| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rmoeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.) Remove usage of ax-10 2144, ax-11 2160, and ax-12 2180. (Revised by Steven Nguyen, 30-Apr-2023.) Avoid ax-8 2113. (Revised by Wolf Lammen, 12-Mar-2025.) |
| Ref | Expression |
|---|---|
| rmoeq1 | ⊢ (𝐴 = 𝐵 → (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2724 | . . . . . 6 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | biimpi 216 | . . . . 5 ⊢ (𝐴 = 𝐵 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 3 | anbi1 633 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 4 | 3 | imbi1d 341 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → (((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑧) ↔ ((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝑥 = 𝑧))) |
| 5 | 4 | alimi 1812 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ∀𝑥(((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑧) ↔ ((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝑥 = 𝑧))) |
| 6 | albi 1819 | . . . . 5 ⊢ (∀𝑥(((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑧) ↔ ((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝑥 = 𝑧)) → (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑧) ↔ ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝑥 = 𝑧))) | |
| 7 | 2, 5, 6 | 3syl 18 | . . . 4 ⊢ (𝐴 = 𝐵 → (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑧) ↔ ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝑥 = 𝑧))) |
| 8 | 7 | exbidv 1922 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑧∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑧) ↔ ∃𝑧∀𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝑥 = 𝑧))) |
| 9 | df-mo 2535 | . . 3 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑧∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑧)) | |
| 10 | df-mo 2535 | . . 3 ⊢ (∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑) ↔ ∃𝑧∀𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝑥 = 𝑧)) | |
| 11 | 8, 9, 10 | 3bitr4g 314 | . 2 ⊢ (𝐴 = 𝐵 → (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 12 | df-rmo 3346 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 13 | df-rmo 3346 | . 2 ⊢ (∃*𝑥 ∈ 𝐵 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 14 | 11, 12, 13 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃*wmo 2533 ∃*wrmo 3345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-mo 2535 df-cleq 2723 df-rmo 3346 |
| This theorem is referenced by: reueq1 3378 rmoeqd 3381 rmosn 4669 rmoeqdv 36254 poimirlem2 37670 |
| Copyright terms: Public domain | W3C validator |