MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoeq1 Structured version   Visualization version   GIF version

Theorem rmoeq1 3345
Description: Equality theorem for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.) Remove usage of ax-10 2137, ax-11 2154, and ax-12 2171. (Revised by Steven Nguyen, 30-Apr-2023.)
Assertion
Ref Expression
rmoeq1 (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rmoeq1
StepHypRef Expression
1 eleq2 2827 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21anbi1d 630 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
32mobidv 2549 . 2 (𝐴 = 𝐵 → (∃*𝑥(𝑥𝐴𝜑) ↔ ∃*𝑥(𝑥𝐵𝜑)))
4 df-rmo 3071 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
5 df-rmo 3071 . 2 (∃*𝑥𝐵 𝜑 ↔ ∃*𝑥(𝑥𝐵𝜑))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  ∃*wmo 2538  ∃*wrmo 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-mo 2540  df-cleq 2730  df-clel 2816  df-rmo 3071
This theorem is referenced by:  rmoeqd  3351  rmosn  4655  poimirlem2  35779
  Copyright terms: Public domain W3C validator