MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclselem2 Structured version   Visualization version   GIF version

Theorem ttrclselem2 9616
Description: Lemma for ttrclse 9617. Show that a suc 𝑁 element long chain gives membership in the 𝑁-th predecessor class and vice-versa. (Contributed by Scott Fenton, 31-Oct-2024.)
Hypothesis
Ref Expression
ttrclselem.1 𝐹 = rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))
Assertion
Ref Expression
ttrclselem2 ((𝑁 ∈ ω ∧ 𝑅 Se 𝐴𝑋𝐴) → (∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑁)))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓,𝑤,𝑦   𝑦,𝐹   𝑁,𝑎,𝑓,𝑦   𝑅,𝑎,𝑏,𝑓,𝑤,𝑦   𝑋,𝑏,𝑓,𝑦
Allowed substitution hints:   𝐹(𝑤,𝑓,𝑎,𝑏)   𝑁(𝑤,𝑏)   𝑋(𝑤,𝑎)

Proof of Theorem ttrclselem2
Dummy variables 𝑐 𝑔 𝑚 𝑛 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 6374 . . . . . . . . . . . 12 (𝑚 = ∅ → suc 𝑚 = suc ∅)
2 df-1o 8385 . . . . . . . . . . . 12 1o = suc ∅
31, 2eqtr4di 2784 . . . . . . . . . . 11 (𝑚 = ∅ → suc 𝑚 = 1o)
4 suceq 6374 . . . . . . . . . . 11 (suc 𝑚 = 1o → suc suc 𝑚 = suc 1o)
53, 4syl 17 . . . . . . . . . 10 (𝑚 = ∅ → suc suc 𝑚 = suc 1o)
65fneq2d 6575 . . . . . . . . 9 (𝑚 = ∅ → (𝑓 Fn suc suc 𝑚𝑓 Fn suc 1o))
73fveqeq2d 6830 . . . . . . . . . 10 (𝑚 = ∅ → ((𝑓‘suc 𝑚) = 𝑋 ↔ (𝑓‘1o) = 𝑋))
87anbi2d 630 . . . . . . . . 9 (𝑚 = ∅ → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)))
9 df1o2 8392 . . . . . . . . . . . 12 1o = {∅}
103, 9eqtrdi 2782 . . . . . . . . . . 11 (𝑚 = ∅ → suc 𝑚 = {∅})
1110raleqdv 3292 . . . . . . . . . 10 (𝑚 = ∅ → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ {∅} (𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)))
12 0ex 5243 . . . . . . . . . . 11 ∅ ∈ V
13 fveq2 6822 . . . . . . . . . . . 12 (𝑎 = ∅ → (𝑓𝑎) = (𝑓‘∅))
14 suceq 6374 . . . . . . . . . . . . . 14 (𝑎 = ∅ → suc 𝑎 = suc ∅)
1514, 2eqtr4di 2784 . . . . . . . . . . . . 13 (𝑎 = ∅ → suc 𝑎 = 1o)
1615fveq2d 6826 . . . . . . . . . . . 12 (𝑎 = ∅ → (𝑓‘suc 𝑎) = (𝑓‘1o))
1713, 16breq12d 5102 . . . . . . . . . . 11 (𝑎 = ∅ → ((𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)))
1812, 17ralsn 4631 . . . . . . . . . 10 (∀𝑎 ∈ {∅} (𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o))
1911, 18bitrdi 287 . . . . . . . . 9 (𝑚 = ∅ → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)))
206, 8, 193anbi123d 1438 . . . . . . . 8 (𝑚 = ∅ → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o))))
2120exbidv 1922 . . . . . . 7 (𝑚 = ∅ → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o))))
22 fveq2 6822 . . . . . . . 8 (𝑚 = ∅ → (𝐹𝑚) = (𝐹‘∅))
2322eleq2d 2817 . . . . . . 7 (𝑚 = ∅ → (𝑦 ∈ (𝐹𝑚) ↔ 𝑦 ∈ (𝐹‘∅)))
2421, 23bibi12d 345 . . . . . 6 (𝑚 = ∅ → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚)) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ 𝑦 ∈ (𝐹‘∅))))
2524albidv 1921 . . . . 5 (𝑚 = ∅ → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚)) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ 𝑦 ∈ (𝐹‘∅))))
2625imbi2d 340 . . . 4 (𝑚 = ∅ → (((𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚))) ↔ ((𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ 𝑦 ∈ (𝐹‘∅)))))
27 suceq 6374 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → suc 𝑚 = suc 𝑛)
28 suceq 6374 . . . . . . . . . . . . 13 (suc 𝑚 = suc 𝑛 → suc suc 𝑚 = suc suc 𝑛)
2927, 28syl 17 . . . . . . . . . . . 12 (𝑚 = 𝑛 → suc suc 𝑚 = suc suc 𝑛)
3029fneq2d 6575 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc 𝑛))
3127fveqeq2d 6830 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑓‘suc 𝑚) = 𝑋 ↔ (𝑓‘suc 𝑛) = 𝑋))
3231anbi2d 630 . . . . . . . . . . 11 (𝑚 = 𝑛 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋)))
3327raleqdv 3292 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)))
34 fveq2 6822 . . . . . . . . . . . . . 14 (𝑎 = 𝑐 → (𝑓𝑎) = (𝑓𝑐))
35 suceq 6374 . . . . . . . . . . . . . . 15 (𝑎 = 𝑐 → suc 𝑎 = suc 𝑐)
3635fveq2d 6826 . . . . . . . . . . . . . 14 (𝑎 = 𝑐 → (𝑓‘suc 𝑎) = (𝑓‘suc 𝑐))
3734, 36breq12d 5102 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → ((𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ (𝑓𝑐)(𝑅𝐴)(𝑓‘suc 𝑐)))
3837cbvralvw 3210 . . . . . . . . . . . 12 (∀𝑎 ∈ suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑐 ∈ suc 𝑛(𝑓𝑐)(𝑅𝐴)(𝑓‘suc 𝑐))
3933, 38bitrdi 287 . . . . . . . . . . 11 (𝑚 = 𝑛 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑐 ∈ suc 𝑛(𝑓𝑐)(𝑅𝐴)(𝑓‘suc 𝑐)))
4030, 32, 393anbi123d 1438 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑓𝑐)(𝑅𝐴)(𝑓‘suc 𝑐))))
4140exbidv 1922 . . . . . . . . 9 (𝑚 = 𝑛 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑓𝑐)(𝑅𝐴)(𝑓‘suc 𝑐))))
42 fneq1 6572 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓 Fn suc suc 𝑛𝑔 Fn suc suc 𝑛))
43 fveq1 6821 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓‘∅) = (𝑔‘∅))
4443eqeq1d 2733 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑓‘∅) = 𝑦 ↔ (𝑔‘∅) = 𝑦))
45 fveq1 6821 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓‘suc 𝑛) = (𝑔‘suc 𝑛))
4645eqeq1d 2733 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑓‘suc 𝑛) = 𝑋 ↔ (𝑔‘suc 𝑛) = 𝑋))
4744, 46anbi12d 632 . . . . . . . . . . 11 (𝑓 = 𝑔 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋) ↔ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋)))
48 fveq1 6821 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓𝑐) = (𝑔𝑐))
49 fveq1 6821 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓‘suc 𝑐) = (𝑔‘suc 𝑐))
5048, 49breq12d 5102 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑓𝑐)(𝑅𝐴)(𝑓‘suc 𝑐) ↔ (𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)))
5150ralbidv 3155 . . . . . . . . . . 11 (𝑓 = 𝑔 → (∀𝑐 ∈ suc 𝑛(𝑓𝑐)(𝑅𝐴)(𝑓‘suc 𝑐) ↔ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)))
5242, 47, 513anbi123d 1438 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑓𝑐)(𝑅𝐴)(𝑓‘suc 𝑐)) ↔ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐))))
5352cbvexvw 2038 . . . . . . . . 9 (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑓𝑐)(𝑅𝐴)(𝑓‘suc 𝑐)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)))
5441, 53bitrdi 287 . . . . . . . 8 (𝑚 = 𝑛 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐))))
55 fveq2 6822 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
5655eleq2d 2817 . . . . . . . 8 (𝑚 = 𝑛 → (𝑦 ∈ (𝐹𝑚) ↔ 𝑦 ∈ (𝐹𝑛)))
5754, 56bibi12d 345 . . . . . . 7 (𝑚 = 𝑛 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚)) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑦 ∈ (𝐹𝑛))))
5857albidv 1921 . . . . . 6 (𝑚 = 𝑛 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚)) ↔ ∀𝑦(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑦 ∈ (𝐹𝑛))))
59 eqeq2 2743 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑔‘∅) = 𝑦 ↔ (𝑔‘∅) = 𝑧))
6059anbi1d 631 . . . . . . . . . 10 (𝑦 = 𝑧 → (((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ↔ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋)))
61603anbi2d 1443 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐))))
6261exbidv 1922 . . . . . . . 8 (𝑦 = 𝑧 → (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐))))
63 eleq1 2819 . . . . . . . 8 (𝑦 = 𝑧 → (𝑦 ∈ (𝐹𝑛) ↔ 𝑧 ∈ (𝐹𝑛)))
6462, 63bibi12d 345 . . . . . . 7 (𝑦 = 𝑧 → ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑦 ∈ (𝐹𝑛)) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛))))
6564cbvalvw 2037 . . . . . 6 (∀𝑦(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑦 ∈ (𝐹𝑛)) ↔ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛)))
6658, 65bitrdi 287 . . . . 5 (𝑚 = 𝑛 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚)) ↔ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛))))
6766imbi2d 340 . . . 4 (𝑚 = 𝑛 → (((𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚))) ↔ ((𝑅 Se 𝐴𝑋𝐴) → ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛)))))
68 suceq 6374 . . . . . . . . . . 11 (𝑚 = suc 𝑛 → suc 𝑚 = suc suc 𝑛)
69 suceq 6374 . . . . . . . . . . 11 (suc 𝑚 = suc suc 𝑛 → suc suc 𝑚 = suc suc suc 𝑛)
7068, 69syl 17 . . . . . . . . . 10 (𝑚 = suc 𝑛 → suc suc 𝑚 = suc suc suc 𝑛)
7170fneq2d 6575 . . . . . . . . 9 (𝑚 = suc 𝑛 → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc suc 𝑛))
7268fveqeq2d 6830 . . . . . . . . . 10 (𝑚 = suc 𝑛 → ((𝑓‘suc 𝑚) = 𝑋 ↔ (𝑓‘suc suc 𝑛) = 𝑋))
7372anbi2d 630 . . . . . . . . 9 (𝑚 = suc 𝑛 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋)))
7468raleqdv 3292 . . . . . . . . 9 (𝑚 = suc 𝑛 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)))
7571, 73, 743anbi123d 1438 . . . . . . . 8 (𝑚 = suc 𝑛 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))))
7675exbidv 1922 . . . . . . 7 (𝑚 = suc 𝑛 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))))
77 fveq2 6822 . . . . . . . 8 (𝑚 = suc 𝑛 → (𝐹𝑚) = (𝐹‘suc 𝑛))
7877eleq2d 2817 . . . . . . 7 (𝑚 = suc 𝑛 → (𝑦 ∈ (𝐹𝑚) ↔ 𝑦 ∈ (𝐹‘suc 𝑛)))
7976, 78bibi12d 345 . . . . . 6 (𝑚 = suc 𝑛 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚)) ↔ (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛))))
8079albidv 1921 . . . . 5 (𝑚 = suc 𝑛 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚)) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛))))
8180imbi2d 340 . . . 4 (𝑚 = suc 𝑛 → (((𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚))) ↔ ((𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛)))))
82 suceq 6374 . . . . . . . . . . 11 (𝑚 = 𝑁 → suc 𝑚 = suc 𝑁)
83 suceq 6374 . . . . . . . . . . 11 (suc 𝑚 = suc 𝑁 → suc suc 𝑚 = suc suc 𝑁)
8482, 83syl 17 . . . . . . . . . 10 (𝑚 = 𝑁 → suc suc 𝑚 = suc suc 𝑁)
8584fneq2d 6575 . . . . . . . . 9 (𝑚 = 𝑁 → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc 𝑁))
8682fveqeq2d 6830 . . . . . . . . . 10 (𝑚 = 𝑁 → ((𝑓‘suc 𝑚) = 𝑋 ↔ (𝑓‘suc 𝑁) = 𝑋))
8786anbi2d 630 . . . . . . . . 9 (𝑚 = 𝑁 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋)))
8882raleqdv 3292 . . . . . . . . 9 (𝑚 = 𝑁 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑁(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)))
8985, 87, 883anbi123d 1438 . . . . . . . 8 (𝑚 = 𝑁 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))))
9089exbidv 1922 . . . . . . 7 (𝑚 = 𝑁 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))))
91 fveq2 6822 . . . . . . . 8 (𝑚 = 𝑁 → (𝐹𝑚) = (𝐹𝑁))
9291eleq2d 2817 . . . . . . 7 (𝑚 = 𝑁 → (𝑦 ∈ (𝐹𝑚) ↔ 𝑦 ∈ (𝐹𝑁)))
9390, 92bibi12d 345 . . . . . 6 (𝑚 = 𝑁 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚)) ↔ (∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑁))))
9493albidv 1921 . . . . 5 (𝑚 = 𝑁 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚)) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑁))))
9594imbi2d 340 . . . 4 (𝑚 = 𝑁 → (((𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑚))) ↔ ((𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑁)))))
96 eqeq2 2743 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((𝑓‘1o) = 𝑥 ↔ (𝑓‘1o) = 𝑋))
9796anbi2d 630 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)))
9897anbi2d 630 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥)) ↔ (𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋))))
9998exbidv 1922 . . . . . . . . . 10 (𝑥 = 𝑋 → (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥)) ↔ ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋))))
100 vex 3440 . . . . . . . . . . . . 13 𝑦 ∈ V
101 vex 3440 . . . . . . . . . . . . 13 𝑥 ∈ V
102100, 101ifex 4523 . . . . . . . . . . . 12 if(𝑏 = ∅, 𝑦, 𝑥) ∈ V
103 eqid 2731 . . . . . . . . . . . 12 (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))
104102, 103fnmpti 6624 . . . . . . . . . . 11 (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) Fn suc 1o
105 equid 2013 . . . . . . . . . . . 12 𝑦 = 𝑦
106 equid 2013 . . . . . . . . . . . 12 𝑥 = 𝑥
107105, 106pm3.2i 470 . . . . . . . . . . 11 (𝑦 = 𝑦𝑥 = 𝑥)
108 1oex 8395 . . . . . . . . . . . . . 14 1o ∈ V
109108sucex 7739 . . . . . . . . . . . . 13 suc 1o ∈ V
110109mptex 7157 . . . . . . . . . . . 12 (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) ∈ V
111 fneq1 6572 . . . . . . . . . . . . 13 (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (𝑓 Fn suc 1o ↔ (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) Fn suc 1o))
112 fveq1 6821 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (𝑓‘∅) = ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))‘∅))
113 1on 8397 . . . . . . . . . . . . . . . . . 18 1o ∈ On
114113onordi 6419 . . . . . . . . . . . . . . . . 17 Ord 1o
115 0elsuc 7765 . . . . . . . . . . . . . . . . 17 (Ord 1o → ∅ ∈ suc 1o)
116 iftrue 4478 . . . . . . . . . . . . . . . . . 18 (𝑏 = ∅ → if(𝑏 = ∅, 𝑦, 𝑥) = 𝑦)
117116, 103, 100fvmpt 6929 . . . . . . . . . . . . . . . . 17 (∅ ∈ suc 1o → ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))‘∅) = 𝑦)
118114, 115, 117mp2b 10 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))‘∅) = 𝑦
119112, 118eqtrdi 2782 . . . . . . . . . . . . . . 15 (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (𝑓‘∅) = 𝑦)
120119eqeq1d 2733 . . . . . . . . . . . . . 14 (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → ((𝑓‘∅) = 𝑦𝑦 = 𝑦))
121 fveq1 6821 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (𝑓‘1o) = ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))‘1o))
122108sucid 6390 . . . . . . . . . . . . . . . . 17 1o ∈ suc 1o
123 eqeq1 2735 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 1o → (𝑏 = ∅ ↔ 1o = ∅))
124123ifbid 4496 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 1o → if(𝑏 = ∅, 𝑦, 𝑥) = if(1o = ∅, 𝑦, 𝑥))
125 1n0 8403 . . . . . . . . . . . . . . . . . . . . 21 1o ≠ ∅
126125neii 2930 . . . . . . . . . . . . . . . . . . . 20 ¬ 1o = ∅
127126iffalsei 4482 . . . . . . . . . . . . . . . . . . 19 if(1o = ∅, 𝑦, 𝑥) = 𝑥
128124, 127eqtrdi 2782 . . . . . . . . . . . . . . . . . 18 (𝑏 = 1o → if(𝑏 = ∅, 𝑦, 𝑥) = 𝑥)
129128, 103, 101fvmpt 6929 . . . . . . . . . . . . . . . . 17 (1o ∈ suc 1o → ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))‘1o) = 𝑥)
130122, 129ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))‘1o) = 𝑥
131121, 130eqtrdi 2782 . . . . . . . . . . . . . . 15 (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (𝑓‘1o) = 𝑥)
132131eqeq1d 2733 . . . . . . . . . . . . . 14 (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → ((𝑓‘1o) = 𝑥𝑥 = 𝑥))
133120, 132anbi12d 632 . . . . . . . . . . . . 13 (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥) ↔ (𝑦 = 𝑦𝑥 = 𝑥)))
134111, 133anbi12d 632 . . . . . . . . . . . 12 (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥)) ↔ ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) Fn suc 1o ∧ (𝑦 = 𝑦𝑥 = 𝑥))))
135110, 134spcev 3556 . . . . . . . . . . 11 (((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) Fn suc 1o ∧ (𝑦 = 𝑦𝑥 = 𝑥)) → ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥)))
136104, 107, 135mp2an 692 . . . . . . . . . 10 𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥))
13799, 136vtoclg 3507 . . . . . . . . 9 (𝑋𝐴 → ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)))
138137adantl 481 . . . . . . . 8 ((𝑅 Se 𝐴𝑋𝐴) → ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)))
139138biantrurd 532 . . . . . . 7 ((𝑅 Se 𝐴𝑋𝐴) → ((𝑦𝐴𝑦𝑅𝑋) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ (𝑦𝐴𝑦𝑅𝑋))))
140100elpred 6265 . . . . . . . 8 (𝑋𝐴 → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑦𝐴𝑦𝑅𝑋)))
141140adantl 481 . . . . . . 7 ((𝑅 Se 𝐴𝑋𝐴) → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑦𝐴𝑦𝑅𝑋)))
142 brres 5934 . . . . . . . . 9 (𝑋𝐴 → (𝑦(𝑅𝐴)𝑋 ↔ (𝑦𝐴𝑦𝑅𝑋)))
143142adantl 481 . . . . . . . 8 ((𝑅 Se 𝐴𝑋𝐴) → (𝑦(𝑅𝐴)𝑋 ↔ (𝑦𝐴𝑦𝑅𝑋)))
144143anbi2d 630 . . . . . . 7 ((𝑅 Se 𝐴𝑋𝐴) → ((∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅𝐴)𝑋) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ (𝑦𝐴𝑦𝑅𝑋))))
145139, 141, 1443bitr4rd 312 . . . . . 6 ((𝑅 Se 𝐴𝑋𝐴) → ((∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅𝐴)𝑋) ↔ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑋)))
146 df-3an 1088 . . . . . . . . . 10 ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)))
147 breq12 5094 . . . . . . . . . . . 12 (((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) → ((𝑓‘∅)(𝑅𝐴)(𝑓‘1o) ↔ 𝑦(𝑅𝐴)𝑋))
148147adantl 481 . . . . . . . . . . 11 ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) → ((𝑓‘∅)(𝑅𝐴)(𝑓‘1o) ↔ 𝑦(𝑅𝐴)𝑋))
149148pm5.32i 574 . . . . . . . . . 10 (((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅𝐴)𝑋))
150146, 149bitri 275 . . . . . . . . 9 ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅𝐴)𝑋))
151150exbii 1849 . . . . . . . 8 (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ ∃𝑓((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅𝐴)𝑋))
152 19.41v 1950 . . . . . . . 8 (∃𝑓((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅𝐴)𝑋) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅𝐴)𝑋))
153151, 152bitri 275 . . . . . . 7 (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅𝐴)𝑋))
154153a1i 11 . . . . . 6 ((𝑅 Se 𝐴𝑋𝐴) → (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅𝐴)𝑋)))
155 ttrclselem.1 . . . . . . . . 9 𝐹 = rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))
156155fveq1i 6823 . . . . . . . 8 (𝐹‘∅) = (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅)
157 setlikespec 6272 . . . . . . . . . 10 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
158157ancoms 458 . . . . . . . . 9 ((𝑅 Se 𝐴𝑋𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
159 rdg0g 8346 . . . . . . . . 9 (Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) = Pred(𝑅, 𝐴, 𝑋))
160158, 159syl 17 . . . . . . . 8 ((𝑅 Se 𝐴𝑋𝐴) → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) = Pred(𝑅, 𝐴, 𝑋))
161156, 160eqtrid 2778 . . . . . . 7 ((𝑅 Se 𝐴𝑋𝐴) → (𝐹‘∅) = Pred(𝑅, 𝐴, 𝑋))
162161eleq2d 2817 . . . . . 6 ((𝑅 Se 𝐴𝑋𝐴) → (𝑦 ∈ (𝐹‘∅) ↔ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑋)))
163145, 154, 1623bitr4d 311 . . . . 5 ((𝑅 Se 𝐴𝑋𝐴) → (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ 𝑦 ∈ (𝐹‘∅)))
164163alrimiv 1928 . . . 4 ((𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅𝐴)(𝑓‘1o)) ↔ 𝑦 ∈ (𝐹‘∅)))
165 eliun 4943 . . . . . . . . . 10 (𝑦 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧) ↔ ∃𝑧 ∈ (𝐹𝑛)𝑦 ∈ Pred(𝑅, 𝐴, 𝑧))
166 df-rex 3057 . . . . . . . . . 10 (∃𝑧 ∈ (𝐹𝑛)𝑦 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ ∃𝑧(𝑧 ∈ (𝐹𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)))
167165, 166bitri 275 . . . . . . . . 9 (𝑦 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧) ↔ ∃𝑧(𝑧 ∈ (𝐹𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)))
168100elpred 6265 . . . . . . . . . . . . . 14 (𝑧 ∈ V → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ (𝑦𝐴𝑦𝑅𝑧)))
169168elv 3441 . . . . . . . . . . . . 13 (𝑦 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ (𝑦𝐴𝑦𝑅𝑧))
170169anbi2i 623 . . . . . . . . . . . 12 ((𝑧 ∈ (𝐹𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)) ↔ (𝑧 ∈ (𝐹𝑛) ∧ (𝑦𝐴𝑦𝑅𝑧)))
171 anbi1 633 . . . . . . . . . . . 12 ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛)) → ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧)) ↔ (𝑧 ∈ (𝐹𝑛) ∧ (𝑦𝐴𝑦𝑅𝑧))))
172170, 171bitr4id 290 . . . . . . . . . . 11 ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛)) → ((𝑧 ∈ (𝐹𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))
173172alexbii 1834 . . . . . . . . . 10 (∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛)) → (∃𝑧(𝑧 ∈ (𝐹𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))
1741733ad2ant3 1135 . . . . . . . . 9 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛))) → (∃𝑧(𝑧 ∈ (𝐹𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))
175167, 174bitrid 283 . . . . . . . 8 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛))) → (𝑦 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))
176 nnon 7802 . . . . . . . . . . 11 (𝑛 ∈ ω → 𝑛 ∈ On)
177 fvex 6835 . . . . . . . . . . . 12 (𝐹𝑛) ∈ V
178155ttrclselem1 9615 . . . . . . . . . . . . . . 15 (𝑛 ∈ ω → (𝐹𝑛) ⊆ 𝐴)
179178adantr 480 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ 𝑅 Se 𝐴) → (𝐹𝑛) ⊆ 𝐴)
180 dfse3 6283 . . . . . . . . . . . . . . . 16 (𝑅 Se 𝐴 ↔ ∀𝑧𝐴 Pred(𝑅, 𝐴, 𝑧) ∈ V)
181180biimpi 216 . . . . . . . . . . . . . . 15 (𝑅 Se 𝐴 → ∀𝑧𝐴 Pred(𝑅, 𝐴, 𝑧) ∈ V)
182181adantl 481 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ 𝑅 Se 𝐴) → ∀𝑧𝐴 Pred(𝑅, 𝐴, 𝑧) ∈ V)
183 ssralv 3998 . . . . . . . . . . . . . 14 ((𝐹𝑛) ⊆ 𝐴 → (∀𝑧𝐴 Pred(𝑅, 𝐴, 𝑧) ∈ V → ∀𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V))
184179, 182, 183sylc 65 . . . . . . . . . . . . 13 ((𝑛 ∈ ω ∧ 𝑅 Se 𝐴) → ∀𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V)
185184adantrr 717 . . . . . . . . . . . 12 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴)) → ∀𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V)
186 iunexg 7895 . . . . . . . . . . . 12 (((𝐹𝑛) ∈ V ∧ ∀𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V) → 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V)
187177, 185, 186sylancr 587 . . . . . . . . . . 11 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴)) → 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V)
188 nfcv 2894 . . . . . . . . . . . 12 𝑏Pred(𝑅, 𝐴, 𝑋)
189 nfcv 2894 . . . . . . . . . . . 12 𝑏𝑛
190 nfmpt1 5188 . . . . . . . . . . . . . . . 16 𝑏(𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤))
191190, 188nfrdg 8333 . . . . . . . . . . . . . . 15 𝑏rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))
192155, 191nfcxfr 2892 . . . . . . . . . . . . . 14 𝑏𝐹
193192, 189nffv 6832 . . . . . . . . . . . . 13 𝑏(𝐹𝑛)
194 nfcv 2894 . . . . . . . . . . . . 13 𝑏Pred(𝑅, 𝐴, 𝑧)
195193, 194nfiun 4971 . . . . . . . . . . . 12 𝑏 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧)
196 predeq3 6252 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → Pred(𝑅, 𝐴, 𝑤) = Pred(𝑅, 𝐴, 𝑧))
197196cbviunv 4987 . . . . . . . . . . . . 13 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤) = 𝑧𝑏 Pred(𝑅, 𝐴, 𝑧)
198 iuneq1 4956 . . . . . . . . . . . . 13 (𝑏 = (𝐹𝑛) → 𝑧𝑏 Pred(𝑅, 𝐴, 𝑧) = 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧))
199197, 198eqtrid 2778 . . . . . . . . . . . 12 (𝑏 = (𝐹𝑛) → 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤) = 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧))
200188, 189, 195, 155, 199rdgsucmptf 8347 . . . . . . . . . . 11 ((𝑛 ∈ On ∧ 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V) → (𝐹‘suc 𝑛) = 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧))
201176, 187, 200syl2an2r 685 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴)) → (𝐹‘suc 𝑛) = 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧))
2022013adant3 1132 . . . . . . . . 9 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛))) → (𝐹‘suc 𝑛) = 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧))
203202eleq2d 2817 . . . . . . . 8 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛))) → (𝑦 ∈ (𝐹‘suc 𝑛) ↔ 𝑦 𝑧 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑧)))
204 eqeq2 2743 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → ((𝑓‘suc suc 𝑛) = 𝑥 ↔ (𝑓‘suc suc 𝑛) = 𝑋))
205204anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋)))
2062053anbi2d 1443 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → ((𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))))
207206exbidv 1922 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))))
208 eqeq2 2743 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋 → ((𝑔‘suc 𝑛) = 𝑥 ↔ (𝑔‘suc 𝑛) = 𝑋))
209208anbi2d 630 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑋 → (((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ↔ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋)))
2102093anbi2d 1443 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → ((𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐))))
211210exbidv 1922 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐))))
212211anbi1d 631 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧)) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))
213212exbidv 1922 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))
214207, 213bibi12d 345 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))) ↔ (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧)))))
215214imbi2d 340 . . . . . . . . . . . 12 (𝑥 = 𝑋 → ((𝑛 ∈ ω → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧)))) ↔ (𝑛 ∈ ω → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))))
216 fvex 6835 . . . . . . . . . . . . . . . . . . . 20 (𝑓‘suc 𝑏) ∈ V
217 eqid 2731 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))
218216, 217fnmpti 6624 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) Fn suc suc 𝑛
219218a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) Fn suc suc 𝑛)
220 peano2 7820 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
221220adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → suc 𝑛 ∈ ω)
222 nnord 7804 . . . . . . . . . . . . . . . . . . . . 21 (suc 𝑛 ∈ ω → Ord suc 𝑛)
223221, 222syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → Ord suc 𝑛)
224 0elsuc 7765 . . . . . . . . . . . . . . . . . . . 20 (Ord suc 𝑛 → ∅ ∈ suc suc 𝑛)
225223, 224syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → ∅ ∈ suc suc 𝑛)
226 suceq 6374 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = ∅ → suc 𝑏 = suc ∅)
227226fveq2d 6826 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = ∅ → (𝑓‘suc 𝑏) = (𝑓‘suc ∅))
228 fvex 6835 . . . . . . . . . . . . . . . . . . . 20 (𝑓‘suc ∅) ∈ V
229227, 217, 228fvmpt 6929 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ suc suc 𝑛 → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅))
230225, 229syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅))
231 vex 3440 . . . . . . . . . . . . . . . . . . . . . 22 𝑛 ∈ V
232231sucex 7739 . . . . . . . . . . . . . . . . . . . . 21 suc 𝑛 ∈ V
233232sucid 6390 . . . . . . . . . . . . . . . . . . . 20 suc 𝑛 ∈ suc suc 𝑛
234 suceq 6374 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = suc 𝑛 → suc 𝑏 = suc suc 𝑛)
235234fveq2d 6826 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = suc 𝑛 → (𝑓‘suc 𝑏) = (𝑓‘suc suc 𝑛))
236 fvex 6835 . . . . . . . . . . . . . . . . . . . . 21 (𝑓‘suc suc 𝑛) ∈ V
237235, 217, 236fvmpt 6929 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑛 ∈ suc suc 𝑛 → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = (𝑓‘suc suc 𝑛))
238233, 237mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = (𝑓‘suc suc 𝑛))
239 simpr2r 1234 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → (𝑓‘suc suc 𝑛) = 𝑥)
240238, 239eqtrd 2766 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = 𝑥)
241 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = suc 𝑐 → (𝑓𝑎) = (𝑓‘suc 𝑐))
242 suceq 6374 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = suc 𝑐 → suc 𝑎 = suc suc 𝑐)
243242fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = suc 𝑐 → (𝑓‘suc 𝑎) = (𝑓‘suc suc 𝑐))
244241, 243breq12d 5102 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = suc 𝑐 → ((𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘suc 𝑐)(𝑅𝐴)(𝑓‘suc suc 𝑐)))
245 simplr3 1218 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))
246 ordsucelsuc 7752 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord suc 𝑛 → (𝑐 ∈ suc 𝑛 ↔ suc 𝑐 ∈ suc suc 𝑛))
247223, 246syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → (𝑐 ∈ suc 𝑛 ↔ suc 𝑐 ∈ suc suc 𝑛))
248247biimpa 476 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → suc 𝑐 ∈ suc suc 𝑛)
249244, 245, 248rspcdva 3573 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → (𝑓‘suc 𝑐)(𝑅𝐴)(𝑓‘suc suc 𝑐))
250 elelsuc 6381 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 ∈ suc 𝑛𝑐 ∈ suc suc 𝑛)
251 suceq 6374 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑐 → suc 𝑏 = suc 𝑐)
252251fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑐 → (𝑓‘suc 𝑏) = (𝑓‘suc 𝑐))
253 fvex 6835 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓‘suc 𝑐) ∈ V
254252, 217, 253fvmpt 6929 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 ∈ suc suc 𝑛 → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐) = (𝑓‘suc 𝑐))
255250, 254syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ suc 𝑛 → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐) = (𝑓‘suc 𝑐))
256255adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐) = (𝑓‘suc 𝑐))
257 suceq 6374 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = suc 𝑐 → suc 𝑏 = suc suc 𝑐)
258257fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = suc 𝑐 → (𝑓‘suc 𝑏) = (𝑓‘suc suc 𝑐))
259 fvex 6835 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓‘suc suc 𝑐) ∈ V
260258, 217, 259fvmpt 6929 . . . . . . . . . . . . . . . . . . . . 21 (suc 𝑐 ∈ suc suc 𝑛 → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐) = (𝑓‘suc suc 𝑐))
261248, 260syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐) = (𝑓‘suc suc 𝑐))
262249, 256, 2613brtr4d 5121 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐))
263262ralrimiva 3124 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → ∀𝑐 ∈ suc 𝑛((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐))
264232sucex 7739 . . . . . . . . . . . . . . . . . . . 20 suc suc 𝑛 ∈ V
265264mptex 7157 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) ∈ V
266 fneq1 6572 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (𝑔 Fn suc suc 𝑛 ↔ (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) Fn suc suc 𝑛))
267 fveq1 6821 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (𝑔‘∅) = ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅))
268267eqeq1d 2733 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → ((𝑔‘∅) = (𝑓‘suc ∅) ↔ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅)))
269 fveq1 6821 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (𝑔‘suc 𝑛) = ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛))
270269eqeq1d 2733 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → ((𝑔‘suc 𝑛) = 𝑥 ↔ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = 𝑥))
271268, 270anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ↔ (((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅) ∧ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = 𝑥)))
272 fveq1 6821 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (𝑔𝑐) = ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐))
273 fveq1 6821 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (𝑔‘suc 𝑐) = ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐))
274272, 273breq12d 5102 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → ((𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐) ↔ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐)))
275274ralbidv 3155 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐) ↔ ∀𝑐 ∈ suc 𝑛((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐)))
276266, 271, 2753anbi123d 1438 . . . . . . . . . . . . . . . . . . 19 (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → ((𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) Fn suc suc 𝑛 ∧ (((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅) ∧ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐))))
277265, 276spcev 3556 . . . . . . . . . . . . . . . . . 18 (((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) Fn suc suc 𝑛 ∧ (((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅) ∧ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐)) → ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)))
278219, 230, 240, 263, 277syl121anc 1377 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)))
279 simpr2l 1233 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → (𝑓‘∅) = 𝑦)
28014fveq2d 6826 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = ∅ → (𝑓‘suc 𝑎) = (𝑓‘suc ∅))
28113, 280breq12d 5102 . . . . . . . . . . . . . . . . . . 19 (𝑎 = ∅ → ((𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘∅)(𝑅𝐴)(𝑓‘suc ∅)))
282 simpr3 1197 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))
283281, 282, 225rspcdva 3573 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → (𝑓‘∅)(𝑅𝐴)(𝑓‘suc ∅))
284279, 283eqbrtrrd 5113 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → 𝑦(𝑅𝐴)(𝑓‘suc ∅))
285 eqeq2 2743 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝑓‘suc ∅) → ((𝑔‘∅) = 𝑧 ↔ (𝑔‘∅) = (𝑓‘suc ∅)))
286285anbi1d 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑓‘suc ∅) → (((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ↔ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥)))
2872863anbi2d 1443 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑓‘suc ∅) → ((𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐))))
288287exbidv 1922 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓‘suc ∅) → (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐))))
289 breq2 5093 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓‘suc ∅) → (𝑦(𝑅𝐴)𝑧𝑦(𝑅𝐴)(𝑓‘suc ∅)))
290288, 289anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓‘suc ∅) → ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)(𝑓‘suc ∅))))
291228, 290spcev 3556 . . . . . . . . . . . . . . . . 17 ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)(𝑓‘suc ∅)) → ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧))
292278, 284, 291syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))) → ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧))
293292ex 412 . . . . . . . . . . . . . . 15 (𝑛 ∈ ω → ((𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) → ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧)))
294293exlimdv 1934 . . . . . . . . . . . . . 14 (𝑛 ∈ ω → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) → ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧)))
295 fvex 6835 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 𝑏) ∈ V
296100, 295ifex 4523 . . . . . . . . . . . . . . . . . . . . 21 if(𝑏 = ∅, 𝑦, (𝑔 𝑏)) ∈ V
297 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))
298296, 297fnmpti 6624 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) Fn suc suc suc 𝑛
299298a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) Fn suc suc suc 𝑛)
300 peano2 7820 . . . . . . . . . . . . . . . . . . . . . . . 24 (suc 𝑛 ∈ ω → suc suc 𝑛 ∈ ω)
301220, 300syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ω → suc suc 𝑛 ∈ ω)
3023013ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → suc suc 𝑛 ∈ ω)
303 nnord 7804 . . . . . . . . . . . . . . . . . . . . . 22 (suc suc 𝑛 ∈ ω → Ord suc suc 𝑛)
304302, 303syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → Ord suc suc 𝑛)
305 0elsuc 7765 . . . . . . . . . . . . . . . . . . . . 21 (Ord suc suc 𝑛 → ∅ ∈ suc suc suc 𝑛)
306304, 305syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → ∅ ∈ suc suc suc 𝑛)
307 iftrue 4478 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = ∅ → if(𝑏 = ∅, 𝑦, (𝑔 𝑏)) = 𝑦)
308307, 297, 100fvmpt 6929 . . . . . . . . . . . . . . . . . . . 20 (∅ ∈ suc suc suc 𝑛 → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘∅) = 𝑦)
309306, 308syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘∅) = 𝑦)
310264sucid 6390 . . . . . . . . . . . . . . . . . . . . 21 suc suc 𝑛 ∈ suc suc suc 𝑛
311 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = suc suc 𝑛 → (𝑏 = ∅ ↔ suc suc 𝑛 = ∅))
312 unieq 4867 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = suc suc 𝑛 𝑏 = suc suc 𝑛)
313312fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = suc suc 𝑛 → (𝑔 𝑏) = (𝑔 suc suc 𝑛))
314311, 313ifbieq2d 4499 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = suc suc 𝑛 → if(𝑏 = ∅, 𝑦, (𝑔 𝑏)) = if(suc suc 𝑛 = ∅, 𝑦, (𝑔 suc suc 𝑛)))
315 nsuceq0 6391 . . . . . . . . . . . . . . . . . . . . . . . . 25 suc suc 𝑛 ≠ ∅
316315neii 2930 . . . . . . . . . . . . . . . . . . . . . . . 24 ¬ suc suc 𝑛 = ∅
317316iffalsei 4482 . . . . . . . . . . . . . . . . . . . . . . 23 if(suc suc 𝑛 = ∅, 𝑦, (𝑔 suc suc 𝑛)) = (𝑔 suc suc 𝑛)
318314, 317eqtrdi 2782 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = suc suc 𝑛 → if(𝑏 = ∅, 𝑦, (𝑔 𝑏)) = (𝑔 suc suc 𝑛))
319 fvex 6835 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 suc suc 𝑛) ∈ V
320318, 297, 319fvmpt 6929 . . . . . . . . . . . . . . . . . . . . 21 (suc suc 𝑛 ∈ suc suc suc 𝑛 → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc suc 𝑛) = (𝑔 suc suc 𝑛))
321310, 320mp1i 13 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc suc 𝑛) = (𝑔 suc suc 𝑛))
3222203ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → suc 𝑛 ∈ ω)
323322, 222syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → Ord suc 𝑛)
324 ordunisuc 7762 . . . . . . . . . . . . . . . . . . . . . 22 (Ord suc 𝑛 suc suc 𝑛 = suc 𝑛)
325323, 324syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → suc suc 𝑛 = suc 𝑛)
326325fveq2d 6826 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → (𝑔 suc suc 𝑛) = (𝑔‘suc 𝑛))
327 simp22r 1294 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → (𝑔‘suc 𝑛) = 𝑥)
328321, 326, 3273eqtrd 2770 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc suc 𝑛) = 𝑥)
329 simpl3 1194 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 = ∅) → 𝑦(𝑅𝐴)𝑧)
330 iftrue 4478 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = ∅ → if(𝑎 = ∅, 𝑦, (𝑔 𝑎)) = 𝑦)
331330adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 = ∅) → if(𝑎 = ∅, 𝑦, (𝑔 𝑎)) = 𝑦)
332 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = ∅ → (𝑔𝑎) = (𝑔‘∅))
333 simp22l 1293 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → (𝑔‘∅) = 𝑧)
334332, 333sylan9eqr 2788 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 = ∅) → (𝑔𝑎) = 𝑧)
335329, 331, 3343brtr4d 5121 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 = ∅) → if(𝑎 = ∅, 𝑦, (𝑔 𝑎))(𝑅𝐴)(𝑔𝑎))
336335ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → (𝑎 = ∅ → if(𝑎 = ∅, 𝑦, (𝑔 𝑎))(𝑅𝐴)(𝑔𝑎)))
337336adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → (𝑎 = ∅ → if(𝑎 = ∅, 𝑦, (𝑔 𝑎))(𝑅𝐴)(𝑔𝑎)))
338 ordsucelsuc 7752 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Ord suc 𝑛 → (𝑏 ∈ suc 𝑛 ↔ suc 𝑏 ∈ suc suc 𝑛))
339323, 338syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → (𝑏 ∈ suc 𝑛 ↔ suc 𝑏 ∈ suc suc 𝑛))
340 elnn 7807 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑏 ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω) → 𝑏 ∈ ω)
341322, 340sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑏 ∈ suc 𝑛 ∧ (𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧)) → 𝑏 ∈ ω)
342341ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → 𝑏 ∈ ω)
343 nnord 7804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑏 ∈ ω → Ord 𝑏)
344342, 343syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → Ord 𝑏)
345 ordunisuc 7762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (Ord 𝑏 suc 𝑏 = 𝑏)
346344, 345syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → suc 𝑏 = 𝑏)
347346fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → (𝑔 suc 𝑏) = (𝑔𝑏))
348 simp23 1209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐))
349 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = 𝑏 → (𝑔𝑐) = (𝑔𝑏))
350 suceq 6374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = 𝑏 → suc 𝑐 = suc 𝑏)
351350fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = 𝑏 → (𝑔‘suc 𝑐) = (𝑔‘suc 𝑏))
352349, 351breq12d 5102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑏 → ((𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐) ↔ (𝑔𝑏)(𝑅𝐴)(𝑔‘suc 𝑏)))
353352rspcv 3568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 ∈ suc 𝑛 → (∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐) → (𝑔𝑏)(𝑅𝐴)(𝑔‘suc 𝑏)))
354348, 353mpan9 506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → (𝑔𝑏)(𝑅𝐴)(𝑔‘suc 𝑏))
355347, 354eqbrtrd 5111 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → (𝑔 suc 𝑏)(𝑅𝐴)(𝑔‘suc 𝑏))
356355ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → (𝑏 ∈ suc 𝑛 → (𝑔 suc 𝑏)(𝑅𝐴)(𝑔‘suc 𝑏)))
357339, 356sylbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → (suc 𝑏 ∈ suc suc 𝑛 → (𝑔 suc 𝑏)(𝑅𝐴)(𝑔‘suc 𝑏)))
358357imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ suc 𝑏 ∈ suc suc 𝑛) → (𝑔 suc 𝑏)(𝑅𝐴)(𝑔‘suc 𝑏))
359 eleq1 2819 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = suc 𝑏 → (𝑎 ∈ suc suc 𝑛 ↔ suc 𝑏 ∈ suc suc 𝑛))
360359anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = suc 𝑏 → (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) ↔ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ suc 𝑏 ∈ suc suc 𝑛)))
361 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = suc 𝑏 → (𝑎 = ∅ ↔ suc 𝑏 = ∅))
362 unieq 4867 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎 = suc 𝑏 𝑎 = suc 𝑏)
363362fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = suc 𝑏 → (𝑔 𝑎) = (𝑔 suc 𝑏))
364361, 363ifbieq2d 4499 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = suc 𝑏 → if(𝑎 = ∅, 𝑦, (𝑔 𝑎)) = if(suc 𝑏 = ∅, 𝑦, (𝑔 suc 𝑏)))
365 nsuceq0 6391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 suc 𝑏 ≠ ∅
366365neii 2930 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ¬ suc 𝑏 = ∅
367366iffalsei 4482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 if(suc 𝑏 = ∅, 𝑦, (𝑔 suc 𝑏)) = (𝑔 suc 𝑏)
368364, 367eqtrdi 2782 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = suc 𝑏 → if(𝑎 = ∅, 𝑦, (𝑔 𝑎)) = (𝑔 suc 𝑏))
369 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = suc 𝑏 → (𝑔𝑎) = (𝑔‘suc 𝑏))
370368, 369breq12d 5102 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = suc 𝑏 → (if(𝑎 = ∅, 𝑦, (𝑔 𝑎))(𝑅𝐴)(𝑔𝑎) ↔ (𝑔 suc 𝑏)(𝑅𝐴)(𝑔‘suc 𝑏)))
371360, 370imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = suc 𝑏 → ((((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → if(𝑎 = ∅, 𝑦, (𝑔 𝑎))(𝑅𝐴)(𝑔𝑎)) ↔ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ suc 𝑏 ∈ suc suc 𝑛) → (𝑔 suc 𝑏)(𝑅𝐴)(𝑔‘suc 𝑏))))
372358, 371mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = suc 𝑏 → (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → if(𝑎 = ∅, 𝑦, (𝑔 𝑎))(𝑅𝐴)(𝑔𝑎)))
373372com12 32 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → (𝑎 = suc 𝑏 → if(𝑎 = ∅, 𝑦, (𝑔 𝑎))(𝑅𝐴)(𝑔𝑎)))
374373rexlimdvw 3138 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → (∃𝑏 ∈ ω 𝑎 = suc 𝑏 → if(𝑎 = ∅, 𝑦, (𝑔 𝑎))(𝑅𝐴)(𝑔𝑎)))
375 elnn 7807 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ suc suc 𝑛 ∧ suc suc 𝑛 ∈ ω) → 𝑎 ∈ ω)
376375ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . 24 ((suc suc 𝑛 ∈ ω ∧ 𝑎 ∈ suc suc 𝑛) → 𝑎 ∈ ω)
377302, 376sylan 580 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → 𝑎 ∈ ω)
378 nn0suc 7824 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ω → (𝑎 = ∅ ∨ ∃𝑏 ∈ ω 𝑎 = suc 𝑏))
379377, 378syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → (𝑎 = ∅ ∨ ∃𝑏 ∈ ω 𝑎 = suc 𝑏))
380337, 374, 379mpjaod 860 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → if(𝑎 = ∅, 𝑦, (𝑔 𝑎))(𝑅𝐴)(𝑔𝑎))
381 elelsuc 6381 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ suc suc 𝑛𝑎 ∈ suc suc suc 𝑛)
382 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = 𝑎 → (𝑏 = ∅ ↔ 𝑎 = ∅))
383 unieq 4867 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = 𝑎 𝑏 = 𝑎)
384383fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = 𝑎 → (𝑔 𝑏) = (𝑔 𝑎))
385382, 384ifbieq2d 4499 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑎 → if(𝑏 = ∅, 𝑦, (𝑔 𝑏)) = if(𝑎 = ∅, 𝑦, (𝑔 𝑎)))
386 fvex 6835 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑔 𝑎) ∈ V
387100, 386ifex 4523 . . . . . . . . . . . . . . . . . . . . . . . 24 if(𝑎 = ∅, 𝑦, (𝑔 𝑎)) ∈ V
388385, 297, 387fvmpt 6929 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ suc suc suc 𝑛 → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘𝑎) = if(𝑎 = ∅, 𝑦, (𝑔 𝑎)))
389381, 388syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ suc suc 𝑛 → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘𝑎) = if(𝑎 = ∅, 𝑦, (𝑔 𝑎)))
390389adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘𝑎) = if(𝑎 = ∅, 𝑦, (𝑔 𝑎)))
391 ordsucelsuc 7752 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Ord suc suc 𝑛 → (𝑎 ∈ suc suc 𝑛 ↔ suc 𝑎 ∈ suc suc suc 𝑛))
392304, 391syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → (𝑎 ∈ suc suc 𝑛 ↔ suc 𝑎 ∈ suc suc suc 𝑛))
393392biimpa 476 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → suc 𝑎 ∈ suc suc suc 𝑛)
394 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = suc 𝑎 → (𝑏 = ∅ ↔ suc 𝑎 = ∅))
395 unieq 4867 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 = suc 𝑎 𝑏 = suc 𝑎)
396395fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = suc 𝑎 → (𝑔 𝑏) = (𝑔 suc 𝑎))
397394, 396ifbieq2d 4499 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = suc 𝑎 → if(𝑏 = ∅, 𝑦, (𝑔 𝑏)) = if(suc 𝑎 = ∅, 𝑦, (𝑔 suc 𝑎)))
398 nsuceq0 6391 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 suc 𝑎 ≠ ∅
399398neii 2930 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ¬ suc 𝑎 = ∅
400399iffalsei 4482 . . . . . . . . . . . . . . . . . . . . . . . . 25 if(suc 𝑎 = ∅, 𝑦, (𝑔 suc 𝑎)) = (𝑔 suc 𝑎)
401397, 400eqtrdi 2782 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = suc 𝑎 → if(𝑏 = ∅, 𝑦, (𝑔 𝑏)) = (𝑔 suc 𝑎))
402 fvex 6835 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔 suc 𝑎) ∈ V
403401, 297, 402fvmpt 6929 . . . . . . . . . . . . . . . . . . . . . . 23 (suc 𝑎 ∈ suc suc suc 𝑛 → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc 𝑎) = (𝑔 suc 𝑎))
404393, 403syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc 𝑎) = (𝑔 suc 𝑎))
405 nnord 7804 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ ω → Ord 𝑎)
406377, 405syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → Ord 𝑎)
407 ordunisuc 7762 . . . . . . . . . . . . . . . . . . . . . . . 24 (Ord 𝑎 suc 𝑎 = 𝑎)
408406, 407syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → suc 𝑎 = 𝑎)
409408fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → (𝑔 suc 𝑎) = (𝑔𝑎))
410404, 409eqtrd 2766 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc 𝑎) = (𝑔𝑎))
411380, 390, 4103brtr4d 5121 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘𝑎)(𝑅𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc 𝑎))
412411ralrimiva 3124 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → ∀𝑎 ∈ suc suc 𝑛((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘𝑎)(𝑅𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc 𝑎))
413264sucex 7739 . . . . . . . . . . . . . . . . . . . . 21 suc suc suc 𝑛 ∈ V
414413mptex 7157 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) ∈ V
415 fneq1 6572 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → (𝑓 Fn suc suc suc 𝑛 ↔ (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) Fn suc suc suc 𝑛))
416 fveq1 6821 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → (𝑓‘∅) = ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘∅))
417416eqeq1d 2733 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → ((𝑓‘∅) = 𝑦 ↔ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘∅) = 𝑦))
418 fveq1 6821 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → (𝑓‘suc suc 𝑛) = ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc suc 𝑛))
419418eqeq1d 2733 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → ((𝑓‘suc suc 𝑛) = 𝑥 ↔ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc suc 𝑛) = 𝑥))
420417, 419anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ↔ (((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘∅) = 𝑦 ∧ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc suc 𝑛) = 𝑥)))
421 fveq1 6821 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → (𝑓𝑎) = ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘𝑎))
422 fveq1 6821 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → (𝑓‘suc 𝑎) = ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc 𝑎))
423421, 422breq12d 5102 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → ((𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘𝑎)(𝑅𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc 𝑎)))
424423ralbidv 3155 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → (∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc suc 𝑛((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘𝑎)(𝑅𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc 𝑎)))
425415, 420, 4243anbi123d 1438 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) → ((𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) Fn suc suc suc 𝑛 ∧ (((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘∅) = 𝑦 ∧ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘𝑎)(𝑅𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc 𝑎))))
426414, 425spcev 3556 . . . . . . . . . . . . . . . . . . 19 (((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏))) Fn suc suc suc 𝑛 ∧ (((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘∅) = 𝑦 ∧ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘𝑎)(𝑅𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔 𝑏)))‘suc 𝑎)) → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)))
427299, 309, 328, 412, 426syl121anc 1377 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)))
4284273exp 1119 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ω → ((𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) → (𝑦(𝑅𝐴)𝑧 → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)))))
429428exlimdv 1934 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ω → (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) → (𝑦(𝑅𝐴)𝑧 → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)))))
430429impd 410 . . . . . . . . . . . . . . 15 (𝑛 ∈ ω → ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))))
431430exlimdv 1934 . . . . . . . . . . . . . 14 (𝑛 ∈ ω → (∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎))))
432294, 431impbid 212 . . . . . . . . . . . . 13 (𝑛 ∈ ω → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧)))
433 vex 3440 . . . . . . . . . . . . . . . 16 𝑧 ∈ V
434433brresi 5936 . . . . . . . . . . . . . . 15 (𝑦(𝑅𝐴)𝑧 ↔ (𝑦𝐴𝑦𝑅𝑧))
435434anbi2i 623 . . . . . . . . . . . . . 14 ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧)))
436435exbii 1849 . . . . . . . . . . . . 13 (∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅𝐴)𝑧) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧)))
437432, 436bitrdi 287 . . . . . . . . . . . 12 (𝑛 ∈ ω → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))
438215, 437vtoclg 3507 . . . . . . . . . . 11 (𝑋𝐴 → (𝑛 ∈ ω → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧)))))
439438impcom 407 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ 𝑋𝐴) → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))
440439adantrl 716 . . . . . . . . 9 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴)) → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))
4414403adant3 1132 . . . . . . . 8 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛))) → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦𝐴𝑦𝑅𝑧))))
442175, 203, 4413bitr4rd 312 . . . . . . 7 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛))) → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛)))
443442alrimiv 1928 . . . . . 6 ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴𝑋𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛))) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛)))
4444433exp 1119 . . . . 5 (𝑛 ∈ ω → ((𝑅 Se 𝐴𝑋𝐴) → (∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛)) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛)))))
445444a2d 29 . . . 4 (𝑛 ∈ ω → (((𝑅 Se 𝐴𝑋𝐴) → ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔𝑐)(𝑅𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹𝑛))) → ((𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛)))))
44626, 67, 81, 95, 164, 445finds 7826 . . 3 (𝑁 ∈ ω → ((𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑁))))
4474463impib 1116 . 2 ((𝑁 ∈ ω ∧ 𝑅 Se 𝐴𝑋𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑁)))
44844719.21bi 2192 1 ((𝑁 ∈ ω ∧ 𝑅 Se 𝐴𝑋𝐴) → (∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓𝑎)(𝑅𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086  wal 1539   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  wss 3897  c0 4280  ifcif 4472  {csn 4573   cuni 4856   ciun 4939   class class class wbr 5089  cmpt 5170   Se wse 5565  cres 5616  Predcpred 6247  Ord word 6305  Oncon0 6306  suc csuc 6308   Fn wfn 6476  cfv 6481  ωcom 7796  reccrdg 8328  1oc1o 8378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385
This theorem is referenced by:  ttrclse  9617
  Copyright terms: Public domain W3C validator