MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoeq1 Structured version   Visualization version   GIF version

Theorem rmoeq1 3425
Description: Equality theorem for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.) Remove usage of ax-10 2141, ax-11 2158, and ax-12 2178. (Revised by Steven Nguyen, 30-Apr-2023.) Avoid ax-8 2110. (Revised by Wolf Lammen, 12-Mar-2025.)
Assertion
Ref Expression
rmoeq1 (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rmoeq1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2733 . . . . . 6 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
21biimpi 216 . . . . 5 (𝐴 = 𝐵 → ∀𝑥(𝑥𝐴𝑥𝐵))
3 anbi1 632 . . . . . . 7 ((𝑥𝐴𝑥𝐵) → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
43imbi1d 341 . . . . . 6 ((𝑥𝐴𝑥𝐵) → (((𝑥𝐴𝜑) → 𝑥 = 𝑧) ↔ ((𝑥𝐵𝜑) → 𝑥 = 𝑧)))
54alimi 1809 . . . . 5 (∀𝑥(𝑥𝐴𝑥𝐵) → ∀𝑥(((𝑥𝐴𝜑) → 𝑥 = 𝑧) ↔ ((𝑥𝐵𝜑) → 𝑥 = 𝑧)))
6 albi 1816 . . . . 5 (∀𝑥(((𝑥𝐴𝜑) → 𝑥 = 𝑧) ↔ ((𝑥𝐵𝜑) → 𝑥 = 𝑧)) → (∀𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑧) ↔ ∀𝑥((𝑥𝐵𝜑) → 𝑥 = 𝑧)))
72, 5, 63syl 18 . . . 4 (𝐴 = 𝐵 → (∀𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑧) ↔ ∀𝑥((𝑥𝐵𝜑) → 𝑥 = 𝑧)))
87exbidv 1920 . . 3 (𝐴 = 𝐵 → (∃𝑧𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑧) ↔ ∃𝑧𝑥((𝑥𝐵𝜑) → 𝑥 = 𝑧)))
9 df-mo 2543 . . 3 (∃*𝑥(𝑥𝐴𝜑) ↔ ∃𝑧𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑧))
10 df-mo 2543 . . 3 (∃*𝑥(𝑥𝐵𝜑) ↔ ∃𝑧𝑥((𝑥𝐵𝜑) → 𝑥 = 𝑧))
118, 9, 103bitr4g 314 . 2 (𝐴 = 𝐵 → (∃*𝑥(𝑥𝐴𝜑) ↔ ∃*𝑥(𝑥𝐵𝜑)))
12 df-rmo 3388 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
13 df-rmo 3388 . 2 (∃*𝑥𝐵 𝜑 ↔ ∃*𝑥(𝑥𝐵𝜑))
1411, 12, 133bitr4g 314 1 (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wex 1777  wcel 2108  ∃*wmo 2541  ∃*wrmo 3387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543  df-cleq 2732  df-rmo 3388
This theorem is referenced by:  reueq1  3426  rmoeqd  3429  rmosn  4744  rmoeqdv  36176  poimirlem2  37582
  Copyright terms: Public domain W3C validator