| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) Remove usage of ax-10 2146, ax-11 2162, and ax-12 2182. (Revised by Steven Nguyen, 30-Apr-2023.) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| rexeq | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2726 | . . 3 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | anbi1 633 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 3 | 2 | alexbii 1834 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 4 | 1, 3 | sylbi 217 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 5 | df-rex 3058 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | df-rex 3058 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-rex 3058 |
| This theorem is referenced by: raleq 3290 rexeqi 3292 rexeqdv 3294 reueq1 3379 axrep6g 5232 exss 5408 qseq1 8689 pssnn 9087 indexfi 9253 supeq1 9338 bnd2 9795 dfac2b 10031 cflem 10145 cflemOLD 10146 cflecard 10153 cfeq0 10156 cfsuc 10157 cfflb 10159 cofsmo 10169 elwina 10586 eltskg 10650 rankcf 10677 elnp 10887 elnpi 10888 genpv 10899 xrsupsslem 13210 xrinfmsslem 13211 xrsupss 13212 xrinfmss 13213 hashge2el2difr 14392 cat1 18008 isdrs 18211 isipodrs 18447 neifval 23017 ishaus 23240 2ndc1stc 23369 1stcrest 23371 lly1stc 23414 isref 23427 islocfin 23435 tx1stc 23568 isust 24122 iscfilu 24205 met1stc 24439 iscfil 25195 noetasuplem4 27678 precsexlemcbv 28147 precsexlem3 28150 ishpg 28740 isgrpo 30481 chne0 31478 rprmdvdsprod 33508 constrsuc 33774 constrcbvlem 33791 pstmfval 33932 dya2iocuni 34319 satfvsuc 35428 satf0suc 35443 sat1el2xp 35446 fmlasuc0 35451 altxpeq1 36040 altxpeq2 36041 elhf2 36242 bj-sngleq 37034 cover2g 37779 indexdom 37797 istotbnd 37832 pmapglb2xN 39894 paddval 39920 elpadd0 39931 diophrex 42895 hbtlem1 43243 hbtlem7 43245 tfsconcatb0 43464 mnuop23d 44386 ismnushort 44421 sprval 47606 sprsymrelfvlem 47617 sprsymrelfv 47621 sprsymrelfo 47624 prprval 47641 |
| Copyright terms: Public domain | W3C validator |