Step | Hyp | Ref
| Expression |
1 | | suceq 6313 |
. . . . . . . . . . . 12
⊢ (𝑚 = ∅ → suc 𝑚 = suc ∅) |
2 | | df-1o 8244 |
. . . . . . . . . . . 12
⊢
1o = suc ∅ |
3 | 1, 2 | eqtr4di 2798 |
. . . . . . . . . . 11
⊢ (𝑚 = ∅ → suc 𝑚 =
1o) |
4 | | suceq 6313 |
. . . . . . . . . . 11
⊢ (suc
𝑚 = 1o →
suc suc 𝑚 = suc
1o) |
5 | 3, 4 | syl 17 |
. . . . . . . . . 10
⊢ (𝑚 = ∅ → suc suc 𝑚 = suc
1o) |
6 | 5 | fneq2d 6508 |
. . . . . . . . 9
⊢ (𝑚 = ∅ → (𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc 1o)) |
7 | 3 | fveqeq2d 6761 |
. . . . . . . . . 10
⊢ (𝑚 = ∅ → ((𝑓‘suc 𝑚) = 𝑋 ↔ (𝑓‘1o) = 𝑋)) |
8 | 7 | anbi2d 632 |
. . . . . . . . 9
⊢ (𝑚 = ∅ → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋))) |
9 | | df1o2 8256 |
. . . . . . . . . . . 12
⊢
1o = {∅} |
10 | 3, 9 | eqtrdi 2796 |
. . . . . . . . . . 11
⊢ (𝑚 = ∅ → suc 𝑚 = {∅}) |
11 | 10 | raleqdv 3340 |
. . . . . . . . . 10
⊢ (𝑚 = ∅ → (∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ {∅} (𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) |
12 | | 0ex 5224 |
. . . . . . . . . . 11
⊢ ∅
∈ V |
13 | | fveq2 6753 |
. . . . . . . . . . . 12
⊢ (𝑎 = ∅ → (𝑓‘𝑎) = (𝑓‘∅)) |
14 | | suceq 6313 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = ∅ → suc 𝑎 = suc ∅) |
15 | 14, 2 | eqtr4di 2798 |
. . . . . . . . . . . . 13
⊢ (𝑎 = ∅ → suc 𝑎 =
1o) |
16 | 15 | fveq2d 6757 |
. . . . . . . . . . . 12
⊢ (𝑎 = ∅ → (𝑓‘suc 𝑎) = (𝑓‘1o)) |
17 | 13, 16 | breq12d 5083 |
. . . . . . . . . . 11
⊢ (𝑎 = ∅ → ((𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o))) |
18 | 12, 17 | ralsn 4614 |
. . . . . . . . . 10
⊢
(∀𝑎 ∈
{∅} (𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) |
19 | 11, 18 | bitrdi 290 |
. . . . . . . . 9
⊢ (𝑚 = ∅ → (∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o))) |
20 | 6, 8, 19 | 3anbi123d 1438 |
. . . . . . . 8
⊢ (𝑚 = ∅ → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)))) |
21 | 20 | exbidv 1929 |
. . . . . . 7
⊢ (𝑚 = ∅ → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)))) |
22 | | fveq2 6753 |
. . . . . . . 8
⊢ (𝑚 = ∅ → (𝐹‘𝑚) = (𝐹‘∅)) |
23 | 22 | eleq2d 2825 |
. . . . . . 7
⊢ (𝑚 = ∅ → (𝑦 ∈ (𝐹‘𝑚) ↔ 𝑦 ∈ (𝐹‘∅))) |
24 | 21, 23 | bibi12d 349 |
. . . . . 6
⊢ (𝑚 = ∅ → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚)) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ 𝑦 ∈ (𝐹‘∅)))) |
25 | 24 | albidv 1928 |
. . . . 5
⊢ (𝑚 = ∅ → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚)) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ 𝑦 ∈ (𝐹‘∅)))) |
26 | 25 | imbi2d 344 |
. . . 4
⊢ (𝑚 = ∅ → (((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚))) ↔ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ 𝑦 ∈ (𝐹‘∅))))) |
27 | | suceq 6313 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑛 → suc 𝑚 = suc 𝑛) |
28 | | suceq 6313 |
. . . . . . . . . . . . 13
⊢ (suc
𝑚 = suc 𝑛 → suc suc 𝑚 = suc suc 𝑛) |
29 | 27, 28 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → suc suc 𝑚 = suc suc 𝑛) |
30 | 29 | fneq2d 6508 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc suc 𝑛)) |
31 | 27 | fveqeq2d 6761 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → ((𝑓‘suc 𝑚) = 𝑋 ↔ (𝑓‘suc 𝑛) = 𝑋)) |
32 | 31 | anbi2d 632 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋))) |
33 | 27 | raleqdv 3340 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) |
34 | | fveq2 6753 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑐 → (𝑓‘𝑎) = (𝑓‘𝑐)) |
35 | | suceq 6313 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑐 → suc 𝑎 = suc 𝑐) |
36 | 35 | fveq2d 6757 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑐 → (𝑓‘suc 𝑎) = (𝑓‘suc 𝑐)) |
37 | 34, 36 | breq12d 5083 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑐 → ((𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑐))) |
38 | 37 | cbvralvw 3373 |
. . . . . . . . . . . 12
⊢
(∀𝑎 ∈
suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑐 ∈ suc 𝑛(𝑓‘𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑐)) |
39 | 33, 38 | bitrdi 290 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑐 ∈ suc 𝑛(𝑓‘𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑐))) |
40 | 30, 32, 39 | 3anbi123d 1438 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑓‘𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑐)))) |
41 | 40 | exbidv 1929 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑓‘𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑐)))) |
42 | | fneq1 6505 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (𝑓 Fn suc suc 𝑛 ↔ 𝑔 Fn suc suc 𝑛)) |
43 | | fveq1 6752 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝑓‘∅) = (𝑔‘∅)) |
44 | 43 | eqeq1d 2741 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝑓‘∅) = 𝑦 ↔ (𝑔‘∅) = 𝑦)) |
45 | | fveq1 6752 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝑓‘suc 𝑛) = (𝑔‘suc 𝑛)) |
46 | 45 | eqeq1d 2741 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝑓‘suc 𝑛) = 𝑋 ↔ (𝑔‘suc 𝑛) = 𝑋)) |
47 | 44, 46 | anbi12d 634 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋) ↔ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋))) |
48 | | fveq1 6752 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝑓‘𝑐) = (𝑔‘𝑐)) |
49 | | fveq1 6752 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝑓‘suc 𝑐) = (𝑔‘suc 𝑐)) |
50 | 48, 49 | breq12d 5083 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝑓‘𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑐) ↔ (𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐))) |
51 | 50 | ralbidv 3121 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (∀𝑐 ∈ suc 𝑛(𝑓‘𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑐) ↔ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐))) |
52 | 42, 47, 51 | 3anbi123d 1438 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → ((𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑓‘𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑐)) ↔ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)))) |
53 | 52 | cbvexvw 2045 |
. . . . . . . . 9
⊢
(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑓‘𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑐)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐))) |
54 | 41, 53 | bitrdi 290 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)))) |
55 | | fveq2 6753 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (𝐹‘𝑚) = (𝐹‘𝑛)) |
56 | 55 | eleq2d 2825 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (𝑦 ∈ (𝐹‘𝑚) ↔ 𝑦 ∈ (𝐹‘𝑛))) |
57 | 54, 56 | bibi12d 349 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚)) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑦 ∈ (𝐹‘𝑛)))) |
58 | 57 | albidv 1928 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚)) ↔ ∀𝑦(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑦 ∈ (𝐹‘𝑛)))) |
59 | | eqeq2 2751 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → ((𝑔‘∅) = 𝑦 ↔ (𝑔‘∅) = 𝑧)) |
60 | 59 | anbi1d 633 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ↔ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋))) |
61 | 60 | 3anbi2d 1443 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → ((𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)))) |
62 | 61 | exbidv 1929 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)))) |
63 | | eleq1 2827 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝑦 ∈ (𝐹‘𝑛) ↔ 𝑧 ∈ (𝐹‘𝑛))) |
64 | 62, 63 | bibi12d 349 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑦 ∈ (𝐹‘𝑛)) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛)))) |
65 | 64 | cbvalvw 2044 |
. . . . . 6
⊢
(∀𝑦(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑦 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑦 ∈ (𝐹‘𝑛)) ↔ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛))) |
66 | 58, 65 | bitrdi 290 |
. . . . 5
⊢ (𝑚 = 𝑛 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚)) ↔ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛)))) |
67 | 66 | imbi2d 344 |
. . . 4
⊢ (𝑚 = 𝑛 → (((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚))) ↔ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛))))) |
68 | | suceq 6313 |
. . . . . . . . . . 11
⊢ (𝑚 = suc 𝑛 → suc 𝑚 = suc suc 𝑛) |
69 | | suceq 6313 |
. . . . . . . . . . 11
⊢ (suc
𝑚 = suc suc 𝑛 → suc suc 𝑚 = suc suc suc 𝑛) |
70 | 68, 69 | syl 17 |
. . . . . . . . . 10
⊢ (𝑚 = suc 𝑛 → suc suc 𝑚 = suc suc suc 𝑛) |
71 | 70 | fneq2d 6508 |
. . . . . . . . 9
⊢ (𝑚 = suc 𝑛 → (𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc suc suc 𝑛)) |
72 | 68 | fveqeq2d 6761 |
. . . . . . . . . 10
⊢ (𝑚 = suc 𝑛 → ((𝑓‘suc 𝑚) = 𝑋 ↔ (𝑓‘suc suc 𝑛) = 𝑋)) |
73 | 72 | anbi2d 632 |
. . . . . . . . 9
⊢ (𝑚 = suc 𝑛 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋))) |
74 | 68 | raleqdv 3340 |
. . . . . . . . 9
⊢ (𝑚 = suc 𝑛 → (∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) |
75 | 71, 73, 74 | 3anbi123d 1438 |
. . . . . . . 8
⊢ (𝑚 = suc 𝑛 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)))) |
76 | 75 | exbidv 1929 |
. . . . . . 7
⊢ (𝑚 = suc 𝑛 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)))) |
77 | | fveq2 6753 |
. . . . . . . 8
⊢ (𝑚 = suc 𝑛 → (𝐹‘𝑚) = (𝐹‘suc 𝑛)) |
78 | 77 | eleq2d 2825 |
. . . . . . 7
⊢ (𝑚 = suc 𝑛 → (𝑦 ∈ (𝐹‘𝑚) ↔ 𝑦 ∈ (𝐹‘suc 𝑛))) |
79 | 76, 78 | bibi12d 349 |
. . . . . 6
⊢ (𝑚 = suc 𝑛 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚)) ↔ (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛)))) |
80 | 79 | albidv 1928 |
. . . . 5
⊢ (𝑚 = suc 𝑛 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚)) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛)))) |
81 | 80 | imbi2d 344 |
. . . 4
⊢ (𝑚 = suc 𝑛 → (((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚))) ↔ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛))))) |
82 | | suceq 6313 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑁 → suc 𝑚 = suc 𝑁) |
83 | | suceq 6313 |
. . . . . . . . . . 11
⊢ (suc
𝑚 = suc 𝑁 → suc suc 𝑚 = suc suc 𝑁) |
84 | 82, 83 | syl 17 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑁 → suc suc 𝑚 = suc suc 𝑁) |
85 | 84 | fneq2d 6508 |
. . . . . . . . 9
⊢ (𝑚 = 𝑁 → (𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc suc 𝑁)) |
86 | 82 | fveqeq2d 6761 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑁 → ((𝑓‘suc 𝑚) = 𝑋 ↔ (𝑓‘suc 𝑁) = 𝑋)) |
87 | 86 | anbi2d 632 |
. . . . . . . . 9
⊢ (𝑚 = 𝑁 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋))) |
88 | 82 | raleqdv 3340 |
. . . . . . . . 9
⊢ (𝑚 = 𝑁 → (∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑁(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) |
89 | 85, 87, 88 | 3anbi123d 1438 |
. . . . . . . 8
⊢ (𝑚 = 𝑁 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)))) |
90 | 89 | exbidv 1929 |
. . . . . . 7
⊢ (𝑚 = 𝑁 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)))) |
91 | | fveq2 6753 |
. . . . . . . 8
⊢ (𝑚 = 𝑁 → (𝐹‘𝑚) = (𝐹‘𝑁)) |
92 | 91 | eleq2d 2825 |
. . . . . . 7
⊢ (𝑚 = 𝑁 → (𝑦 ∈ (𝐹‘𝑚) ↔ 𝑦 ∈ (𝐹‘𝑁))) |
93 | 90, 92 | bibi12d 349 |
. . . . . 6
⊢ (𝑚 = 𝑁 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚)) ↔ (∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑁)))) |
94 | 93 | albidv 1928 |
. . . . 5
⊢ (𝑚 = 𝑁 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚)) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑁)))) |
95 | 94 | imbi2d 344 |
. . . 4
⊢ (𝑚 = 𝑁 → (((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑚) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑚(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑚))) ↔ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑁))))) |
96 | | eqeq2 2751 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑋 → ((𝑓‘1o) = 𝑥 ↔ (𝑓‘1o) = 𝑋)) |
97 | 96 | anbi2d 632 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋))) |
98 | 97 | anbi2d 632 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥)) ↔ (𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)))) |
99 | 98 | exbidv 1929 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥)) ↔ ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)))) |
100 | | vex 3427 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
101 | | vex 3427 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
102 | 100, 101 | ifex 4506 |
. . . . . . . . . . . 12
⊢ if(𝑏 = ∅, 𝑦, 𝑥) ∈ V |
103 | | eqid 2739 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ suc 1o
↦ if(𝑏 = ∅,
𝑦, 𝑥)) = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) |
104 | 102, 103 | fnmpti 6557 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ suc 1o
↦ if(𝑏 = ∅,
𝑦, 𝑥)) Fn suc 1o |
105 | | equid 2020 |
. . . . . . . . . . . 12
⊢ 𝑦 = 𝑦 |
106 | | equid 2020 |
. . . . . . . . . . . 12
⊢ 𝑥 = 𝑥 |
107 | 105, 106 | pm3.2i 474 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑦 ∧ 𝑥 = 𝑥) |
108 | | 1oex 8257 |
. . . . . . . . . . . . . 14
⊢
1o ∈ V |
109 | 108 | sucex 7630 |
. . . . . . . . . . . . 13
⊢ suc
1o ∈ V |
110 | 109 | mptex 7078 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ suc 1o
↦ if(𝑏 = ∅,
𝑦, 𝑥)) ∈ V |
111 | | fneq1 6505 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (𝑓 Fn suc 1o ↔ (𝑏 ∈ suc 1o
↦ if(𝑏 = ∅,
𝑦, 𝑥)) Fn suc 1o)) |
112 | | fveq1 6752 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (𝑓‘∅) = ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))‘∅)) |
113 | | 1on 8251 |
. . . . . . . . . . . . . . . . . 18
⊢
1o ∈ On |
114 | 113 | onordi 6353 |
. . . . . . . . . . . . . . . . 17
⊢ Ord
1o |
115 | | 0elsuc 7654 |
. . . . . . . . . . . . . . . . 17
⊢ (Ord
1o → ∅ ∈ suc 1o) |
116 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = ∅ → if(𝑏 = ∅, 𝑦, 𝑥) = 𝑦) |
117 | 116, 103,
100 | fvmpt 6854 |
. . . . . . . . . . . . . . . . 17
⊢ (∅
∈ suc 1o → ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))‘∅) = 𝑦) |
118 | 114, 115,
117 | mp2b 10 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 ∈ suc 1o
↦ if(𝑏 = ∅,
𝑦, 𝑥))‘∅) = 𝑦 |
119 | 112, 118 | eqtrdi 2796 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (𝑓‘∅) = 𝑦) |
120 | 119 | eqeq1d 2741 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → ((𝑓‘∅) = 𝑦 ↔ 𝑦 = 𝑦)) |
121 | | fveq1 6752 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (𝑓‘1o) = ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))‘1o)) |
122 | 108 | sucid 6327 |
. . . . . . . . . . . . . . . . 17
⊢
1o ∈ suc 1o |
123 | | eqeq1 2743 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = 1o → (𝑏 = ∅ ↔ 1o
= ∅)) |
124 | 123 | ifbid 4479 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 1o → if(𝑏 = ∅, 𝑦, 𝑥) = if(1o = ∅, 𝑦, 𝑥)) |
125 | | 1n0 8263 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
1o ≠ ∅ |
126 | 125 | neii 2945 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ¬
1o = ∅ |
127 | 126 | iffalsei 4466 |
. . . . . . . . . . . . . . . . . . 19
⊢
if(1o = ∅, 𝑦, 𝑥) = 𝑥 |
128 | 124, 127 | eqtrdi 2796 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 1o → if(𝑏 = ∅, 𝑦, 𝑥) = 𝑥) |
129 | 128, 103,
101 | fvmpt 6854 |
. . . . . . . . . . . . . . . . 17
⊢
(1o ∈ suc 1o → ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥))‘1o) = 𝑥) |
130 | 122, 129 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 ∈ suc 1o
↦ if(𝑏 = ∅,
𝑦, 𝑥))‘1o) = 𝑥 |
131 | 121, 130 | eqtrdi 2796 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (𝑓‘1o) = 𝑥) |
132 | 131 | eqeq1d 2741 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → ((𝑓‘1o) = 𝑥 ↔ 𝑥 = 𝑥)) |
133 | 120, 132 | anbi12d 634 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥) ↔ (𝑦 = 𝑦 ∧ 𝑥 = 𝑥))) |
134 | 111, 133 | anbi12d 634 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) → ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥)) ↔ ((𝑏 ∈ suc 1o ↦ if(𝑏 = ∅, 𝑦, 𝑥)) Fn suc 1o ∧ (𝑦 = 𝑦 ∧ 𝑥 = 𝑥)))) |
135 | 110, 134 | spcev 3536 |
. . . . . . . . . . 11
⊢ (((𝑏 ∈ suc 1o
↦ if(𝑏 = ∅,
𝑦, 𝑥)) Fn suc 1o ∧ (𝑦 = 𝑦 ∧ 𝑥 = 𝑥)) → ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥))) |
136 | 104, 107,
135 | mp2an 692 |
. . . . . . . . . 10
⊢
∃𝑓(𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑥)) |
137 | 99, 136 | vtoclg 3496 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝐴 → ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋))) |
138 | 137 | adantl 485 |
. . . . . . . 8
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋))) |
139 | 138 | biantrurd 536 |
. . . . . . 7
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑋) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑋)))) |
140 | 100 | elpred 6205 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐴 → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑋))) |
141 | 140 | adantl 485 |
. . . . . . 7
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑋))) |
142 | | brres 5886 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝐴 → (𝑦(𝑅 ↾ 𝐴)𝑋 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑋))) |
143 | 142 | adantl 485 |
. . . . . . . 8
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑦(𝑅 ↾ 𝐴)𝑋 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑋))) |
144 | 143 | anbi2d 632 |
. . . . . . 7
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ((∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑋) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑋)))) |
145 | 139, 141,
144 | 3bitr4rd 315 |
. . . . . 6
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ((∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑋) ↔ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑋))) |
146 | | df-3an 1091 |
. . . . . . . . . 10
⊢ ((𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ ((𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o))) |
147 | | breq12 5075 |
. . . . . . . . . . . 12
⊢ (((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) → ((𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o) ↔ 𝑦(𝑅 ↾ 𝐴)𝑋)) |
148 | 147 | adantl 485 |
. . . . . . . . . . 11
⊢ ((𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) → ((𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o) ↔ 𝑦(𝑅 ↾ 𝐴)𝑋)) |
149 | 148 | pm5.32i 578 |
. . . . . . . . . 10
⊢ (((𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ ((𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑋)) |
150 | 146, 149 | bitri 278 |
. . . . . . . . 9
⊢ ((𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ ((𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑋)) |
151 | 150 | exbii 1855 |
. . . . . . . 8
⊢
(∃𝑓(𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ ∃𝑓((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑋)) |
152 | | 19.41v 1958 |
. . . . . . . 8
⊢
(∃𝑓((𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑋) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑋)) |
153 | 151, 152 | bitri 278 |
. . . . . . 7
⊢
(∃𝑓(𝑓 Fn suc 1o ∧
((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑋)) |
154 | 153 | a1i 11 |
. . . . . 6
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑋))) |
155 | | ttrclselem.1 |
. . . . . . . . 9
⊢ 𝐹 = rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋)) |
156 | 155 | fveq1i 6754 |
. . . . . . . 8
⊢ (𝐹‘∅) = (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) |
157 | | setlikespec 6214 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V) |
158 | 157 | ancoms 462 |
. . . . . . . . 9
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V) |
159 | | rdg0g 8205 |
. . . . . . . . 9
⊢
(Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) = Pred(𝑅, 𝐴, 𝑋)) |
160 | 158, 159 | syl 17 |
. . . . . . . 8
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) = Pred(𝑅, 𝐴, 𝑋)) |
161 | 156, 160 | eqtrid 2791 |
. . . . . . 7
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹‘∅) = Pred(𝑅, 𝐴, 𝑋)) |
162 | 161 | eleq2d 2825 |
. . . . . 6
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑦 ∈ (𝐹‘∅) ↔ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑋))) |
163 | 145, 154,
162 | 3bitr4d 314 |
. . . . 5
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → (∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ 𝑦 ∈ (𝐹‘∅))) |
164 | 163 | alrimiv 1935 |
. . . 4
⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘1o) = 𝑋) ∧ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘1o)) ↔ 𝑦 ∈ (𝐹‘∅))) |
165 | | eliun 4925 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) ↔ ∃𝑧 ∈ (𝐹‘𝑛)𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)) |
166 | | df-rex 3070 |
. . . . . . . . . 10
⊢
(∃𝑧 ∈
(𝐹‘𝑛)𝑦 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ ∃𝑧(𝑧 ∈ (𝐹‘𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧))) |
167 | 165, 166 | bitri 278 |
. . . . . . . . 9
⊢ (𝑦 ∈ ∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) ↔ ∃𝑧(𝑧 ∈ (𝐹‘𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧))) |
168 | 100 | elpred 6205 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ V → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧))) |
169 | 168 | elv 3429 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ Pred(𝑅, 𝐴, 𝑧) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)) |
170 | 169 | anbi2i 626 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ (𝐹‘𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)) ↔ (𝑧 ∈ (𝐹‘𝑛) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧))) |
171 | | anbi1 635 |
. . . . . . . . . . . 12
⊢
((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛)) → ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)) ↔ (𝑧 ∈ (𝐹‘𝑛) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
172 | 170, 171 | bitr4id 293 |
. . . . . . . . . . 11
⊢
((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛)) → ((𝑧 ∈ (𝐹‘𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
173 | 172 | alexbii 1840 |
. . . . . . . . . 10
⊢
(∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛)) → (∃𝑧(𝑧 ∈ (𝐹‘𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
174 | 173 | 3ad2ant3 1137 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛))) → (∃𝑧(𝑧 ∈ (𝐹‘𝑛) ∧ 𝑦 ∈ Pred(𝑅, 𝐴, 𝑧)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
175 | 167, 174 | syl5bb 286 |
. . . . . . . 8
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛))) → (𝑦 ∈ ∪
𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
176 | | nnon 7690 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ω → 𝑛 ∈ On) |
177 | | fvex 6766 |
. . . . . . . . . . . 12
⊢ (𝐹‘𝑛) ∈ V |
178 | 155 | ttrclselem1 33686 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ω → (𝐹‘𝑛) ⊆ 𝐴) |
179 | 178 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ω ∧ 𝑅 Se 𝐴) → (𝐹‘𝑛) ⊆ 𝐴) |
180 | | dfse3 33555 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 Se 𝐴 ↔ ∀𝑧 ∈ 𝐴 Pred(𝑅, 𝐴, 𝑧) ∈ V) |
181 | 180 | biimpi 219 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 Se 𝐴 → ∀𝑧 ∈ 𝐴 Pred(𝑅, 𝐴, 𝑧) ∈ V) |
182 | 181 | adantl 485 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ω ∧ 𝑅 Se 𝐴) → ∀𝑧 ∈ 𝐴 Pred(𝑅, 𝐴, 𝑧) ∈ V) |
183 | | ssralv 3984 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑛) ⊆ 𝐴 → (∀𝑧 ∈ 𝐴 Pred(𝑅, 𝐴, 𝑧) ∈ V → ∀𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V)) |
184 | 179, 182,
183 | sylc 65 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ω ∧ 𝑅 Se 𝐴) → ∀𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V) |
185 | 184 | adantrr 717 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴)) → ∀𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V) |
186 | | iunexg 7776 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑛) ∈ V ∧ ∀𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V) → ∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V) |
187 | 177, 185,
186 | sylancr 590 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴)) → ∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V) |
188 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏Pred(𝑅, 𝐴, 𝑋) |
189 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏𝑛 |
190 | | nfmpt1 5177 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑏(𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)) |
191 | 190, 188 | nfrdg 8192 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋)) |
192 | 155, 191 | nfcxfr 2905 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏𝐹 |
193 | 192, 189 | nffv 6763 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏(𝐹‘𝑛) |
194 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏Pred(𝑅, 𝐴, 𝑧) |
195 | 193, 194 | nfiun 4951 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) |
196 | | predeq3 6193 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑧 → Pred(𝑅, 𝐴, 𝑤) = Pred(𝑅, 𝐴, 𝑧)) |
197 | 196 | cbviunv 4966 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤) = ∪ 𝑧 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑧) |
198 | | iuneq1 4937 |
. . . . . . . . . . . . 13
⊢ (𝑏 = (𝐹‘𝑛) → ∪
𝑧 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑧) = ∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧)) |
199 | 197, 198 | eqtrid 2791 |
. . . . . . . . . . . 12
⊢ (𝑏 = (𝐹‘𝑛) → ∪
𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤) = ∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧)) |
200 | 188, 189,
195, 155, 199 | rdgsucmptf 8206 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ On ∧ ∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧) ∈ V) → (𝐹‘suc 𝑛) = ∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧)) |
201 | 176, 187,
200 | syl2an2r 685 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴)) → (𝐹‘suc 𝑛) = ∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧)) |
202 | 201 | 3adant3 1134 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛))) → (𝐹‘suc 𝑛) = ∪ 𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧)) |
203 | 202 | eleq2d 2825 |
. . . . . . . 8
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛))) → (𝑦 ∈ (𝐹‘suc 𝑛) ↔ 𝑦 ∈ ∪
𝑧 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑧))) |
204 | | eqeq2 2751 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑋 → ((𝑓‘suc suc 𝑛) = 𝑥 ↔ (𝑓‘suc suc 𝑛) = 𝑋)) |
205 | 204 | anbi2d 632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑋 → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ↔ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋))) |
206 | 205 | 3anbi2d 1443 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑋 → ((𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)))) |
207 | 206 | exbidv 1929 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑋 → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)))) |
208 | | eqeq2 2751 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑋 → ((𝑔‘suc 𝑛) = 𝑥 ↔ (𝑔‘suc 𝑛) = 𝑋)) |
209 | 208 | anbi2d 632 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑋 → (((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ↔ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋))) |
210 | 209 | 3anbi2d 1443 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑋 → ((𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)))) |
211 | 210 | exbidv 1929 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑋 → (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)))) |
212 | 211 | anbi1d 633 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑋 → ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
213 | 212 | exbidv 1929 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑋 → (∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
214 | 207, 213 | bibi12d 349 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑋 → ((∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧))) ↔ (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧))))) |
215 | 214 | imbi2d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → ((𝑛 ∈ ω → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) ↔ (𝑛 ∈ ω → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))))) |
216 | | fvex 6766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓‘suc 𝑏) ∈ V |
217 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) |
218 | 216, 217 | fnmpti 6557 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) Fn suc suc 𝑛 |
219 | 218 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) Fn suc suc 𝑛) |
220 | | peano2 7708 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ ω → suc 𝑛 ∈
ω) |
221 | 220 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → suc 𝑛 ∈ ω) |
222 | | nnord 7692 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (suc
𝑛 ∈ ω → Ord
suc 𝑛) |
223 | 221, 222 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → Ord suc 𝑛) |
224 | | 0elsuc 7654 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Ord suc
𝑛 → ∅ ∈ suc
suc 𝑛) |
225 | 223, 224 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → ∅ ∈ suc suc 𝑛) |
226 | | suceq 6313 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 = ∅ → suc 𝑏 = suc ∅) |
227 | 226 | fveq2d 6757 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = ∅ → (𝑓‘suc 𝑏) = (𝑓‘suc ∅)) |
228 | | fvex 6766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓‘suc ∅) ∈
V |
229 | 227, 217,
228 | fvmpt 6854 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∅
∈ suc suc 𝑛 →
((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅)) |
230 | 225, 229 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅)) |
231 | | vex 3427 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑛 ∈ V |
232 | 231 | sucex 7630 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ suc 𝑛 ∈ V |
233 | 232 | sucid 6327 |
. . . . . . . . . . . . . . . . . . . 20
⊢ suc 𝑛 ∈ suc suc 𝑛 |
234 | | suceq 6313 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = suc 𝑛 → suc 𝑏 = suc suc 𝑛) |
235 | 234 | fveq2d 6757 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 = suc 𝑛 → (𝑓‘suc 𝑏) = (𝑓‘suc suc 𝑛)) |
236 | | fvex 6766 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓‘suc suc 𝑛) ∈ V |
237 | 235, 217,
236 | fvmpt 6854 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (suc
𝑛 ∈ suc suc 𝑛 → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = (𝑓‘suc suc 𝑛)) |
238 | 233, 237 | mp1i 13 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = (𝑓‘suc suc 𝑛)) |
239 | | simpr2r 1235 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → (𝑓‘suc suc 𝑛) = 𝑥) |
240 | 238, 239 | eqtrd 2779 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = 𝑥) |
241 | | fveq2 6753 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = suc 𝑐 → (𝑓‘𝑎) = (𝑓‘suc 𝑐)) |
242 | | suceq 6313 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = suc 𝑐 → suc 𝑎 = suc suc 𝑐) |
243 | 242 | fveq2d 6757 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = suc 𝑐 → (𝑓‘suc 𝑎) = (𝑓‘suc suc 𝑐)) |
244 | 241, 243 | breq12d 5083 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = suc 𝑐 → ((𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘suc 𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc suc 𝑐))) |
245 | | simplr3 1219 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) |
246 | | ordsucelsuc 7641 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (Ord suc
𝑛 → (𝑐 ∈ suc 𝑛 ↔ suc 𝑐 ∈ suc suc 𝑛)) |
247 | 223, 246 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → (𝑐 ∈ suc 𝑛 ↔ suc 𝑐 ∈ suc suc 𝑛)) |
248 | 247 | biimpa 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → suc 𝑐 ∈ suc suc 𝑛) |
249 | 244, 245,
248 | rspcdva 3555 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → (𝑓‘suc 𝑐)(𝑅 ↾ 𝐴)(𝑓‘suc suc 𝑐)) |
250 | | elelsuc 6320 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐 ∈ suc 𝑛 → 𝑐 ∈ suc suc 𝑛) |
251 | | suceq 6313 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 = 𝑐 → suc 𝑏 = suc 𝑐) |
252 | 251 | fveq2d 6757 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 = 𝑐 → (𝑓‘suc 𝑏) = (𝑓‘suc 𝑐)) |
253 | | fvex 6766 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓‘suc 𝑐) ∈ V |
254 | 252, 217,
253 | fvmpt 6854 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐 ∈ suc suc 𝑛 → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐) = (𝑓‘suc 𝑐)) |
255 | 250, 254 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 ∈ suc 𝑛 → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐) = (𝑓‘suc 𝑐)) |
256 | 255 | adantl 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐) = (𝑓‘suc 𝑐)) |
257 | | suceq 6313 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 = suc 𝑐 → suc 𝑏 = suc suc 𝑐) |
258 | 257 | fveq2d 6757 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = suc 𝑐 → (𝑓‘suc 𝑏) = (𝑓‘suc suc 𝑐)) |
259 | | fvex 6766 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓‘suc suc 𝑐) ∈ V |
260 | 258, 217,
259 | fvmpt 6854 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (suc
𝑐 ∈ suc suc 𝑛 → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐) = (𝑓‘suc suc 𝑐)) |
261 | 248, 260 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐) = (𝑓‘suc suc 𝑐)) |
262 | 249, 256,
261 | 3brtr4d 5102 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) ∧ 𝑐 ∈ suc 𝑛) → ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐)) |
263 | 262 | ralrimiva 3108 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → ∀𝑐 ∈ suc 𝑛((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐)) |
264 | 232 | sucex 7630 |
. . . . . . . . . . . . . . . . . . . 20
⊢ suc suc
𝑛 ∈ V |
265 | 264 | mptex 7078 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) ∈ V |
266 | | fneq1 6505 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (𝑔 Fn suc suc 𝑛 ↔ (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) Fn suc suc 𝑛)) |
267 | | fveq1 6752 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (𝑔‘∅) = ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅)) |
268 | 267 | eqeq1d 2741 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → ((𝑔‘∅) = (𝑓‘suc ∅) ↔ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅))) |
269 | | fveq1 6752 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (𝑔‘suc 𝑛) = ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛)) |
270 | 269 | eqeq1d 2741 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → ((𝑔‘suc 𝑛) = 𝑥 ↔ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = 𝑥)) |
271 | 268, 270 | anbi12d 634 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ↔ (((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅) ∧ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = 𝑥))) |
272 | | fveq1 6752 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (𝑔‘𝑐) = ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)) |
273 | | fveq1 6752 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (𝑔‘suc 𝑐) = ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐)) |
274 | 272, 273 | breq12d 5083 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → ((𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐) ↔ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐))) |
275 | 274 | ralbidv 3121 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → (∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐) ↔ ∀𝑐 ∈ suc 𝑛((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐))) |
276 | 266, 271,
275 | 3anbi123d 1438 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = (𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) → ((𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) Fn suc suc 𝑛 ∧ (((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅) ∧ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐)))) |
277 | 265, 276 | spcev 3536 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏)) Fn suc suc 𝑛 ∧ (((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘∅) = (𝑓‘suc ∅) ∧ ((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘𝑐)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc 𝑛 ↦ (𝑓‘suc 𝑏))‘suc 𝑐)) → ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐))) |
278 | 219, 230,
240, 263, 277 | syl121anc 1377 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐))) |
279 | | simpr2l 1234 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → (𝑓‘∅) = 𝑦) |
280 | 14 | fveq2d 6757 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = ∅ → (𝑓‘suc 𝑎) = (𝑓‘suc ∅)) |
281 | 13, 280 | breq12d 5083 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = ∅ → ((𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘suc ∅))) |
282 | | simpr3 1198 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) |
283 | 281, 282,
225 | rspcdva 3555 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → (𝑓‘∅)(𝑅 ↾ 𝐴)(𝑓‘suc ∅)) |
284 | 279, 283 | eqbrtrrd 5094 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → 𝑦(𝑅 ↾ 𝐴)(𝑓‘suc ∅)) |
285 | | eqeq2 2751 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = (𝑓‘suc ∅) → ((𝑔‘∅) = 𝑧 ↔ (𝑔‘∅) = (𝑓‘suc ∅))) |
286 | 285 | anbi1d 633 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = (𝑓‘suc ∅) → (((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ↔ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥))) |
287 | 286 | 3anbi2d 1443 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = (𝑓‘suc ∅) → ((𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)))) |
288 | 287 | exbidv 1929 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (𝑓‘suc ∅) → (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)))) |
289 | | breq2 5074 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (𝑓‘suc ∅) → (𝑦(𝑅 ↾ 𝐴)𝑧 ↔ 𝑦(𝑅 ↾ 𝐴)(𝑓‘suc ∅))) |
290 | 288, 289 | anbi12d 634 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑓‘suc ∅) → ((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)(𝑓‘suc ∅)))) |
291 | 228, 290 | spcev 3536 |
. . . . . . . . . . . . . . . . 17
⊢
((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = (𝑓‘suc ∅) ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)(𝑓‘suc ∅)) → ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧)) |
292 | 278, 284,
291 | syl2anc 587 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ω ∧ (𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) → ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧)) |
293 | 292 | ex 416 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ω → ((𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) → ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧))) |
294 | 293 | exlimdv 1941 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ω →
(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) → ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧))) |
295 | | fvex 6766 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔‘∪ 𝑏)
∈ V |
296 | 100, 295 | ifex 4506 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)) ∈ V |
297 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) |
298 | 296, 297 | fnmpti 6557 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) Fn suc suc suc 𝑛 |
299 | 298 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) Fn suc suc suc 𝑛) |
300 | | peano2 7708 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (suc
𝑛 ∈ ω → suc
suc 𝑛 ∈
ω) |
301 | 220, 300 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ ω → suc suc
𝑛 ∈
ω) |
302 | 301 | 3ad2ant1 1135 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → suc suc 𝑛 ∈ ω) |
303 | | nnord 7692 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (suc suc
𝑛 ∈ ω → Ord
suc suc 𝑛) |
304 | 302, 303 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → Ord suc suc 𝑛) |
305 | | 0elsuc 7654 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (Ord suc
suc 𝑛 → ∅ ∈
suc suc suc 𝑛) |
306 | 304, 305 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → ∅ ∈ suc suc suc 𝑛) |
307 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 = ∅ → if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)) = 𝑦) |
308 | 307, 297,
100 | fvmpt 6854 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∅
∈ suc suc suc 𝑛 →
((𝑏 ∈ suc suc suc
𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘∅) = 𝑦) |
309 | 306, 308 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘∅) = 𝑦) |
310 | 264 | sucid 6327 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ suc suc
𝑛 ∈ suc suc suc 𝑛 |
311 | | eqeq1 2743 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 = suc suc 𝑛 → (𝑏 = ∅ ↔ suc suc 𝑛 = ∅)) |
312 | | unieq 4847 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑏 = suc suc 𝑛 → ∪ 𝑏 = ∪
suc suc 𝑛) |
313 | 312 | fveq2d 6757 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 = suc suc 𝑛 → (𝑔‘∪ 𝑏) = (𝑔‘∪ suc suc
𝑛)) |
314 | 311, 313 | ifbieq2d 4482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 = suc suc 𝑛 → if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)) = if(suc suc 𝑛 = ∅, 𝑦, (𝑔‘∪ suc suc
𝑛))) |
315 | | nsuceq0 6328 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ suc suc
𝑛 ≠
∅ |
316 | 315 | neii 2945 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ¬
suc suc 𝑛 =
∅ |
317 | 316 | iffalsei 4466 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ if(suc
suc 𝑛 = ∅, 𝑦, (𝑔‘∪ suc suc
𝑛)) = (𝑔‘∪ suc suc
𝑛) |
318 | 314, 317 | eqtrdi 2796 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = suc suc 𝑛 → if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)) = (𝑔‘∪ suc suc
𝑛)) |
319 | | fvex 6766 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔‘∪ suc suc 𝑛) ∈ V |
320 | 318, 297,
319 | fvmpt 6854 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (suc suc
𝑛 ∈ suc suc suc 𝑛 → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc suc 𝑛) = (𝑔‘∪ suc suc
𝑛)) |
321 | 310, 320 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc suc 𝑛) = (𝑔‘∪ suc suc
𝑛)) |
322 | 220 | 3ad2ant1 1135 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → suc 𝑛 ∈ ω) |
323 | 322, 222 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → Ord suc 𝑛) |
324 | | ordunisuc 7651 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (Ord suc
𝑛 → ∪ suc suc 𝑛 = suc 𝑛) |
325 | 323, 324 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → ∪ suc suc
𝑛 = suc 𝑛) |
326 | 325 | fveq2d 6757 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → (𝑔‘∪ suc suc
𝑛) = (𝑔‘suc 𝑛)) |
327 | | simp22r 1295 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → (𝑔‘suc 𝑛) = 𝑥) |
328 | 321, 326,
327 | 3eqtrd 2783 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc suc 𝑛) = 𝑥) |
329 | | simpl3 1195 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 = ∅) → 𝑦(𝑅 ↾ 𝐴)𝑧) |
330 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = ∅ → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎)) = 𝑦) |
331 | 330 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 = ∅) → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎)) = 𝑦) |
332 | | fveq2 6753 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = ∅ → (𝑔‘𝑎) = (𝑔‘∅)) |
333 | | simp22l 1294 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → (𝑔‘∅) = 𝑧) |
334 | 332, 333 | sylan9eqr 2802 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 = ∅) → (𝑔‘𝑎) = 𝑧) |
335 | 329, 331,
334 | 3brtr4d 5102 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 = ∅) → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))(𝑅 ↾ 𝐴)(𝑔‘𝑎)) |
336 | 335 | ex 416 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → (𝑎 = ∅ → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))(𝑅 ↾ 𝐴)(𝑔‘𝑎))) |
337 | 336 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → (𝑎 = ∅ → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))(𝑅 ↾ 𝐴)(𝑔‘𝑎))) |
338 | | ordsucelsuc 7641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (Ord suc
𝑛 → (𝑏 ∈ suc 𝑛 ↔ suc 𝑏 ∈ suc suc 𝑛)) |
339 | 323, 338 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → (𝑏 ∈ suc 𝑛 ↔ suc 𝑏 ∈ suc suc 𝑛)) |
340 | | elnn 7695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑏 ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω) → 𝑏 ∈ ω) |
341 | 322, 340 | sylan2 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑏 ∈ suc 𝑛 ∧ (𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧)) → 𝑏 ∈ ω) |
342 | 341 | ancoms 462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → 𝑏 ∈ ω) |
343 | | nnord 7692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑏 ∈ ω → Ord 𝑏) |
344 | 342, 343 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → Ord 𝑏) |
345 | | ordunisuc 7651 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (Ord
𝑏 → ∪ suc 𝑏 = 𝑏) |
346 | 344, 345 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → ∪ suc
𝑏 = 𝑏) |
347 | 346 | fveq2d 6757 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → (𝑔‘∪ suc 𝑏) = (𝑔‘𝑏)) |
348 | | simp23 1210 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) |
349 | | fveq2 6753 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑐 = 𝑏 → (𝑔‘𝑐) = (𝑔‘𝑏)) |
350 | | suceq 6313 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑐 = 𝑏 → suc 𝑐 = suc 𝑏) |
351 | 350 | fveq2d 6757 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑐 = 𝑏 → (𝑔‘suc 𝑐) = (𝑔‘suc 𝑏)) |
352 | 349, 351 | breq12d 5083 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑐 = 𝑏 → ((𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐) ↔ (𝑔‘𝑏)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑏))) |
353 | 352 | rspcv 3548 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑏 ∈ suc 𝑛 → (∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐) → (𝑔‘𝑏)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑏))) |
354 | 348, 353 | mpan9 510 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → (𝑔‘𝑏)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑏)) |
355 | 347, 354 | eqbrtrd 5092 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑏 ∈ suc 𝑛) → (𝑔‘∪ suc 𝑏)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑏)) |
356 | 355 | ex 416 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → (𝑏 ∈ suc 𝑛 → (𝑔‘∪ suc 𝑏)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑏))) |
357 | 339, 356 | sylbird 263 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → (suc 𝑏 ∈ suc suc 𝑛 → (𝑔‘∪ suc 𝑏)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑏))) |
358 | 357 | imp 410 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ suc 𝑏 ∈ suc suc 𝑛) → (𝑔‘∪ suc 𝑏)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑏)) |
359 | | eleq1 2827 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑎 = suc 𝑏 → (𝑎 ∈ suc suc 𝑛 ↔ suc 𝑏 ∈ suc suc 𝑛)) |
360 | 359 | anbi2d 632 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = suc 𝑏 → (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) ↔ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ suc 𝑏 ∈ suc suc 𝑛))) |
361 | | eqeq1 2743 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 = suc 𝑏 → (𝑎 = ∅ ↔ suc 𝑏 = ∅)) |
362 | | unieq 4847 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑎 = suc 𝑏 → ∪ 𝑎 = ∪
suc 𝑏) |
363 | 362 | fveq2d 6757 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 = suc 𝑏 → (𝑔‘∪ 𝑎) = (𝑔‘∪ suc 𝑏)) |
364 | 361, 363 | ifbieq2d 4482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 = suc 𝑏 → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎)) = if(suc 𝑏 = ∅, 𝑦, (𝑔‘∪ suc 𝑏))) |
365 | | nsuceq0 6328 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ suc 𝑏 ≠ ∅ |
366 | 365 | neii 2945 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ¬
suc 𝑏 =
∅ |
367 | 366 | iffalsei 4466 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ if(suc
𝑏 = ∅, 𝑦, (𝑔‘∪ suc 𝑏)) = (𝑔‘∪ suc 𝑏) |
368 | 364, 367 | eqtrdi 2796 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑎 = suc 𝑏 → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎)) = (𝑔‘∪ suc 𝑏)) |
369 | | fveq2 6753 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑎 = suc 𝑏 → (𝑔‘𝑎) = (𝑔‘suc 𝑏)) |
370 | 368, 369 | breq12d 5083 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = suc 𝑏 → (if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))(𝑅 ↾ 𝐴)(𝑔‘𝑎) ↔ (𝑔‘∪ suc 𝑏)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑏))) |
371 | 360, 370 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 = suc 𝑏 → ((((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))(𝑅 ↾ 𝐴)(𝑔‘𝑎)) ↔ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ suc 𝑏 ∈ suc suc 𝑛) → (𝑔‘∪ suc 𝑏)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑏)))) |
372 | 358, 371 | mpbiri 261 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = suc 𝑏 → (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))(𝑅 ↾ 𝐴)(𝑔‘𝑎))) |
373 | 372 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → (𝑎 = suc 𝑏 → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))(𝑅 ↾ 𝐴)(𝑔‘𝑎))) |
374 | 373 | rexlimdvw 3219 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → (∃𝑏 ∈ ω 𝑎 = suc 𝑏 → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))(𝑅 ↾ 𝐴)(𝑔‘𝑎))) |
375 | | elnn 7695 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑎 ∈ suc suc 𝑛 ∧ suc suc 𝑛 ∈ ω) → 𝑎 ∈
ω) |
376 | 375 | ancoms 462 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((suc suc
𝑛 ∈ ω ∧
𝑎 ∈ suc suc 𝑛) → 𝑎 ∈ ω) |
377 | 302, 376 | sylan 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → 𝑎 ∈ ω) |
378 | | nn0suc 7713 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 ∈ ω → (𝑎 = ∅ ∨ ∃𝑏 ∈ ω 𝑎 = suc 𝑏)) |
379 | 377, 378 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → (𝑎 = ∅ ∨ ∃𝑏 ∈ ω 𝑎 = suc 𝑏)) |
380 | 337, 374,
379 | mpjaod 860 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))(𝑅 ↾ 𝐴)(𝑔‘𝑎)) |
381 | | elelsuc 6320 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 ∈ suc suc 𝑛 → 𝑎 ∈ suc suc suc 𝑛) |
382 | | eqeq1 2743 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑏 = 𝑎 → (𝑏 = ∅ ↔ 𝑎 = ∅)) |
383 | | unieq 4847 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑏 = 𝑎 → ∪ 𝑏 = ∪
𝑎) |
384 | 383 | fveq2d 6757 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑏 = 𝑎 → (𝑔‘∪ 𝑏) = (𝑔‘∪ 𝑎)) |
385 | 382, 384 | ifbieq2d 4482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 = 𝑎 → if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)) = if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))) |
386 | | fvex 6766 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑔‘∪ 𝑎)
∈ V |
387 | 100, 386 | ifex 4506 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎)) ∈ V |
388 | 385, 297,
387 | fvmpt 6854 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 ∈ suc suc suc 𝑛 → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘𝑎) = if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))) |
389 | 381, 388 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 ∈ suc suc 𝑛 → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘𝑎) = if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))) |
390 | 389 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘𝑎) = if(𝑎 = ∅, 𝑦, (𝑔‘∪ 𝑎))) |
391 | | ordsucelsuc 7641 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (Ord suc
suc 𝑛 → (𝑎 ∈ suc suc 𝑛 ↔ suc 𝑎 ∈ suc suc suc 𝑛)) |
392 | 304, 391 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → (𝑎 ∈ suc suc 𝑛 ↔ suc 𝑎 ∈ suc suc suc 𝑛)) |
393 | 392 | biimpa 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → suc 𝑎 ∈ suc suc suc 𝑛) |
394 | | eqeq1 2743 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑏 = suc 𝑎 → (𝑏 = ∅ ↔ suc 𝑎 = ∅)) |
395 | | unieq 4847 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑏 = suc 𝑎 → ∪ 𝑏 = ∪
suc 𝑎) |
396 | 395 | fveq2d 6757 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑏 = suc 𝑎 → (𝑔‘∪ 𝑏) = (𝑔‘∪ suc 𝑎)) |
397 | 394, 396 | ifbieq2d 4482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑏 = suc 𝑎 → if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)) = if(suc 𝑎 = ∅, 𝑦, (𝑔‘∪ suc 𝑎))) |
398 | | nsuceq0 6328 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ suc 𝑎 ≠ ∅ |
399 | 398 | neii 2945 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ¬
suc 𝑎 =
∅ |
400 | 399 | iffalsei 4466 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ if(suc
𝑎 = ∅, 𝑦, (𝑔‘∪ suc 𝑎)) = (𝑔‘∪ suc 𝑎) |
401 | 397, 400 | eqtrdi 2796 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 = suc 𝑎 → if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)) = (𝑔‘∪ suc 𝑎)) |
402 | | fvex 6766 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑔‘∪ suc 𝑎) ∈ V |
403 | 401, 297,
402 | fvmpt 6854 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (suc
𝑎 ∈ suc suc suc 𝑛 → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc 𝑎) = (𝑔‘∪ suc 𝑎)) |
404 | 393, 403 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc 𝑎) = (𝑔‘∪ suc 𝑎)) |
405 | | nnord 7692 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 ∈ ω → Ord 𝑎) |
406 | 377, 405 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → Ord 𝑎) |
407 | | ordunisuc 7651 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (Ord
𝑎 → ∪ suc 𝑎 = 𝑎) |
408 | 406, 407 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → ∪ suc
𝑎 = 𝑎) |
409 | 408 | fveq2d 6757 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → (𝑔‘∪ suc 𝑎) = (𝑔‘𝑎)) |
410 | 404, 409 | eqtrd 2779 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc 𝑎) = (𝑔‘𝑎)) |
411 | 380, 390,
410 | 3brtr4d 5102 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ∧ 𝑎 ∈ suc suc 𝑛) → ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘𝑎)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc 𝑎)) |
412 | 411 | ralrimiva 3108 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → ∀𝑎 ∈ suc suc 𝑛((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘𝑎)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc 𝑎)) |
413 | 264 | sucex 7630 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ suc suc
suc 𝑛 ∈
V |
414 | 413 | mptex 7078 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) ∈ V |
415 | | fneq1 6505 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → (𝑓 Fn suc suc suc 𝑛 ↔ (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) Fn suc suc suc 𝑛)) |
416 | | fveq1 6752 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → (𝑓‘∅) = ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘∅)) |
417 | 416 | eqeq1d 2741 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → ((𝑓‘∅) = 𝑦 ↔ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘∅) = 𝑦)) |
418 | | fveq1 6752 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → (𝑓‘suc suc 𝑛) = ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc suc 𝑛)) |
419 | 418 | eqeq1d 2741 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → ((𝑓‘suc suc 𝑛) = 𝑥 ↔ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc suc 𝑛) = 𝑥)) |
420 | 417, 419 | anbi12d 634 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → (((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ↔ (((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘∅) = 𝑦 ∧ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc suc 𝑛) = 𝑥))) |
421 | | fveq1 6752 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → (𝑓‘𝑎) = ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘𝑎)) |
422 | | fveq1 6752 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → (𝑓‘suc 𝑎) = ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc 𝑎)) |
423 | 421, 422 | breq12d 5083 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → ((𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘𝑎)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc 𝑎))) |
424 | 423 | ralbidv 3121 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → (∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc suc 𝑛((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘𝑎)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc 𝑎))) |
425 | 415, 420,
424 | 3anbi123d 1438 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = (𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) → ((𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) Fn suc suc suc 𝑛 ∧ (((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘∅) = 𝑦 ∧ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘𝑎)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc 𝑎)))) |
426 | 414, 425 | spcev 3536 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏))) Fn suc suc suc 𝑛 ∧ (((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘∅) = 𝑦 ∧ ((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘𝑎)(𝑅 ↾ 𝐴)((𝑏 ∈ suc suc suc 𝑛 ↦ if(𝑏 = ∅, 𝑦, (𝑔‘∪ 𝑏)))‘suc 𝑎)) → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) |
427 | 299, 309,
328, 412, 426 | syl121anc 1377 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ω ∧ (𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))) |
428 | 427 | 3exp 1121 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ω → ((𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) → (𝑦(𝑅 ↾ 𝐴)𝑧 → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))))) |
429 | 428 | exlimdv 1941 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ω →
(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) → (𝑦(𝑅 ↾ 𝐴)𝑧 → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎))))) |
430 | 429 | impd 414 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ω →
((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)))) |
431 | 430 | exlimdv 1941 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ω →
(∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) → ∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)))) |
432 | 294, 431 | impbid 215 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ω →
(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧))) |
433 | | vex 3427 |
. . . . . . . . . . . . . . . 16
⊢ 𝑧 ∈ V |
434 | 433 | brresi 5888 |
. . . . . . . . . . . . . . 15
⊢ (𝑦(𝑅 ↾ 𝐴)𝑧 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)) |
435 | 434 | anbi2i 626 |
. . . . . . . . . . . . . 14
⊢
((∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ↔ (∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧))) |
436 | 435 | exbii 1855 |
. . . . . . . . . . . . 13
⊢
(∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ 𝑦(𝑅 ↾ 𝐴)𝑧) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧))) |
437 | 432, 436 | bitrdi 290 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ω →
(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑥) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑥) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
438 | 215, 437 | vtoclg 3496 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ 𝐴 → (𝑛 ∈ ω → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧))))) |
439 | 438 | impcom 411 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ω ∧ 𝑋 ∈ 𝐴) → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
440 | 439 | adantrl 716 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴)) → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
441 | 440 | 3adant3 1134 |
. . . . . . . 8
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛))) → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ ∃𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑧)))) |
442 | 175, 203,
441 | 3bitr4rd 315 |
. . . . . . 7
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛))) → (∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛))) |
443 | 442 | alrimiv 1935 |
. . . . . 6
⊢ ((𝑛 ∈ ω ∧ (𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛))) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛))) |
444 | 443 | 3exp 1121 |
. . . . 5
⊢ (𝑛 ∈ ω → ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → (∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛)) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛))))) |
445 | 444 | a2d 29 |
. . . 4
⊢ (𝑛 ∈ ω → (((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑛 ∧ ((𝑔‘∅) = 𝑧 ∧ (𝑔‘suc 𝑛) = 𝑋) ∧ ∀𝑐 ∈ suc 𝑛(𝑔‘𝑐)(𝑅 ↾ 𝐴)(𝑔‘suc 𝑐)) ↔ 𝑧 ∈ (𝐹‘𝑛))) → ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc suc 𝑛) = 𝑋) ∧ ∀𝑎 ∈ suc suc 𝑛(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘suc 𝑛))))) |
446 | 26, 67, 81, 95, 164, 445 | finds 7716 |
. . 3
⊢ (𝑁 ∈ ω → ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑁)))) |
447 | 446 | 3impib 1118 |
. 2
⊢ ((𝑁 ∈ ω ∧ 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑁))) |
448 | 447 | 19.21bi 2188 |
1
⊢ ((𝑁 ∈ ω ∧ 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → (∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑁))) |