Step | Hyp | Ref
| Expression |
1 | | raleq 3333 |
. . . 4
⊢ (𝑥 = ∅ → (∀𝑛 ∈ 𝑥 𝜑 ↔ ∀𝑛 ∈ ∅ 𝜑)) |
2 | 1 | rexralbidv 3229 |
. . 3
⊢ (𝑥 = ∅ → (∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ ∅ 𝜑)) |
3 | | raleq 3333 |
. . 3
⊢ (𝑥 = ∅ → (∀𝑛 ∈ 𝑥 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∀𝑛 ∈ ∅ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
4 | 2, 3 | bibi12d 345 |
. 2
⊢ (𝑥 = ∅ → ((∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝑥 𝜑 ↔ ∀𝑛 ∈ 𝑥 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ ∅ 𝜑 ↔ ∀𝑛 ∈ ∅ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑))) |
5 | | raleq 3333 |
. . . 4
⊢ (𝑥 = 𝑦 → (∀𝑛 ∈ 𝑥 𝜑 ↔ ∀𝑛 ∈ 𝑦 𝜑)) |
6 | 5 | rexralbidv 3229 |
. . 3
⊢ (𝑥 = 𝑦 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑦 𝜑)) |
7 | | raleq 3333 |
. . 3
⊢ (𝑥 = 𝑦 → (∀𝑛 ∈ 𝑥 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∀𝑛 ∈ 𝑦 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
8 | 6, 7 | bibi12d 345 |
. 2
⊢ (𝑥 = 𝑦 → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑥 𝜑 ↔ ∀𝑛 ∈ 𝑥 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑦 𝜑 ↔ ∀𝑛 ∈ 𝑦 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑))) |
9 | | raleq 3333 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛 ∈ 𝑥 𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑)) |
10 | 9 | rexralbidv 3229 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑)) |
11 | | raleq 3333 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛 ∈ 𝑥 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
12 | 10, 11 | bibi12d 345 |
. 2
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑥 𝜑 ↔ ∀𝑛 ∈ 𝑥 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑))) |
13 | | raleq 3333 |
. . . 4
⊢ (𝑥 = 𝐴 → (∀𝑛 ∈ 𝑥 𝜑 ↔ ∀𝑛 ∈ 𝐴 𝜑)) |
14 | 13 | rexralbidv 3229 |
. . 3
⊢ (𝑥 = 𝐴 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝐴 𝜑)) |
15 | | raleq 3333 |
. . 3
⊢ (𝑥 = 𝐴 → (∀𝑛 ∈ 𝑥 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∀𝑛 ∈ 𝐴 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
16 | 14, 15 | bibi12d 345 |
. 2
⊢ (𝑥 = 𝐴 → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑥 𝜑 ↔ ∀𝑛 ∈ 𝑥 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝐴 𝜑 ↔ ∀𝑛 ∈ 𝐴 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑))) |
17 | | 0z 12260 |
. . . . 5
⊢ 0 ∈
ℤ |
18 | 17 | ne0ii 4268 |
. . . 4
⊢ ℤ
≠ ∅ |
19 | | ral0 4440 |
. . . . 5
⊢
∀𝑛 ∈
∅ 𝜑 |
20 | 19 | rgen2w 3076 |
. . . 4
⊢
∀𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ ∅ 𝜑 |
21 | | r19.2z 4422 |
. . . 4
⊢ ((ℤ
≠ ∅ ∧ ∀𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ ∅ 𝜑) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ ∅ 𝜑) |
22 | 18, 20, 21 | mp2an 688 |
. . 3
⊢
∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ ∅ 𝜑 |
23 | | ral0 4440 |
. . 3
⊢
∀𝑛 ∈
∅ ∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 |
24 | 22, 23 | 2th 263 |
. 2
⊢
(∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ ∅ 𝜑 ↔ ∀𝑛 ∈ ∅ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) |
25 | | anbi1 631 |
. . . 4
⊢
((∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝑦 𝜑 ↔ ∀𝑛 ∈ 𝑦 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) ↔ (∀𝑛 ∈ 𝑦 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑))) |
26 | | rexanuz 14985 |
. . . . 5
⊢
(∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(∀𝑛 ∈ 𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑦 𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ {𝑧}𝜑)) |
27 | | ralunb 4121 |
. . . . . . 7
⊢
(∀𝑛 ∈
(𝑦 ∪ {𝑧})𝜑 ↔ (∀𝑛 ∈ 𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}𝜑)) |
28 | 27 | ralbii 3090 |
. . . . . 6
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(∀𝑛 ∈ 𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}𝜑)) |
29 | 28 | rexbii 3177 |
. . . . 5
⊢
(∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(∀𝑛 ∈ 𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}𝜑)) |
30 | | ralsnsg 4601 |
. . . . . . . 8
⊢ (𝑧 ∈ V → (∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ [𝑧 / 𝑛]∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
31 | | sbcrex 3804 |
. . . . . . . . 9
⊢
([𝑧 / 𝑛]∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ [𝑧 / 𝑛]∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) |
32 | | ralcom 3280 |
. . . . . . . . . . 11
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ {𝑧}𝜑 ↔ ∀𝑛 ∈ {𝑧}∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) |
33 | | ralsnsg 4601 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ V → (∀𝑛 ∈ {𝑧}∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ [𝑧 / 𝑛]∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
34 | 32, 33 | syl5bb 282 |
. . . . . . . . . 10
⊢ (𝑧 ∈ V → (∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ {𝑧}𝜑 ↔ [𝑧 / 𝑛]∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
35 | 34 | rexbidv 3225 |
. . . . . . . . 9
⊢ (𝑧 ∈ V → (∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ {𝑧}𝜑 ↔ ∃𝑗 ∈ ℤ [𝑧 / 𝑛]∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
36 | 31, 35 | bitr4id 289 |
. . . . . . . 8
⊢ (𝑧 ∈ V → ([𝑧 / 𝑛]∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ {𝑧}𝜑)) |
37 | 30, 36 | bitrd 278 |
. . . . . . 7
⊢ (𝑧 ∈ V → (∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ {𝑧}𝜑)) |
38 | 37 | elv 3428 |
. . . . . 6
⊢
(∀𝑛 ∈
{𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ {𝑧}𝜑) |
39 | 38 | anbi2i 622 |
. . . . 5
⊢
((∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑦 𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ {𝑧}𝜑)) |
40 | 26, 29, 39 | 3bitr4i 302 |
. . . 4
⊢
(∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
41 | | ralunb 4121 |
. . . 4
⊢
(∀𝑛 ∈
(𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ (∀𝑛 ∈ 𝑦 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
42 | 25, 40, 41 | 3bitr4g 313 |
. . 3
⊢
((∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝑦 𝜑 ↔ ∀𝑛 ∈ 𝑦 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
43 | 42 | a1i 11 |
. 2
⊢ (𝑦 ∈ Fin →
((∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝑦 𝜑 ↔ ∀𝑛 ∈ 𝑦 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑))) |
44 | 4, 8, 12, 16, 24, 43 | findcard2 8909 |
1
⊢ (𝐴 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝐴 𝜑 ↔ ∀𝑛 ∈ 𝐴 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |