc 𝑛) ↔ 𝑦 ∈ ∪
𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧))) |
| 204 | | eqeq2 2748 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑋 → ((𝑓‘suc suc 𝑛) = 𝑥 ↔ (𝑓‘suc suc 𝑛) = 𝑋)) |
| 205 | 204 | anbi2d 630 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑋 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋))) |
| 206 | 205 | 3anbi2d 1442 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑋 → ((𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)))) |
| 207 | 206 | exbidv 1920 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑋 → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)))) |
| 208 | | eqeq2 2748 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑋 → ((𝑔‘suc 𝑛) = 𝑥 ↔ (𝑔‘suc 𝑛) = 𝑋)) |
| 209 | 208 | anbi2d 630 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑋 → (((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ↔ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋))) |
| 210 | 209 | 3anbi2d 1442 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑋 → ((𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)))) |
| 211 | 210 | exbidv 1920 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑋 → (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)))) |
| 212 | 211 | anbi1d 631 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑋 → ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
| 213 | 212 | exbidv 1920 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑋 → (∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
| 214 | 207, 213 | bibi12d 345 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑋 → ((∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧))) ↔ (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧))))) |
| 215 | 214 | imbi2d 340 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → ((𝑛 ∈ ω → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) ↔ (𝑛 ∈ ω → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))))) |
| 216 | | fvex 6918 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓‘suc 𝑏) ∈ V |
| 217 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) |
| 218 | 216, 217 | fnmpti 6710 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) Fn suc suc 𝑛 |
| 219 | 218 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) Fn suc suc 𝑛) |
| 220 | | peano2 7913 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ ω → suc 𝑛 ∈
ω) |
| 221 | 220 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → suc 𝑛 ∈ ω) |
| 222 | | nnord 7896 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (suc
𝑛 ∈ ω → Ord
suc 𝑛) |
| 223 | 221, 222 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → Ord suc 𝑛) |
| 224 | | 0elsuc 7856 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Ord suc
𝑛 → ∅ ∈ suc
suc 𝑛) |
| 225 | 223, 224 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → ∅ ∈ suc suc 𝑛) |
| 226 | | suceq 6449 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 = ∅ → suc 𝑏 = suc ∅) |
| 227 | 226 | fveq2d 6909 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = ∅ → (𝑓‘suc 𝑏) = (𝑓‘suc ∅)) |
| 228 | | fvex 6918 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓‘suc ∅) ∈
V |
| 229 | 227, 217,
228 | fvmpt 7015 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∅
∈ suc suc 𝑛 →
((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅)) |
| 230 | 225, 229 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅)) |
| 231 | | vex 3483 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑛 ∈ V |
| 232 | 231 | sucex 7827 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ suc 𝑛 ∈ V |
| 233 | 232 | sucid 6465 |
. . . . . . . . . . . . . . . . . . . 20
⊢ suc 𝑛 ∈ suc suc 𝑛 |
| 234 | | suceq 6449 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = suc 𝑛 → suc 𝑏 = suc suc 𝑛) |
| 235 | 234 | fveq2d 6909 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 = suc 𝑛 → (𝑓‘suc 𝑏) = (𝑓‘suc suc 𝑛)) |
| 236 | | fvex 6918 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓‘suc suc 𝑛) ∈ V |
| 237 | 235, 217,
236 | fvmpt 7015 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (suc
𝑛 ∈ suc suc 𝑛 → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = (𝑓‘suc suc 𝑛)) |
| 238 | 233, 237 | mp1i 13 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = (𝑓‘suc suc 𝑛)) |
| 239 | | simpr2r 1233 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → (𝑓‘suc suc 𝑛) = 𝑥) |
| 240 | 238, 239 | eqtrd 2776 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = 𝑥) |
| 241 | | fveq2 6905 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = suc 𝑐 → (𝑓‘𝑎) = (𝑓‘suc 𝑐)) |
| 242 | | suceq 6449 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = suc 𝑐 → suc 𝑎 = suc suc 𝑐) |
| 243 | 242 | fveq2d 6909 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = suc 𝑐 → (𝑓‘suc 𝑎) = (𝑓‘suc suc 𝑐)) |
| 244 | 241, 243 | breq12d 5155 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = suc 𝑐 → ((𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘suc 𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc suc 𝑐))) |
| 245 | | simplr3 1217 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) |
| 246 | | ordsucelsuc 7843 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (Ord suc
𝑛 → (𝑐 ∈ suc 𝑛 ↔ suc 𝑐 ∈ suc suc 𝑛)) |
| 247 | 223, 246 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → (𝑐 ∈ suc 𝑛 ↔ suc 𝑐 ∈ suc suc 𝑛)) |
| 248 | 247 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → suc 𝑐 ∈ suc suc 𝑛) |
| 249 | 244, 245,
248 | rspcdva 3622 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → (𝑓‘suc 𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc suc 𝑐)) |
| 250 | | elelsuc 6456 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐 ∈ suc 𝑛 → 𝑐 ∈ suc suc 𝑛) |
| 251 | | suceq 6449 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 = 𝑐 → suc 𝑏 = suc 𝑐) |
| 252 | 251 | fveq2d 6909 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 = 𝑐 → (𝑓‘suc 𝑏) = (𝑓‘suc 𝑐)) |
| 253 | | fvex 6918 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓‘suc 𝑐) ∈ V |
| 254 | 252, 217,
253 | fvmpt 7015 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐 ∈ suc suc 𝑛 → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐) = (𝑓‘suc 𝑐)) |
| 255 | 250, 254 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 ∈ suc 𝑛 → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐) = (𝑓‘suc 𝑐)) |
| 256 | 255 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐) = (𝑓‘suc 𝑐)) |
| 257 | | suceq 6449 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 = suc 𝑐 → suc 𝑏 = suc suc 𝑐) |
| 258 | 257 | fveq2d 6909 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = suc 𝑐 → (𝑓‘suc 𝑏) = (𝑓‘suc suc 𝑐)) |
| 259 | | fvex 6918 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓‘suc suc 𝑐) ∈ V |
| 260 | 258, 217,
259 | fvmpt 7015 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (suc
𝑐 ∈ suc suc 𝑛 → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐) = (𝑓‘suc suc 𝑐)) |
| 261 | 248, 260 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐) = (𝑓‘suc suc 𝑐)) |
| 262 | 249, 256,
261 | 3brtr4d 5174 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐)) |
| 263 | 262 | ralrimiva 3145 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → ∀𝑐 ∈ suc 𝑛((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐)) |
| 264 | 232 | sucex 7827 |
. . . . . . . . . . . . . . . . . . . 20
⊢ suc suc
𝑛 ∈ V |
| 265 | 264 | mptex 7244 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) ∈ V |
| 266 | | fneq1 6658 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (𝑔 Fn suc suc 𝑛 ↔ (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) Fn suc suc 𝑛)) |
| 267 | | fveq1 6904 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (𝑔‘∅) = ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅)) |
| 268 | 267 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → ((𝑔‘∅) = (𝑓‘suc ∅) ↔ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅))) |
| 269 | | fveq1 6904 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (𝑔‘suc 𝑛) = ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛)) |
| 270 | 269 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → ((𝑔‘suc 𝑛) = 𝑥 ↔ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = 𝑥)) |
| 271 | 268, 270 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ↔ (((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅) ∧ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = 𝑥))) |
| 272 | | fveq1 6904 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (𝑔‘𝑐) = ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)) |
| 273 | | fveq1 6904 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (𝑔‘suc 𝑐) = ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐)) |
| 274 | 272, 273 | breq12d 5155 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → ((𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐) ↔ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐))) |
| 275 | 274 | ralbidv 3177 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐) ↔ ∀𝑐 ∈ suc 𝑛((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐))) |
| 276 | 266, 271,
275 | 3anbi123d 1437 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → ((𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) Fn suc suc 𝑛 ∧ (((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅) ∧ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐)))) |
| 277 | 265, 276 | spcev 3605 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) Fn suc suc 𝑛 ∧ (((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅) ∧ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐)) → ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐))) |
| 278 | 219, 230,
240, 263, 277 | syl121anc 1376 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐))) |
| 279 | | simpr2l 1232 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → (𝑓‘∅) = 𝑦) |
| 280 | 14 | fveq2d 6909 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = ∅ → (𝑓‘suc 𝑎) = (𝑓‘suc ∅)) |
| 281 | 13, 280 | breq12d 5155 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = ∅ → ((𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘suc ∅))) |
| 282 | | simpr3 1196 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) |
| 283 | 281, 282,
225 | rspcdva 3622 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘suc ∅)) |
| 284 | 279, 283 | eqbrtrrd 5166 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → 𝑦(𝑅 ↾ 𝐴)(𝑓‘suc ∅)) |
| 285 | | eqeq2 2748 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = (𝑓‘suc ∅) → ((𝑔‘∅) = 𝑧 ↔ (𝑔‘∅) = (𝑓‘suc ∅))) |
| 286 | 285 | anbi1d 631 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = (𝑓‘suc ∅) → (((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ↔ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥))) |
| 287 | 286 | 3anbi2d 1442 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = (𝑓‘suc ∅) → ((𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)))) |
| 288 | 287 | exbidv 1920 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (𝑓‘suc ∅) → (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)))) |
| 289 | | breq2 5146 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (𝑓‘suc ∅) → (𝑦(𝑅 ↾ 𝐴)𝑧 ↔ 𝑦(𝑅 ↾ 𝐴)(𝑓‘suc ∅))) |
| 290 | 288, 289 | anbi12d 632 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑓‘suc ∅) → ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)(𝑓‘suc ∅)))) |
| 291 | 228, 290 | spcev 3605 |
. . . . . . . . . . . . . . . . 17
⊢
((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)(𝑓‘suc ∅)) → ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧)) |
| 292 | 278, 284,
291 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧)) |
| 293 | 292 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ω → ((𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) → ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧))) |
| 294 | 293 | exlimdv 1932 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ω →
(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) → ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧))) |
| 295 | | fvex 6918 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔‘∪ 𝑏)
∈ V |
| 296 | 100, 295 | ifex 4575 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)) ∈ V |
| 297 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) |
| 298 | 296, 297 | fnmpti 6710 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) Fn suc suc suc 𝑛 |
| 299 | 298 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) Fn suc suc suc 𝑛) |
| 300 | | peano2 7913 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (suc
𝑛 ∈ ω → suc
suc 𝑛 ∈
ω) |
| 301 | 220, 300 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ ω → suc suc
𝑛 ∈
ω) |
| 302 | 301 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → suc suc 𝑛 ∈ ω) |
| 303 | | nnord 7896 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (suc suc
𝑛 ∈ ω → Ord
suc suc 𝑛) |
| 304 | 302, 303 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → Ord suc suc 𝑛) |
| 305 | | 0elsuc 7856 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (Ord suc
suc 𝑛 → ∅ ∈
suc suc suc 𝑛) |
| 306 | 304, 305 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → ∅ ∈ suc suc suc 𝑛) |
| 307 | | iftrue 4530 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 = ∅ → if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)) = 𝑦) |
| 308 | 307, 297,
100 | fvmpt 7015 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∅
∈ suc suc suc 𝑛 →
((𝑏 ∈ suc suc suc
𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘∅) = 𝑦) |
| 309 | 306, 308 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘∅) = 𝑦) |
| 310 | 264 | sucid 6465 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ suc suc
𝑛 ∈ suc suc suc 𝑛 |
| 311 | | eqeq1 2740 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 = suc suc 𝑛 → (𝑏 = ∅ ↔ suc suc 𝑛 = ∅)) |
| 312 | | unieq 4917 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑏 = suc suc 𝑛 → ∪ 𝑏 = ∪
suc suc 𝑛) |
| 313 | 312 | fveq2d 6909 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 = suc suc 𝑛 → (𝑔‘∪ 𝑏) = (𝑔‘∪ suc suc
𝑛)) |
| 314 | 311, 313 | ifbieq2d 4551 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 = suc suc 𝑛 → if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)) = if(suc suc 𝑛 = ∅, 𝑦, (𝑔‘∪ suc suc
𝑛))) |
| 315 | | nsuceq0 6466 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ suc suc
𝑛 ≠
∅ |
| 316 | 315 | neii 2941 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ¬
suc suc 𝑛 =
∅ |
| 317 | 316 | iffalsei 4534 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ if(suc
suc 𝑛 = ∅, 𝑦, (𝑔‘∪ suc suc
𝑛)) = (𝑔‘∪ suc suc
𝑛) |
| 318 | 314, 317 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = suc suc 𝑛 → if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)) = (𝑔‘∪ suc suc
𝑛)) |
| 319 | | fvex 6918 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔‘∪ suc suc 𝑛) ∈ V |
| 320 | 318, 297,
319 | fvmpt 7015 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (suc suc
𝑛 ∈ suc suc suc 𝑛 → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc suc 𝑛) = (𝑔‘∪ suc suc
𝑛)) |
| 321 | 310, 320 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc suc 𝑛) = (𝑔‘∪ suc suc
𝑛)) |
| 322 | 220 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → suc 𝑛 ∈ ω) |
| 323 | 322, 222 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → Ord suc 𝑛) |
| 324 | | ordunisuc 7853 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (Ord suc
𝑛 → ∪ suc suc 𝑛 = suc 𝑛) |
| 325 | 323, 324 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → ∪ suc suc
𝑛 = suc 𝑛) |
| 326 | 325 | fveq2d 6909 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → (𝑔‘∪ suc suc
𝑛) = (𝑔‘suc 𝑛)) |
| 327 | | simp22r 1293 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → (𝑔‘suc 𝑛) = 𝑥) |
| 328 | 321, 326,
327 | 3eqtrd 2780 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc suc 𝑛) = 𝑥) |
| 329 | | simpl3 1193 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 = ∅) → 𝑦(𝑅 ↾ 𝐴)𝑧) |
| 330 | | iftrue 4530 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = ∅ → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎)) = 𝑦) |
| 331 | 330 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 = ∅) → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎)) = 𝑦) |
| 332 | | fveq2 6905 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = ∅ → (𝑔‘𝑎) = (𝑔‘∅)) |
| 333 | | simp22l 1292 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → (𝑔‘∅) = 𝑧) |
| 334 | 332, 333 | sylan9eqr 2798 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 = ∅) → (𝑔‘𝑎) = 𝑧) |
| 335 | 329, 331,
334 | 3brtr4d 5174 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 = ∅) → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))(𝑅 ↾ 𝐴)(𝑔‘𝑎)) |
| 336 | 335 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → (𝑎 = ∅ → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))(𝑅 ↾ 𝐴)(𝑔‘𝑎))) |
| 337 | 336 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → (𝑎 = ∅ → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))(𝑅 ↾ 𝐴)(𝑔‘𝑎))) |
| 338 | | ordsucelsuc 7843 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (Ord suc
𝑛 → (𝑏 ∈ suc 𝑛 ↔ suc 𝑏 ∈ suc suc 𝑛)) |
| 339 | 323, 338 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → (𝑏 ∈ suc 𝑛 ↔ suc 𝑏 ∈ suc suc 𝑛)) |
| 340 | | elnn 7899 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑏 ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω) → 𝑏 ∈ ω) |
| 341 | 322, 340 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑏 ∈ suc 𝑛 ∧ (𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧)) → 𝑏 ∈ ω) |
| 342 | 341 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → 𝑏 ∈ ω) |
| 343 | | nnord 7896 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑏 ∈ ω → Ord 𝑏) |
| 344 | 342, 343 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → Ord 𝑏) |
| 345 | | ordunisuc 7853 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (Ord
𝑏 → ∪ suc 𝑏 = 𝑏) |
| 346 | 344, 345 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → ∪ suc
𝑏 = 𝑏) |
| 347 | 346 | fveq2d 6909 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → (𝑔‘∪ suc 𝑏) = (𝑔‘𝑏)) |
| 348 | | simp23 1208 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) |
| 349 | | fveq2 6905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑐 = 𝑏 → (𝑔‘𝑐) = (𝑔‘𝑏)) |
| 350 | | suceq 6449 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑐 = 𝑏 → suc 𝑐 = suc 𝑏) |
| 351 | 350 | fveq2d 6909 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑐 = 𝑏 → (𝑔‘suc 𝑐) = (𝑔‘suc 𝑏)) |
| 352 | 349, 351 | breq12d 5155 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑐 = 𝑏 → ((𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐) ↔ (𝑔‘𝑏)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑏))) |
| 353 | 352 | rspcv 3617 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑏 ∈ suc 𝑛 → (∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐) → (𝑔‘𝑏)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑏))) |
| 354 | 348, 353 | mpan9 506 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → (𝑔‘𝑏)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑏)) |
| 355 | 347, 354 | eqbrtrd 5164 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → (𝑔‘∪ suc 𝑏)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑏)) |
| 356 | 355 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → (𝑏 ∈ suc 𝑛 → (𝑔‘∪ suc 𝑏)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑏))) |
| 357 | 339, 356 | sylbird 260 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → (suc 𝑏 ∈ suc suc 𝑛 → (𝑔‘∪ suc 𝑏)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑏))) |
| 358 | 357 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ suc 𝑏 ∈ suc suc 𝑛) → (𝑔‘∪ suc 𝑏)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑏)) |
| 359 | | eleq1 2828 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑎 = suc 𝑏 → (𝑎 ∈ suc suc 𝑛 ↔ suc 𝑏 ∈ suc suc 𝑛)) |
| 360 | 359 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = suc 𝑏 → (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) ↔ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ suc 𝑏 ∈ suc suc 𝑛))) |
| 361 | | eqeq1 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 = suc 𝑏 → (𝑎 = ∅ ↔ suc 𝑏 = ∅)) |
| 362 | | unieq 4917 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑎 = suc 𝑏 → ∪ 𝑎 = ∪
suc 𝑏) |
| 363 | 362 | fveq2d 6909 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 = suc 𝑏 → (𝑔‘∪ 𝑎) = (𝑔‘∪ suc 𝑏)) |
| 364 | 361, 363 | ifbieq2d 4551 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 = suc 𝑏 → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎)) = if(suc 𝑏 = ∅, 𝑦, (𝑔‘∪ suc 𝑏))) |
| 365 | | nsuceq0 6466 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ suc 𝑏 ≠ ∅ |
| 366 | 365 | neii 2941 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ¬
suc 𝑏 =
∅ |
| 367 | 366 | iffalsei 4534 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ if(suc
𝑏 = ∅, 𝑦, (𝑔‘∪ suc 𝑏)) = (𝑔‘∪ suc 𝑏) |
| 368 | 364, 367 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑎 = suc 𝑏 → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎)) = (𝑔‘∪ suc 𝑏)) |
| 369 | | fveq2 6905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑎 = suc 𝑏 → (𝑔‘𝑎) = (𝑔‘suc 𝑏)) |
| 370 | 368, 369 | breq12d 5155 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = suc 𝑏 → (if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))(𝑅 ↾ 𝐴)(𝑔‘𝑎) ↔ (𝑔‘∪ suc 𝑏)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑏))) |
| 371 | 360, 370 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 = suc 𝑏 → ((((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))(𝑅 ↾ 𝐴)(𝑔‘𝑎)) ↔ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ suc 𝑏 ∈ suc suc 𝑛) → (𝑔‘∪ suc 𝑏)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑏)))) |
| 372 | 358, 371 | mpbiri 258 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = suc 𝑏 → (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))(𝑅 ↾ 𝐴)(𝑔‘𝑎))) |
| 373 | 372 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → (𝑎 = suc 𝑏 → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))(𝑅 ↾ 𝐴)(𝑔‘𝑎))) |
| 374 | 373 | rexlimdvw 3159 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → (∃𝑏 ∈ ω 𝑎 = suc 𝑏 → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))(𝑅 ↾ 𝐴)(𝑔‘𝑎))) |
| 375 | | elnn 7899 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑎 ∈ suc suc 𝑛 ∧ suc suc 𝑛 ∈ ω) → 𝑎 ∈
ω) |
| 376 | 375 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((suc suc
𝑛 ∈ ω ∧
𝑎 ∈ suc suc 𝑛) → 𝑎 ∈ ω) |
| 377 | 302, 376 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → 𝑎 ∈ ω) |
| 378 | | nn0suc 7917 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 ∈ ω → (𝑎 = ∅ ∨ ∃𝑏 ∈ ω 𝑎 = suc 𝑏)) |
| 379 | 377, 378 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → (𝑎 = ∅ ∨ ∃𝑏 ∈ ω 𝑎 = suc 𝑏)) |
| 380 | 337, 374,
379 | mpjaod 860 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))(𝑅 ↾ 𝐴)(𝑔‘𝑎)) |
| 381 | | elelsuc 6456 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 ∈ suc suc 𝑛 → 𝑎 ∈ suc suc suc 𝑛) |
| 382 | | eqeq1 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑏 = 𝑎 → (𝑏 = ∅ ↔ 𝑎 = ∅)) |
| 383 | | unieq 4917 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑏 = 𝑎 → ∪ 𝑏 = ∪
𝑎) |
| 384 | 383 | fveq2d 6909 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑏 = 𝑎 → (𝑔‘∪ 𝑏) = (𝑔‘∪ 𝑎)) |
| 385 | 382, 384 | ifbieq2d 4551 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 = 𝑎 → if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)) = if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))) |
| 386 | | fvex 6918 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑔‘∪ 𝑎)
∈ V |
| 387 | 100, 386 | ifex 4575 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎)) ∈ V |
| 388 | 385, 297,
387 | fvmpt 7015 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 ∈ suc suc suc 𝑛 → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘𝑎) = if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))) |
| 389 | 381, 388 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 ∈ suc suc 𝑛 → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘𝑎) = if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))) |
| 390 | 389 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘𝑎) = if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))) |
| 391 | | ordsucelsuc 7843 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (Ord suc
suc 𝑛 → (𝑎 ∈ suc suc 𝑛 ↔ suc 𝑎 ∈ suc suc suc 𝑛)) |
| 392 | 304, 391 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → (𝑎 ∈ suc suc 𝑛 ↔ suc 𝑎 ∈ suc suc suc 𝑛)) |
| 393 | 392 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → suc 𝑎 ∈ suc suc suc 𝑛) |
| 394 | | eqeq1 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑏 = suc 𝑎 → (𝑏 = ∅ ↔ suc 𝑎 = ∅)) |
| 395 | | unieq 4917 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑏 = suc 𝑎 → ∪ 𝑏 = ∪
suc 𝑎) |
| 396 | 395 | fveq2d 6909 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑏 = suc 𝑎 → (𝑔‘∪ 𝑏) = (𝑔‘∪ suc 𝑎)) |
| 397 | 394, 396 | ifbieq2d 4551 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑏 = suc 𝑎 → if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)) = if(suc 𝑎 = ∅, 𝑦, (𝑔‘∪ suc 𝑎))) |
| 398 | | nsuceq0 6466 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ suc 𝑎 ≠ ∅ |
| 399 | 398 | neii 2941 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ¬
suc 𝑎 =
∅ |
| 400 | 399 | iffalsei 4534 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ if(suc
𝑎 = ∅, 𝑦, (𝑔‘∪ suc 𝑎)) = (𝑔‘∪ suc 𝑎) |
| 401 | 397, 400 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 = suc 𝑎 → if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)) = (𝑔‘∪ suc 𝑎)) |
| 402 | | fvex 6918 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑔‘∪ suc 𝑎) ∈ V |
| 403 | 401, 297,
402 | fvmpt 7015 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (suc
𝑎 ∈ suc suc suc 𝑛 → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc 𝑎) = (𝑔‘∪ suc 𝑎)) |
| 404 | 393, 403 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc 𝑎) = (𝑔‘∪ suc 𝑎)) |
| 405 | | nnord 7896 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 ∈ ω → Ord 𝑎) |
| 406 | 377, 405 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → Ord 𝑎) |
| 407 | | ordunisuc 7853 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (Ord
𝑎 → ∪ suc 𝑎 = 𝑎) |
| 408 | 406, 407 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → ∪ suc
𝑎 = 𝑎) |
| 409 | 408 | fveq2d 6909 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → (𝑔‘∪ suc 𝑎) = (𝑔‘𝑎)) |
| 410 | 404, 409 | eqtrd 2776 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc 𝑎) = (𝑔‘𝑎)) |
| 411 | 380, 390,
410 | 3brtr4d 5174 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘𝑎)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc 𝑎)) |
| 412 | 411 | ralrimiva 3145 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → ∀𝑎 ∈ suc suc 𝑛((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘𝑎)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc 𝑎)) |
| 413 | 264 | sucex 7827 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ suc suc
suc 𝑛 ∈
V |
| 414 | 413 | mptex 7244 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) ∈ V |
| 415 | | fneq1 6658 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → (𝑓 Fn suc suc suc 𝑛 ↔ (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) Fn suc suc suc 𝑛)) |
| 416 | | fveq1 6904 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → (𝑓‘∅) = ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘∅)) |
| 417 | 416 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → ((𝑓‘∅) = 𝑦 ↔ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘∅) = 𝑦)) |
| 418 | | fveq1 6904 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → (𝑓‘suc suc 𝑛) = ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc suc 𝑛)) |
| 419 | 418 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → ((𝑓‘suc suc 𝑛) = 𝑥 ↔ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc suc 𝑛) = 𝑥)) |
| 420 | 417, 419 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ↔ (((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘∅) = 𝑦 ∧ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc suc 𝑛) = 𝑥))) |
| 421 | | fveq1 6904 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → (𝑓‘𝑎) = ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘𝑎)) |
| 422 | | fveq1 6904 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → (𝑓‘suc 𝑎) = ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc 𝑎)) |
| 423 | 421, 422 | breq12d 5155 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → ((𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘𝑎)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc 𝑎))) |
| 424 | 423 | ralbidv 3177 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → (∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc suc 𝑛((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘𝑎)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc 𝑎))) |
| 425 | 415, 420,
424 | 3anbi123d 1437 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → ((𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) Fn suc suc suc 𝑛 ∧ (((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘∅) = 𝑦 ∧ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘𝑎)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc 𝑎)))) |
| 426 | 414, 425 | spcev 3605 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) Fn suc suc suc 𝑛 ∧ (((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘∅) = 𝑦 ∧ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘𝑎)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc 𝑎)) → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) |
| 427 | 299, 309,
328, 412, 426 | syl121anc 1376 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) |
| 428 | 427 | 3exp 1119 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ω → ((𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) → (𝑦(𝑅 ↾ 𝐴)𝑧 → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))))) |
| 429 | 428 | exlimdv 1932 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ω →
(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) → (𝑦(𝑅 ↾ 𝐴)𝑧 → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))))) |
| 430 | 429 | impd 410 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ω →
((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)))) |
| 431 | 430 | exlimdv 1932 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ω →
(∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)))) |
| 432 | 294, 431 | impbid 212 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ω →
(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧))) |
| 433 | | vex 3483 |
. . . . . . . . . . . . . . . 16
⊢ 𝑧 ∈ V |
| 434 | 433 | brresi 6005 |
. . . . . . . . . . . . . . 15
⊢ (𝑦(𝑅 ↾ 𝐴)𝑧 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)) |
| 435 | 434 | anbi2i 623 |
. . . . . . . . . . . . . 14
⊢
((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧))) |
| 436 | 435 | exbii 1847 |
. . . . . . . . . . . . 13
⊢
(∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧))) |
| 437 | 432, 436 | bitrdi 287 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ω →
(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
| 438 | 215, 437 | vtoclg 3553 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ 𝐴 → (𝑛 ∈ ω → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧))))) |
| 439 | 438 | impcom 407 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ω ∧ 𝑋 ∈ 𝐴) → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
| 440 | 439 | adantrl 716 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴)) → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
| 441 | 440 | 3adant3 1132 |
. . . . . . . 8
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛))) → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
| 442 | 175, 203,
441 | 3bitr4rd 312 |
. . . . . . 7
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛))) → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛))) |
| 443 | 442 | alrimiv 1926 |
. . . . . 6
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛))) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛))) |
| 444 | 443 | 3exp 1119 |
. . . . 5
⊢ (𝑛 ∈ ω → ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → (∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛)) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛))))) |
| 445 | 444 | a2d 29 |
. . . 4
⊢ (𝑛 ∈ ω → (((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛))) → ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛))))) |
| 446 | 26, 67, 81, 95, 164, 445 | finds 7919 |
. . 3
⊢ (𝑁 ∈ ω → ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑁)))) |
| 447 | 446 | 3impib 1116 |
. 2
⊢ ((𝑁 ∈ ω ∧ 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑁))) |
| 448 | 447 | 19.21bi 2188 |
1
⊢ ((𝑁 ∈ ω ∧ 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → (∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑁))) |