MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclselem2 Structured version   Visualization version   GIF version

Theorem ttrclselem2 9679
Description: Lemma for ttrclse 9680. Show that a suc 𝑁 element long chain gives membership in the 𝑁-th predecessor class and vice-versa. (Contributed by Scott Fenton, 31-Oct-2024.)
Hypothesis
Ref Expression
ttrclselem.1 𝐹 = rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))
Assertion
Ref Expression
ttrclselem2 ((𝑁 ∈ ω ∧ 𝑅 Se 𝐴𝑋𝐴) → (∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑁)))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓,𝑤,𝑦   𝑦,𝐹   𝑁,𝑎,𝑓,𝑦   𝑅,𝑎,𝑏,𝑓,𝑤,𝑦   𝑋,𝑏,𝑓,𝑦
Allowed substitution hints:   𝐹(𝑤,𝑓,𝑎,𝑏)   𝑁(𝑤,𝑏)   𝑋(𝑤,𝑎)

Proof of Theorem ttrclselem2
Dummy variables 𝑐 𝑔 𝑚 𝑛 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 6400 . . . . . . . . . . . 12 (𝑚 = ∅ → suc 𝑚 = suc ∅)
2 df-1o 8434 . . . . . . . . . . . 12 1o = suc ∅
31, 2eqtr4di 2782 . . . . . . . . . . 11 (𝑚 = ∅ → suc 𝑚 = 1o)
4 suceq 6400 . . . . . . . . . . 11 (suc 𝑚 = 1o → suc suc 𝑚 = suc 1o)
53, 4syl 17 . . . . . . . . . 10 (𝑚 = ∅ → suc suc 𝑚 = suc 1o)
65fneq2d 6612 . . . . . . . . 9 (𝑚 = ∅ → (𝑓 Fn suc suc 𝑚𝑓 Fn suc 1o))
73fveqeq2d 6866 . . . . . . . . . 10 (𝑚 = ∅ → ((𝑓‘suc 𝑚) = 𝑋 ↔ (𝑓‘1o) = 𝑋))
87anbi2d 630 . . . . . . . . 9 (𝑚 = ∅ → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)))
9 df1o2 8441 . . . . . . . . . . . 12 1o = {∅}
103, 9eqtrdi 2780 . . . . . . . . . . 11 (𝑚 = ∅ → suc 𝑚 = {∅})
1110raleqdv 3299 . . . . . . . . . 10 (𝑚 = ∅ → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ {∅} (𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)))
12 0ex 5262 . . . . . . . . . . 11 ∅ ∈ V
13 fveq2 6858 . . . . . . . . . . . 12 (𝑎 = ∅ → (𝑓𝑎) = (𝑓‘∅))
14 suceq 6400 . . . . . . . . . . . . . 14 (𝑎 = ∅ → suc 𝑎 = suc ∅)
1514, 2eqtr4di 2782 . . . . . . . . . . . . 13 (𝑎 = ∅ → suc 𝑎 = 1o)
1615fveq2d 6862 . . . . . . . . . . . 12 (𝑎 = ∅ → (𝑓‘suc 𝑎) = (𝑓‘1o))
1713, 16breq12d 5120 . . . . . . . . . . 11 (𝑎 = ∅ → ((𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)))
1812, 17ralsn 4645 . . . . . . . . . 10 (∀𝑎 ∈ {∅} (𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o))
1911, 18bitrdi 287 . . . . . . . . 9 (𝑚 = ∅ → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)))
206, 8, 193anbi123d 1438 . . . . . . . 8 (𝑚 = ∅ → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o))))
2120exbidv 1921 . . . . . . 7 (𝑚 = ∅ → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o))))
22 fveq2 6858 . . . . . . . 8 (𝑚 = ∅ → (𝐹𝑚) = (𝐹‘∅))
2322eleq2d 2814 . . . . . . 7 (𝑚 = ∅ → (𝑦 ∈ (𝐹𝑚) ↔ 𝑦 ∈ (𝐹‘∅)))
2421, 23bibi12d 345 . . . . . 6 (𝑚 = ∅ → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚)) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ 𝑦 ∈ (𝐹‘∅))))
2524albidv 1920 . . . . 5 (𝑚 = ∅ → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚)) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ 𝑦 ∈ (𝐹‘∅))))
2625imbi2d 340 . . . 4 (𝑚 = ∅ → (((𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚))) ↔ ((𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ 𝑦 ∈ (𝐹‘∅)))))
27 suceq 6400 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → suc 𝑚 = suc 𝑛)
28 suceq 6400 . . . . . . . . . . . . 13 (suc 𝑚 = suc 𝑛 → suc suc 𝑚 = suc suc 𝑛)
2927, 28syl 17 . . . . . . . . . . . 12 (𝑚 = 𝑛 → suc suc 𝑚 = suc suc 𝑛)
3029fneq2d 6612 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc 𝑛))
3127fveqeq2d 6866 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑓‘suc 𝑚) = 𝑋 ↔ (𝑓‘suc 𝑛) = 𝑋))
3231anbi2d 630 . . . . . . . . . . 11 (𝑚 = 𝑛 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋)))
3327raleqdv 3299 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)))
34 fveq2 6858 . . . . . . . . . . . . . 14 (𝑎 = 𝑐 → (𝑓𝑎) = (𝑓𝑐))
35 suceq 6400 . . . . . . . . . . . . . . 15 (𝑎 = 𝑐 → suc 𝑎 = suc 𝑐)
3635fveq2d 6862 . . . . . . . . . . . . . 14 (𝑎 = 𝑐 → (𝑓‘suc 𝑎) = (𝑓‘suc 𝑐))
3734, 36breq12d 5120 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → ((𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ (𝑓𝑐)(𝑅𝐴)(𝑓‘suc 𝑐)))
3837cbvralvw 3215 . . . . . . . . . . . 12 (∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑐 ∈ suc 𝑛(𝑓𝑐)(𝑅𝐴)(𝑓‘suc 𝑐))
3933, 38bitrdi 287 . . . . . . . . . . 11 (𝑚 = 𝑛 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑐 ∈ suc 𝑛(𝑓𝑐)(𝑅𝐴)(𝑓‘suc 𝑐)))
4030, 32, 393anbi123d 1438 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑓𝑐)(𝑅𝐴)(𝑓‘suc 𝑐))))
4140exbidv 1921 . . . . . . . . 9 (𝑚 = 𝑛 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑓𝑐)(𝑅𝐴)(𝑓‘suc 𝑐))))
42 fneq1 6609 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓 Fn suc suc 𝑛𝑔 Fn suc suc 𝑛))
43 fveq1 6857 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓‘∅) = (𝑔‘∅))
4443eqeq1d 2731 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑓‘∅) = 𝑦 ↔ (𝑔‘∅) = 𝑦))
45 fveq1 6857 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓‘suc 𝑛) = (𝑔‘suc 𝑛))
4645eqeq1d 2731 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑓‘suc 𝑛) = 𝑋 ↔ (𝑔‘suc 𝑛) = 𝑋))
4744, 46anbi12d 632 . . . . . . . . . . 11 (𝑓 = 𝑔 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋) ↔ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋)))
48 fveq1 6857 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓𝑐) = (𝑔𝑐))
49 fveq1 6857 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓‘suc 𝑐) = (𝑔‘suc 𝑐))
5048, 49breq12d 5120 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑓𝑐)(𝑅𝐴)(𝑓‘suc 𝑐) ↔ (𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)))
5150ralbidv 3156 . . . . . . . . . . 11 (𝑓 = 𝑔 → (∀𝑐 ∈ suc 𝑛(𝑓𝑐)(𝑅𝐴)(𝑓‘suc 𝑐) ↔ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)))
5242, 47, 513anbi123d 1438 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑓𝑐)(𝑅𝐴)(𝑓‘suc 𝑐)) ↔ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐))))
5352cbvexvw 2037 . . . . . . . . 9 (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑓𝑐)(𝑅𝐴)(𝑓‘suc 𝑐)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)))
5441, 53bitrdi 287 . . . . . . . 8 (𝑚 = 𝑛 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐))))
55 fveq2 6858 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
5655eleq2d 2814 . . . . . . . 8 (𝑚 = 𝑛 → (𝑦 ∈ (𝐹𝑚) ↔ 𝑦 ∈ (𝐹𝑛)))
5754, 56bibi12d 345 . . . . . . 7 (𝑚 = 𝑛 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚)) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑦 ∈ (𝐹𝑛))))
5857albidv 1920 . . . . . 6 (𝑚 = 𝑛 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚)) ↔ ∀𝑦(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑦 ∈ (𝐹𝑛))))
59 eqeq2 2741 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑔‘∅) = 𝑦 ↔ (𝑔‘∅) = 𝑧))
6059anbi1d 631 . . . . . . . . . 10 (𝑦 = 𝑧 → (((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ↔ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋)))
61603anbi2d 1443 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐))))
6261exbidv 1921 . . . . . . . 8 (𝑦 = 𝑧 → (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐))))
63 eleq1 2816 . . . . . . . 8 (𝑦 = 𝑧 → (𝑦 ∈ (𝐹𝑛) ↔ 𝑧 ∈ (𝐹𝑛)))
6462, 63bibi12d 345 . . . . . . 7 (𝑦 = 𝑧 → ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑦 ∈ (𝐹𝑛)) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛))))
6564cbvalvw 2036 . . . . . 6 (∀𝑦(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑦 ∈ (𝐹𝑛)) ↔ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛)))
6658, 65bitrdi 287 . . . . 5 (𝑚 = 𝑛 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚)) ↔ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛))))
6766imbi2d 340 . . . 4 (𝑚 = 𝑛 → (((𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚))) ↔ ((𝑅 Se 𝐴𝑋𝐴) → ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛)))))
68 suceq 6400 . . . . . . . . . . 11 (𝑚 = suc 𝑛 → suc 𝑚 = suc suc 𝑛)
69 suceq 6400 . . . . . . . . . . 11 (suc 𝑚 = suc suc 𝑛 → suc suc 𝑚 = suc suc suc 𝑛)
7068, 69syl 17 . . . . . . . . . 10 (𝑚 = suc 𝑛 → suc suc 𝑚 = suc suc suc 𝑛)
7170fneq2d 6612 . . . . . . . . 9 (𝑚 = suc 𝑛 → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc suc 𝑛))
7268fveqeq2d 6866 . . . . . . . . . 10 (𝑚 = suc 𝑛 → ((𝑓‘suc 𝑚) = 𝑋 ↔ (𝑓‘suc suc 𝑛) = 𝑋))
7372anbi2d 630 . . . . . . . . 9 (𝑚 = suc 𝑛 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋)))
7468raleqdv 3299 . . . . . . . . 9 (𝑚 = suc 𝑛 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)))
7571, 73, 743anbi123d 1438 . . . . . . . 8 (𝑚 = suc 𝑛 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))))
7675exbidv 1921 . . . . . . 7 (𝑚 = suc 𝑛 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))))
77 fveq2 6858 . . . . . . . 8 (𝑚 = suc 𝑛 → (𝐹𝑚) = (𝐹‘suc 𝑛))
7877eleq2d 2814 . . . . . . 7 (𝑚 = suc 𝑛 → (𝑦 ∈ (𝐹𝑚) ↔ 𝑦 ∈ (𝐹‘suc 𝑛)))
7976, 78bibi12d 345 . . . . . 6 (𝑚 = suc 𝑛 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚)) ↔ (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛))))
8079albidv 1920 . . . . 5 (𝑚 = suc 𝑛 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚)) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛))))
8180imbi2d 340 . . . 4 (𝑚 = suc 𝑛 → (((𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚))) ↔ ((𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛)))))
82 suceq 6400 . . . . . . . . . . 11 (𝑚 = 𝑁 → suc 𝑚 = suc 𝑁)
83 suceq 6400 . . . . . . . . . . 11 (suc 𝑚 = suc 𝑁 → suc suc 𝑚 = suc suc 𝑁)
8482, 83syl 17 . . . . . . . . . 10 (𝑚 = 𝑁 → suc suc 𝑚 = suc suc 𝑁)
8584fneq2d 6612 . . . . . . . . 9 (𝑚 = 𝑁 → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc 𝑁))
8682fveqeq2d 6866 . . . . . . . . . 10 (𝑚 = 𝑁 → ((𝑓‘suc 𝑚) = 𝑋 ↔ (𝑓‘suc 𝑁) = 𝑋))
8786anbi2d 630 . . . . . . . . 9 (𝑚 = 𝑁 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋)))
8882raleqdv 3299 . . . . . . . . 9 (𝑚 = 𝑁 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑁(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)))
8985, 87, 883anbi123d 1438 . . . . . . . 8 (𝑚 = 𝑁 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))))
9089exbidv 1921 . . . . . . 7 (𝑚 = 𝑁 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))))
91 fveq2 6858 . . . . . . . 8 (𝑚 = 𝑁 → (𝐹𝑚) = (𝐹𝑁))
9291eleq2d 2814 . . . . . . 7 (𝑚 = 𝑁 → (𝑦 ∈ (𝐹𝑚) ↔ 𝑦 ∈ (𝐹𝑁)))
9390, 92bibi12d 345 . . . . . 6 (𝑚 = 𝑁 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚)) ↔ (∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑁))))
9493albidv 1920 . . . . 5 (𝑚 = 𝑁 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚)) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑁))))
9594imbi2d 340 . . . 4 (𝑚 = 𝑁 → (((𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚))) ↔ ((𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑁)))))
96 eqeq2 2741 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((𝑓‘1o) = 𝑥 ↔ (𝑓‘1o) = 𝑋))
9796anbi2d 630 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)))
9897anbi2d 630 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥)) ↔ (𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋))))
9998exbidv 1921 . . . . . . . . . 10 (𝑥 = 𝑋 → (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥)) ↔ ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋))))
100 vex 3451 . . . . . . . . . . . . 13 𝑦 ∈ V
101 vex 3451 . . . . . . . . . . . . 13 𝑥 ∈ V
102100, 101ifex 4539 . . . . . . . . . . . 12 if(𝑏 = ∅, 𝑦, 𝑥) ∈ V
103 eqid 2729 . . . . . . . . . . . 12 (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))
104102, 103fnmpti 6661 . . . . . . . . . . 11 (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) Fn suc 1o
105 equid 2012 . . . . . . . . . . . 12 𝑦 = 𝑦
106 equid 2012 . . . . . . . . . . . 12 𝑥 = 𝑥
107105, 106pm3.2i 470 . . . . . . . . . . 11 (𝑦 = 𝑦𝑥 = 𝑥)
108 1oex 8444 . . . . . . . . . . . . . 14 1o ∈ V
109108sucex 7782 . . . . . . . . . . . . 13 suc 1o ∈ V
110109mptex 7197 . . . . . . . . . . . 12 (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) ∈ V
111 fneq1 6609 . . . . . . . . . . . . 13 (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (𝑓 Fn suc 1o ↔ (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) Fn suc 1o))
112 fveq1 6857 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (𝑓‘∅) = ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))‘∅))
113 1on 8446 . . . . . . . . . . . . . . . . . 18 1o ∈ On
114113onordi 6445 . . . . . . . . . . . . . . . . 17 Ord 1o
115 0elsuc 7810 . . . . . . . . . . . . . . . . 17 (Ord 1o → ∅ ∈ suc 1o)
116 iftrue 4494 . . . . . . . . . . . . . . . . . 18 (𝑏 = ∅ → if(𝑏 = ∅, 𝑦, 𝑥) = 𝑦)
117116, 103, 100fvmpt 6968 . . . . . . . . . . . . . . . . 17 (∅ ∈ suc 1o → ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))‘∅) = 𝑦)
118114, 115, 117mp2b 10 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))‘∅) = 𝑦
119112, 118eqtrdi 2780 . . . . . . . . . . . . . . 15 (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (𝑓‘∅) = 𝑦)
120119eqeq1d 2731 . . . . . . . . . . . . . 14 (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → ((𝑓‘∅) = 𝑦𝑦 = 𝑦))
121 fveq1 6857 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (𝑓‘1o) = ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))‘1o))
122108sucid 6416 . . . . . . . . . . . . . . . . 17 1o ∈ suc 1o
123 eqeq1 2733 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 1o → (𝑏 = ∅ ↔ 1o = ∅))
124123ifbid 4512 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 1o → if(𝑏 = ∅, 𝑦, 𝑥) = if(1o = ∅, 𝑦, 𝑥))
125 1n0 8452 . . . . . . . . . . . . . . . . . . . . 21 1o ≠ ∅
126125neii 2927 . . . . . . . . . . . . . . . . . . . 20 ¬ 1o = ∅
127126iffalsei 4498 . . . . . . . . . . . . . . . . . . 19 if(1o = ∅, 𝑦, 𝑥) = 𝑥
128124, 127eqtrdi 2780 . . . . . . . . . . . . . . . . . 18 (𝑏 = 1o → if(𝑏 = ∅, 𝑦, 𝑥) = 𝑥)
129128, 103, 101fvmpt 6968 . . . . . . . . . . . . . . . . 17 (1o ∈ suc 1o → ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))‘1o) = 𝑥)
130122, 129ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))‘1o) = 𝑥
131121, 130eqtrdi 2780 . . . . . . . . . . . . . . 15 (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (𝑓‘1o) = 𝑥)
132131eqeq1d 2731 . . . . . . . . . . . . . 14 (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → ((𝑓‘1o) = 𝑥𝑥 = 𝑥))
133120, 132anbi12d 632 . . . . . . . . . . . . 13 (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥) ↔ (𝑦 = 𝑦𝑥 = 𝑥)))
134111, 133anbi12d 632 . . . . . . . . . . . 12 (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥)) ↔ ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) Fn suc 1o ∧ (𝑦 = 𝑦𝑥 = 𝑥))))
135110, 134spcev 3572 . . . . . . . . . . 11 (((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) Fn suc 1o ∧ (𝑦 = 𝑦𝑥 = 𝑥)) → ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥)))
136104, 107, 135mp2an 692 . . . . . . . . . 10 𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥))
13799, 136vtoclg 3520 . . . . . . . . 9 (𝑋𝐴 → ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)))
138137adantl 481 . . . . . . . 8 ((𝑅 Se 𝐴𝑋𝐴) → ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)))
139138biantrurd 532 . . . . . . 7 ((𝑅 Se 𝐴𝑋𝐴) → ((𝑦𝐴𝑦𝑅𝑋) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ (𝑦𝐴𝑦𝑅𝑋))))
140100elpred 6291 . . . . . . . 8 (𝑋𝐴 → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑦𝐴𝑦𝑅𝑋)))
141140adantl 481 . . . . . . 7 ((𝑅 Se 𝐴𝑋𝐴) → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑦𝐴𝑦𝑅𝑋)))
142 brres 5957 . . . . . . . . 9 (𝑋𝐴 → (𝑦(𝑅𝐴)𝑋 ↔ (𝑦𝐴𝑦𝑅𝑋)))
143142adantl 481 . . . . . . . 8 ((𝑅 Se 𝐴𝑋𝐴) → (𝑦(𝑅𝐴)𝑋 ↔ (𝑦𝐴𝑦𝑅𝑋)))
144143anbi2d 630 . . . . . . 7 ((𝑅 Se 𝐴𝑋𝐴) → ((∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅𝐴)𝑋) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ (𝑦𝐴𝑦𝑅𝑋))))
145139, 141, 1443bitr4rd 312 . . . . . 6 ((𝑅 Se 𝐴𝑋𝐴) → ((∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅𝐴)𝑋) ↔ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑋)))
146 df-3an 1088 . . . . . . . . . 10 ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)))
147 breq12 5112 . . . . . . . . . . . 12 (((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) → ((𝑓‘∅)(𝑅𝐴)(𝑓‘1o) ↔ 𝑦(𝑅𝐴)𝑋))
148147adantl 481 . . . . . . . . . . 11 ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) → ((𝑓‘∅)(𝑅𝐴)(𝑓‘1o) ↔ 𝑦(𝑅𝐴)𝑋))
149148pm5.32i 574 . . . . . . . . . 10 (((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅𝐴)𝑋))
150146, 149bitri 275 . . . . . . . . 9 ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅𝐴)𝑋))
151150exbii 1848 . . . . . . . 8 (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ ∃𝑓((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅𝐴)𝑋))
152 19.41v 1949 . . . . . . . 8 (∃𝑓((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅𝐴)𝑋) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅𝐴)𝑋))
153151, 152bitri 275 . . . . . . 7 (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅𝐴)𝑋))
154153a1i 11 . . . . . 6 ((𝑅 Se 𝐴𝑋𝐴) → (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅𝐴)𝑋)))
155 ttrclselem.1 . . . . . . . . 9 𝐹 = rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))
156155fveq1i 6859 . . . . . . . 8 (𝐹‘∅) = (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅)
157 setlikespec 6298 . . . . . . . . . 10 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
158157ancoms 458 . . . . . . . . 9 ((𝑅 Se 𝐴𝑋𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
159 rdg0g 8395 . . . . . . . . 9 (Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) = Pred(𝑅, 𝐴, 𝑋))
160158, 159syl 17 . . . . . . . 8 ((𝑅 Se 𝐴𝑋𝐴) → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) = Pred(𝑅, 𝐴, 𝑋))
161156, 160eqtrid 2776 . . . . . . 7 ((𝑅 Se 𝐴𝑋𝐴) → (𝐹‘∅) = Pred(𝑅, 𝐴, 𝑋))
162161eleq2d 2814 . . . . . 6 ((𝑅 Se 𝐴𝑋𝐴) → (𝑦 ∈ (𝐹‘∅) ↔ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑋)))
163145, 154, 1623bitr4d 311 . . . . 5 ((𝑅 Se 𝐴𝑋𝐴) → (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ 𝑦 ∈ (𝐹‘∅)))
164163alrimiv 1927 . . . 4 ((𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ 𝑦 ∈ (𝐹‘∅)))
165 eliun 4959 . . . . . . . . . 10 (𝑦 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧) ↔ ∃𝑧 ∈ (𝐹𝑛)𝑦 ∈ Pred(𝑅, 𝐴, 𝑧))
166 df-rex 3054 . . . . . . . . . 10 (∃𝑧 ∈ (𝐹𝑛)𝑦 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ ∃𝑧(𝑧 ∈ (𝐹𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)))
167165, 166bitri 275 . . . . . . . . 9 (𝑦 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧) ↔ ∃𝑧(𝑧 ∈ (𝐹𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)))
168100elpred 6291 . . . . . . . . . . . . . 14 (𝑧 ∈ V → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ (𝑦𝐴𝑦𝑅𝑧)))
169168elv 3452 . . . . . . . . . . . . 13 (𝑦 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ (𝑦𝐴𝑦𝑅𝑧))
170169anbi2i 623 . . . . . . . . . . . 12 ((𝑧 ∈ (𝐹𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)) ↔ (𝑧 ∈ (𝐹𝑛) ∧ (𝑦𝐴𝑦𝑅𝑧)))
171 anbi1 633 . . . . . . . . . . . 12 ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛)) → ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧)) ↔ (𝑧 ∈ (𝐹𝑛) ∧ (𝑦𝐴𝑦𝑅𝑧))))
172170, 171bitr4id 290 . . . . . . . . . . 11 ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛)) → ((𝑧 ∈ (𝐹𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))
173172alexbii 1833 . . . . . . . . . 10 (∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛)) → (∃𝑧(𝑧 ∈ (𝐹𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))
1741733ad2ant3 1135 . . . . . . . . 9 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛))) → (∃𝑧(𝑧 ∈ (𝐹𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))
175167, 174bitrid 283 . . . . . . . 8 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛))) → (𝑦 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))
176 nnon 7848 . . . . . . . . . . 11 (𝑛 ∈ ω → 𝑛 ∈ On)
177 fvex 6871 . . . . . . . . . . . 12 (𝐹𝑛) ∈ V
178155ttrclselem1 9678 . . . . . . . . . . . . . . 15 (𝑛 ∈ ω → (𝐹𝑛) ⊆ 𝐴)
179178adantr 480 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ 𝑅 Se 𝐴) → (𝐹𝑛) ⊆ 𝐴)
180 dfse3 6309 . . . . . . . . . . . . . . . 16 (𝑅 Se 𝐴 ↔ ∀𝑧𝐴 Pred(𝑅, 𝐴, 𝑧) ∈ V)
181180biimpi 216 . . . . . . . . . . . . . . 15 (𝑅 Se 𝐴 → ∀𝑧𝐴 Pred(𝑅, 𝐴, 𝑧) ∈ V)
182181adantl 481 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ 𝑅 Se 𝐴) → ∀𝑧𝐴 Pred(𝑅, 𝐴, 𝑧) ∈ V)
183 ssralv 4015 . . . . . . . . . . . . . 14 ((𝐹𝑛) ⊆ 𝐴 → (∀𝑧𝐴 Pred(𝑅, 𝐴, 𝑧) ∈ V → ∀𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V))
184179, 182, 183sylc 65 . . . . . . . . . . . . 13 ((𝑛 ∈ ω ∧ 𝑅 Se 𝐴) → ∀𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V)
185184adantrr 717 . . . . . . . . . . . 12 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴)) → ∀𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V)
186 iunexg 7942 . . . . . . . . . . . 12 (((𝐹𝑛) ∈ V ∧ ∀𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V) → 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V)
187177, 185, 186sylancr 587 . . . . . . . . . . 11 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴)) → 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V)
188 nfcv 2891 . . . . . . . . . . . 12 𝑏Pred(𝑅, 𝐴, 𝑋)
189 nfcv 2891 . . . . . . . . . . . 12 𝑏𝑛
190 nfmpt1 5206 . . . . . . . . . . . . . . . 16 𝑏(𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤))
191190, 188nfrdg 8382 . . . . . . . . . . . . . . 15 𝑏rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))
192155, 191nfcxfr 2889 . . . . . . . . . . . . . 14 𝑏𝐹
193192, 189nffv 6868 . . . . . . . . . . . . 13 𝑏(𝐹𝑛)
194 nfcv 2891 . . . . . . . . . . . . 13 𝑏Pred(𝑅, 𝐴, 𝑧)
195193, 194nfiun 4987 . . . . . . . . . . . 12 𝑏 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧)
196 predeq3 6278 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → Pred(𝑅, 𝐴, 𝑤) = Pred(𝑅, 𝐴, 𝑧))
197196cbviunv 5004 . . . . . . . . . . . . 13 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤) = 𝑧𝑏 Pred(𝑅, 𝐴, 𝑧)
198 iuneq1 4972 . . . . . . . . . . . . 13 (𝑏 = (𝐹𝑛) → 𝑧𝑏 Pred(𝑅, 𝐴, 𝑧) = 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧))
199197, 198eqtrid 2776 . . . . . . . . . . . 12 (𝑏 = (𝐹𝑛) → 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤) = 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧))
200188, 189, 195, 155, 199rdgsucmptf 8396 . . . . . . . . . . 11 ((𝑛 ∈ On ∧ 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V) → (𝐹‘suc 𝑛) = 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧))
201176, 187, 200syl2an2r 685 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴)) → (𝐹‘suc 𝑛) = 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧))
2022013adant3 1132 . . . . . . . . 9 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛))) → (𝐹‘suc 𝑛) = 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧))
203202eleq2d 2814 . . . . . . . 8 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛))) → (𝑦 ∈ (𝐹‘suc 𝑛) ↔ 𝑦 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧)))
204 eqeq2 2741 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → ((𝑓‘suc suc 𝑛) = 𝑥 ↔ (𝑓‘suc suc 𝑛) = 𝑋))
205204anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋)))
2062053anbi2d 1443 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → ((𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))))
207206exbidv 1921 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))))
208 eqeq2 2741 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋 → ((𝑔‘suc 𝑛) = 𝑥 ↔ (𝑔‘suc 𝑛) = 𝑋))
209208anbi2d 630 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑋 → (((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ↔ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋)))
2102093anbi2d 1443 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → ((𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐))))
211210exbidv 1921 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐))))
212211anbi1d 631 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧)) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))
213212exbidv 1921 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))
214207, 213bibi12d 345 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))) ↔ (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧)))))
215214imbi2d 340 . . . . . . . . . . . 12 (𝑥 = 𝑋 → ((𝑛 ∈ ω → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧)))) ↔ (𝑛 ∈ ω → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))))
216 fvex 6871 . . . . . . . . . . . . . . . . . . . 20 (𝑓‘suc 𝑏) ∈ V
217 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))
218216, 217fnmpti 6661 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) Fn suc suc 𝑛
219218a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) Fn suc suc 𝑛)
220 peano2 7866 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
221220adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → suc 𝑛 ∈ ω)
222 nnord 7850 . . . . . . . . . . . . . . . . . . . . 21 (suc 𝑛 ∈ ω → Ord suc 𝑛)
223221, 222syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → Ord suc 𝑛)
224 0elsuc 7810 . . . . . . . . . . . . . . . . . . . 20 (Ord suc 𝑛 → ∅ ∈ suc suc 𝑛)
225223, 224syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → ∅ ∈ suc suc 𝑛)
226 suceq 6400 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = ∅ → suc 𝑏 = suc ∅)
227226fveq2d 6862 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = ∅ → (𝑓‘suc 𝑏) = (𝑓‘suc ∅))
228 fvex 6871 . . . . . . . . . . . . . . . . . . . 20 (𝑓‘suc ∅) ∈ V
229227, 217, 228fvmpt 6968 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ suc suc 𝑛 → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅))
230225, 229syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅))
231 vex 3451 . . . . . . . . . . . . . . . . . . . . . 22 𝑛 ∈ V
232231sucex 7782 . . . . . . . . . . . . . . . . . . . . 21 suc 𝑛 ∈ V
233232sucid 6416 . . . . . . . . . . . . . . . . . . . 20 suc 𝑛 ∈ suc suc 𝑛
234 suceq 6400 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = suc 𝑛 → suc 𝑏 = suc suc 𝑛)
235234fveq2d 6862 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = suc 𝑛 → (𝑓‘suc 𝑏) = (𝑓‘suc suc 𝑛))
236 fvex 6871 . . . . . . . . . . . . . . . . . . . . 21 (𝑓‘suc suc 𝑛) ∈ V
237235, 217, 236fvmpt 6968 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑛 ∈ suc suc 𝑛 → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = (𝑓‘suc suc 𝑛))
238233, 237mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = (𝑓‘suc suc 𝑛))
239 simpr2r 1234 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → (𝑓‘suc suc 𝑛) = 𝑥)
240238, 239eqtrd 2764 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = 𝑥)
241 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = suc 𝑐 → (𝑓𝑎) = (𝑓‘suc 𝑐))
242 suceq 6400 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = suc 𝑐 → suc 𝑎 = suc suc 𝑐)
243242fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = suc 𝑐 → (𝑓‘suc 𝑎) = (𝑓‘suc suc 𝑐))
244241, 243breq12d 5120 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = suc 𝑐 → ((𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘suc 𝑐)(𝑅𝐴)(𝑓‘suc suc 𝑐)))
245 simplr3 1218 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))
246 ordsucelsuc 7797 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord suc 𝑛 → (𝑐 ∈ suc 𝑛 ↔ suc 𝑐 ∈ suc suc 𝑛))
247223, 246syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → (𝑐 ∈ suc 𝑛 ↔ suc 𝑐 ∈ suc suc 𝑛))
248247biimpa 476 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → suc 𝑐 ∈ suc suc 𝑛)
249244, 245, 248rspcdva 3589 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → (𝑓‘suc 𝑐)(𝑅𝐴)(𝑓‘suc suc 𝑐))
250 elelsuc 6407 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 ∈ suc 𝑛𝑐 ∈ suc suc 𝑛)
251 suceq 6400 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑐 → suc 𝑏 = suc 𝑐)
252251fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑐 → (𝑓‘suc 𝑏) = (𝑓‘suc 𝑐))
253 fvex 6871 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓‘suc 𝑐) ∈ V
254252, 217, 253fvmpt 6968 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 ∈ suc suc 𝑛 → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐) = (𝑓‘suc 𝑐))
255250, 254syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ suc 𝑛 → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐) = (𝑓‘suc 𝑐))
256255adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐) = (𝑓‘suc 𝑐))
257 suceq 6400 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = suc 𝑐 → suc 𝑏 = suc suc 𝑐)
258257fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = suc 𝑐 → (𝑓‘suc 𝑏) = (𝑓‘suc suc 𝑐))
259 fvex 6871 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓‘suc suc 𝑐) ∈ V
260258, 217, 259fvmpt 6968 . . . . . . . . . . . . . . . . . . . . 21 (suc 𝑐 ∈ suc suc 𝑛 → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐) = (𝑓‘suc suc 𝑐))
261248, 260syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐) = (𝑓‘suc suc 𝑐))
262249, 256, 2613brtr4d 5139 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐))
263262ralrimiva 3125 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → ∀𝑐 ∈ suc 𝑛((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐))
264232sucex 7782 . . . . . . . . . . . . . . . . . . . 20 suc suc 𝑛 ∈ V
265264mptex 7197 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) ∈ V
266 fneq1 6609 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (𝑔 Fn suc suc 𝑛 ↔ (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) Fn suc suc 𝑛))
267 fveq1 6857 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (𝑔‘∅) = ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅))
268267eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → ((𝑔‘∅) = (𝑓‘suc ∅) ↔ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅)))
269 fveq1 6857 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (𝑔‘suc 𝑛) = ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛))
270269eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → ((𝑔‘suc 𝑛) = 𝑥 ↔ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = 𝑥))
271268, 270anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ↔ (((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅) ∧ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = 𝑥)))
272 fveq1 6857 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (𝑔𝑐) = ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐))
273 fveq1 6857 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (𝑔‘suc 𝑐) = ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐))
274272, 273breq12d 5120 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → ((𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐) ↔ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐)))
275274ralbidv 3156 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐) ↔ ∀𝑐 ∈ suc 𝑛((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐)))
276266, 271, 2753anbi123d 1438 . . . . . . . . . . . . . . . . . . 19 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → ((𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) Fn suc suc 𝑛 ∧ (((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅) ∧ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐))))
277265, 276spcev 3572 . . . . . . . . . . . . . . . . . 18 (((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) Fn suc suc 𝑛 ∧ (((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅) ∧ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐)) → ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)))
278219, 230, 240, 263, 277syl121anc 1377 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)))
279 simpr2l 1233 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → (𝑓‘∅) = 𝑦)
28014fveq2d 6862 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = ∅ → (𝑓‘suc 𝑎) = (𝑓‘suc ∅))
28113, 280breq12d 5120 . . . . . . . . . . . . . . . . . . 19 (𝑎 = ∅ → ((𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘∅)(𝑅𝐴)(𝑓‘suc ∅)))
282 simpr3 1197 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))
283281, 282, 225rspcdva 3589 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → (𝑓‘∅)(𝑅𝐴)(𝑓‘suc ∅))
284279, 283eqbrtrrd 5131 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → 𝑦(𝑅𝐴)(𝑓‘suc ∅))
285 eqeq2 2741 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝑓‘suc ∅) → ((𝑔‘∅) = 𝑧 ↔ (𝑔‘∅) = (𝑓‘suc ∅)))
286285anbi1d 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑓‘suc ∅) → (((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ↔ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥)))
2872863anbi2d 1443 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓‘suc ∅) → ((𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐))))
288287exbidv 1921 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓‘suc ∅) → (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐))))
289 breq2 5111 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓‘suc ∅) → (𝑦(𝑅𝐴)𝑧𝑦(𝑅𝐴)(𝑓‘suc ∅)))
290288, 289anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓‘suc ∅) → ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)(𝑓‘suc ∅))))
291228, 290spcev 3572 . . . . . . . . . . . . . . . . 17 ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)(𝑓‘suc ∅)) → ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧))
292278, 284, 291syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧))
293292ex 412 . . . . . . . . . . . . . . 15 (𝑛 ∈ ω → ((𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) → ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧)))
294293exlimdv 1933 . . . . . . . . . . . . . 14 (𝑛 ∈ ω → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) → ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧)))
295 fvex 6871 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 𝑏) ∈ V
296100, 295ifex 4539 . . . . . . . . . . . . . . . . . . . . 21 if(𝑏 = ∅, 𝑦, (𝑔 𝑏)) ∈ V
297 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))
298296, 297fnmpti 6661 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) Fn suc suc suc 𝑛
299298a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) Fn suc suc suc 𝑛)
300 peano2 7866 . . . . . . . . . . . . . . . . . . . . . . . 24 (suc 𝑛 ∈ ω → suc suc 𝑛 ∈ ω)
301220, 300syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ω → suc suc 𝑛 ∈ ω)
3023013ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → suc suc 𝑛 ∈ ω)
303 nnord 7850 . . . . . . . . . . . . . . . . . . . . . 22 (suc suc 𝑛 ∈ ω → Ord suc suc 𝑛)
304302, 303syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → Ord suc suc 𝑛)
305 0elsuc 7810 . . . . . . . . . . . . . . . . . . . . 21 (Ord suc suc 𝑛 → ∅ ∈ suc suc suc 𝑛)
306304, 305syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → ∅ ∈ suc suc suc 𝑛)
307 iftrue 4494 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = ∅ → if(𝑏 = ∅, 𝑦, (𝑔 𝑏)) = 𝑦)
308307, 297, 100fvmpt 6968 . . . . . . . . . . . . . . . . . . . 20 (∅ ∈ suc suc suc 𝑛 → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘∅) = 𝑦)
309306, 308syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘∅) = 𝑦)
310264sucid 6416 . . . . . . . . . . . . . . . . . . . . 21 suc suc 𝑛 ∈ suc suc suc 𝑛
311 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = suc suc 𝑛 → (𝑏 = ∅ ↔ suc suc 𝑛 = ∅))
312 unieq 4882 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = suc suc 𝑛 𝑏 = suc suc 𝑛)
313312fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = suc suc 𝑛 → (𝑔 𝑏) = (𝑔 suc suc 𝑛))
314311, 313ifbieq2d 4515 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = suc suc 𝑛 → if(𝑏 = ∅, 𝑦, (𝑔 𝑏)) = if(suc suc 𝑛 = ∅, 𝑦, (𝑔 suc suc 𝑛)))
315 nsuceq0 6417 . . . . . . . . . . . . . . . . . . . . . . . . 25 suc suc 𝑛 ≠ ∅
316315neii 2927 . . . . . . . . . . . . . . . . . . . . . . . 24 ¬ suc suc 𝑛 = ∅
317316iffalsei 4498 . . . . . . . . . . . . . . . . . . . . . . 23 if(suc suc 𝑛 = ∅, 𝑦, (𝑔 suc suc 𝑛)) = (𝑔 suc suc 𝑛)
318314, 317eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = suc suc 𝑛 → if(𝑏 = ∅, 𝑦, (𝑔 𝑏)) = (𝑔 suc suc 𝑛))
319 fvex 6871 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 suc suc 𝑛) ∈ V
320318, 297, 319fvmpt 6968 . . . . . . . . . . . . . . . . . . . . 21 (suc suc 𝑛 ∈ suc suc suc 𝑛 → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc suc 𝑛) = (𝑔 suc suc 𝑛))
321310, 320mp1i 13 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc suc 𝑛) = (𝑔 suc suc 𝑛))
3222203ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → suc 𝑛 ∈ ω)
323322, 222syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → Ord suc 𝑛)
324 ordunisuc 7807 . . . . . . . . . . . . . . . . . . . . . 22 (Ord suc 𝑛 suc suc 𝑛 = suc 𝑛)
325323, 324syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → suc suc 𝑛 = suc 𝑛)
326325fveq2d 6862 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → (𝑔 suc suc 𝑛) = (𝑔‘suc 𝑛))
327 simp22r 1294 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → (𝑔‘suc 𝑛) = 𝑥)
328321, 326, 3273eqtrd 2768 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc suc 𝑛) = 𝑥)
329 simpl3 1194 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 = ∅) → 𝑦(𝑅𝐴)𝑧)
330 iftrue 4494 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = ∅ → if(𝑎 = ∅, 𝑦, (𝑔 𝑎)) = 𝑦)
331330adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 = ∅) → if(𝑎 = ∅, 𝑦, (𝑔 𝑎)) = 𝑦)
332 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = ∅ → (𝑔𝑎) = (𝑔‘∅))
333 simp22l 1293 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → (𝑔‘∅) = 𝑧)
334332, 333sylan9eqr 2786 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 = ∅) → (𝑔𝑎) = 𝑧)
335329, 331, 3343brtr4d 5139 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 = ∅) → if(𝑎 = ∅, 𝑦, (𝑔 𝑎))(𝑅𝐴)(𝑔𝑎))
336335ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → (𝑎 = ∅ → if(𝑎 = ∅, 𝑦, (𝑔 𝑎))(𝑅𝐴)(𝑔𝑎)))
337336adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → (𝑎 = ∅ → if(𝑎 = ∅, 𝑦, (𝑔 𝑎))(𝑅𝐴)(𝑔𝑎)))
338 ordsucelsuc 7797 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Ord suc 𝑛 → (𝑏 ∈ suc 𝑛 ↔ suc 𝑏 ∈ suc suc 𝑛))
339323, 338syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → (𝑏 ∈ suc 𝑛 ↔ suc 𝑏 ∈ suc suc 𝑛))
340 elnn 7853 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑏 ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω) → 𝑏 ∈ ω)
341322, 340sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑏 ∈ suc 𝑛 ∧ (𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧)) → 𝑏 ∈ ω)
342341ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → 𝑏 ∈ ω)
343 nnord 7850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑏 ∈ ω → Ord 𝑏)
344342, 343syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → Ord 𝑏)
345 ordunisuc 7807 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (Ord 𝑏 suc 𝑏 = 𝑏)
346344, 345syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → suc 𝑏 = 𝑏)
347346fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → (𝑔 suc 𝑏) = (𝑔𝑏))
348 simp23 1209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐))
349 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = 𝑏 → (𝑔𝑐) = (𝑔𝑏))
350 suceq 6400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = 𝑏 → suc 𝑐 = suc 𝑏)
351350fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = 𝑏 → (𝑔‘suc 𝑐) = (𝑔‘suc 𝑏))
352349, 351breq12d 5120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑏 → ((𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐) ↔ (𝑔𝑏)(𝑅𝐴)(𝑔‘suc 𝑏)))
353352rspcv 3584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 ∈ suc 𝑛 → (∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐) → (𝑔𝑏)(𝑅𝐴)(𝑔‘suc 𝑏)))
354348, 353mpan9 506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → (𝑔𝑏)(𝑅𝐴)(𝑔‘suc 𝑏))
355347, 354eqbrtrd 5129 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → (𝑔 suc 𝑏)(𝑅𝐴)(𝑔‘suc 𝑏))
356355ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → (𝑏 ∈ suc 𝑛 → (𝑔 suc 𝑏)(𝑅𝐴)(𝑔‘suc 𝑏)))
357339, 356sylbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → (suc 𝑏 ∈ suc suc 𝑛 → (𝑔 suc 𝑏)(𝑅𝐴)(𝑔‘suc 𝑏)))
358357imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ suc 𝑏 ∈ suc suc 𝑛) → (𝑔 suc 𝑏)(𝑅𝐴)(𝑔‘suc 𝑏))
359 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = suc 𝑏 → (𝑎 ∈ suc suc 𝑛 ↔ suc 𝑏 ∈ suc suc 𝑛))
360359anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = suc 𝑏 → (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) ↔ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ suc 𝑏 ∈ suc suc 𝑛)))
361 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = suc 𝑏 → (𝑎 = ∅ ↔ suc 𝑏 = ∅))
362 unieq 4882 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎 = suc 𝑏 𝑎 = suc 𝑏)
363362fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = suc 𝑏 → (𝑔 𝑎) = (𝑔 suc 𝑏))
364361, 363ifbieq2d 4515 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = suc 𝑏 → if(𝑎 = ∅, 𝑦, (𝑔 𝑎)) = if(suc 𝑏 = ∅, 𝑦, (𝑔 suc 𝑏)))
365 nsuceq0 6417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 suc 𝑏 ≠ ∅
366365neii 2927 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ¬ suc 𝑏 = ∅
367366iffalsei 4498 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 if(suc 𝑏 = ∅, 𝑦, (𝑔 suc 𝑏)) = (𝑔 suc 𝑏)
368364, 367eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = suc 𝑏 → if(𝑎 = ∅, 𝑦, (𝑔 𝑎)) = (𝑔 suc 𝑏))
369 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = suc 𝑏 → (𝑔𝑎) = (𝑔‘suc 𝑏))
370368, 369breq12d 5120 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = suc 𝑏 → (if(𝑎 = ∅, 𝑦, (𝑔 𝑎))(𝑅𝐴)(𝑔𝑎) ↔ (𝑔 suc 𝑏)(𝑅𝐴)(𝑔‘suc 𝑏)))
371360, 370imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = suc 𝑏 → ((((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → if(𝑎 = ∅, 𝑦, (𝑔 𝑎))(𝑅𝐴)(𝑔𝑎)) ↔ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ suc 𝑏 ∈ suc suc 𝑛) → (𝑔 suc 𝑏)(𝑅𝐴)(𝑔‘suc 𝑏))))
372358, 371mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = suc 𝑏 → (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → if(𝑎 = ∅, 𝑦, (𝑔 𝑎))(𝑅𝐴)(𝑔𝑎)))
373372com12 32 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → (𝑎 = suc 𝑏 → if(𝑎 = ∅, 𝑦, (𝑔 𝑎))(𝑅𝐴)(𝑔𝑎)))
374373rexlimdvw 3139 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → (∃𝑏 ∈ ω 𝑎 = suc 𝑏 → if(𝑎 = ∅, 𝑦, (𝑔 𝑎))(𝑅𝐴)(𝑔𝑎)))
375 elnn 7853 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ suc suc 𝑛 ∧ suc suc 𝑛 ∈ ω) → 𝑎 ∈ ω)
376375ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . 24 ((suc suc 𝑛 ∈ ω ∧ 𝑎 ∈ suc suc 𝑛) → 𝑎 ∈ ω)
377302, 376sylan 580 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → 𝑎 ∈ ω)
378 nn0suc 7870 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ω → (𝑎 = ∅ ∨ ∃𝑏 ∈ ω 𝑎 = suc 𝑏))
379377, 378syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → (𝑎 = ∅ ∨ ∃𝑏 ∈ ω 𝑎 = suc 𝑏))
380337, 374, 379mpjaod 860 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → if(𝑎 = ∅, 𝑦, (𝑔 𝑎))(𝑅𝐴)(𝑔𝑎))
381 elelsuc 6407 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ suc suc 𝑛𝑎 ∈ suc suc suc 𝑛)
382 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = 𝑎 → (𝑏 = ∅ ↔ 𝑎 = ∅))
383 unieq 4882 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = 𝑎 𝑏 = 𝑎)
384383fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = 𝑎 → (𝑔 𝑏) = (𝑔 𝑎))
385382, 384ifbieq2d 4515 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑎 → if(𝑏 = ∅, 𝑦, (𝑔 𝑏)) = if(𝑎 = ∅, 𝑦, (𝑔 𝑎)))
386 fvex 6871 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑔 𝑎) ∈ V
387100, 386ifex 4539 . . . . . . . . . . . . . . . . . . . . . . . 24 if(𝑎 = ∅, 𝑦, (𝑔 𝑎)) ∈ V
388385, 297, 387fvmpt 6968 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ suc suc suc 𝑛 → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘𝑎) = if(𝑎 = ∅, 𝑦, (𝑔 𝑎)))
389381, 388syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ suc suc 𝑛 → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘𝑎) = if(𝑎 = ∅, 𝑦, (𝑔 𝑎)))
390389adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘𝑎) = if(𝑎 = ∅, 𝑦, (𝑔 𝑎)))
391 ordsucelsuc 7797 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Ord suc suc 𝑛 → (𝑎 ∈ suc suc 𝑛 ↔ suc 𝑎 ∈ suc suc suc 𝑛))
392304, 391syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → (𝑎 ∈ suc suc 𝑛 ↔ suc 𝑎 ∈ suc suc suc 𝑛))
393392biimpa 476 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → suc 𝑎 ∈ suc suc suc 𝑛)
394 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = suc 𝑎 → (𝑏 = ∅ ↔ suc 𝑎 = ∅))
395 unieq 4882 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 = suc 𝑎 𝑏 = suc 𝑎)
396395fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = suc 𝑎 → (𝑔 𝑏) = (𝑔 suc 𝑎))
397394, 396ifbieq2d 4515 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = suc 𝑎 → if(𝑏 = ∅, 𝑦, (𝑔 𝑏)) = if(suc 𝑎 = ∅, 𝑦, (𝑔 suc 𝑎)))
398 nsuceq0 6417 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 suc 𝑎 ≠ ∅
399398neii 2927 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ¬ suc 𝑎 = ∅
400399iffalsei 4498 . . . . . . . . . . . . . . . . . . . . . . . . 25 if(suc 𝑎 = ∅, 𝑦, (𝑔 suc 𝑎)) = (𝑔 suc 𝑎)
401397, 400eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = suc 𝑎 → if(𝑏 = ∅, 𝑦, (𝑔 𝑏)) = (𝑔 suc 𝑎))
402 fvex 6871 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔 suc 𝑎) ∈ V
403401, 297, 402fvmpt 6968 . . . . . . . . . . . . . . . . . . . . . . 23 (suc 𝑎 ∈ suc suc suc 𝑛 → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc 𝑎) = (𝑔 suc 𝑎))
404393, 403syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc 𝑎) = (𝑔 suc 𝑎))
405 nnord 7850 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ ω → Ord 𝑎)
406377, 405syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → Ord 𝑎)
407 ordunisuc 7807 . . . . . . . . . . . . . . . . . . . . . . . 24 (Ord 𝑎 suc 𝑎 = 𝑎)
408406, 407syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → suc 𝑎 = 𝑎)
409408fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → (𝑔 suc 𝑎) = (𝑔𝑎))
410404, 409eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc 𝑎) = (𝑔𝑎))
411380, 390, 4103brtr4d 5139 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘𝑎)(𝑅𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc 𝑎))
412411ralrimiva 3125 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → ∀𝑎 ∈ suc suc 𝑛((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘𝑎)(𝑅𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc 𝑎))
413264sucex 7782 . . . . . . . . . . . . . . . . . . . . 21 suc suc suc 𝑛 ∈ V
414413mptex 7197 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) ∈ V
415 fneq1 6609 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → (𝑓 Fn suc suc suc 𝑛 ↔ (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) Fn suc suc suc 𝑛))
416 fveq1 6857 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → (𝑓‘∅) = ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘∅))
417416eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → ((𝑓‘∅) = 𝑦 ↔ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘∅) = 𝑦))
418 fveq1 6857 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → (𝑓‘suc suc 𝑛) = ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc suc 𝑛))
419418eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → ((𝑓‘suc suc 𝑛) = 𝑥 ↔ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc suc 𝑛) = 𝑥))
420417, 419anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ↔ (((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘∅) = 𝑦 ∧ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc suc 𝑛) = 𝑥)))
421 fveq1 6857 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → (𝑓𝑎) = ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘𝑎))
422 fveq1 6857 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → (𝑓‘suc 𝑎) = ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc 𝑎))
423421, 422breq12d 5120 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → ((𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘𝑎)(𝑅𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc 𝑎)))
424423ralbidv 3156 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → (∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc suc 𝑛((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘𝑎)(𝑅𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc 𝑎)))
425415, 420, 4243anbi123d 1438 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → ((𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) Fn suc suc suc 𝑛 ∧ (((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘∅) = 𝑦 ∧ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘𝑎)(𝑅𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc 𝑎))))
426414, 425spcev 3572 . . . . . . . . . . . . . . . . . . 19 (((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) Fn suc suc suc 𝑛 ∧ (((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘∅) = 𝑦 ∧ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘𝑎)(𝑅𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc 𝑎)) → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)))
427299, 309, 328, 412, 426syl121anc 1377 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)))
4284273exp 1119 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ω → ((𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) → (𝑦(𝑅𝐴)𝑧 → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)))))
429428exlimdv 1933 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ω → (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) → (𝑦(𝑅𝐴)𝑧 → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)))))
430429impd 410 . . . . . . . . . . . . . . 15 (𝑛 ∈ ω → ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))))
431430exlimdv 1933 . . . . . . . . . . . . . 14 (𝑛 ∈ ω → (∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))))
432294, 431impbid 212 . . . . . . . . . . . . 13 (𝑛 ∈ ω → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧)))
433 vex 3451 . . . . . . . . . . . . . . . 16 𝑧 ∈ V
434433brresi 5959 . . . . . . . . . . . . . . 15 (𝑦(𝑅𝐴)𝑧 ↔ (𝑦𝐴𝑦𝑅𝑧))
435434anbi2i 623 . . . . . . . . . . . . . 14 ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧)))
436435exbii 1848 . . . . . . . . . . . . 13 (∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧)))
437432, 436bitrdi 287 . . . . . . . . . . . 12 (𝑛 ∈ ω → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))
438215, 437vtoclg 3520 . . . . . . . . . . 11 (𝑋𝐴 → (𝑛 ∈ ω → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧)))))
439438impcom 407 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ 𝑋𝐴) → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))
440439adantrl 716 . . . . . . . . 9 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴)) → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))
4414403adant3 1132 . . . . . . . 8 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛))) → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))
442175, 203, 4413bitr4rd 312 . . . . . . 7 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛))) → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛)))
443442alrimiv 1927 . . . . . 6 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛))) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛)))
4444433exp 1119 . . . . 5 (𝑛 ∈ ω → ((𝑅 Se 𝐴𝑋𝐴) → (∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛)) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛)))))
445444a2d 29 . . . 4 (𝑛 ∈ ω → (((𝑅 Se 𝐴𝑋𝐴) → ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛))) → ((𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛)))))
44626, 67, 81, 95, 164, 445finds 7872 . . 3 (𝑁 ∈ ω → ((𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑁))))
4474463impib 1116 . 2 ((𝑁 ∈ ω ∧ 𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑁)))
44844719.21bi 2190 1 ((𝑁 ∈ ω ∧ 𝑅 Se 𝐴𝑋𝐴) → (∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  wss 3914  c0 4296  ifcif 4488  {csn 4589   cuni 4871   ciun 4955   class class class wbr 5107  cmpt 5188   Se wse 5589  cres 5640  Predcpred 6273  Ord word 6331  Oncon0 6332  suc csuc 6334   Fn wfn 6506  cfv 6511  ωcom 7842  reccrdg 8377  1oc1o 8427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434
This theorem is referenced by:  ttrclse  9680
  Copyright terms: Public domain W3C validator