| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) Remove usage of ax-10 2142, ax-11 2158, and ax-12 2178. (Revised by Steven Nguyen, 30-Apr-2023.) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| rexeq | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2729 | . . 3 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | anbi1 633 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 3 | 2 | alexbii 1833 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 4 | 1, 3 | sylbi 217 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 5 | df-rex 3062 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | df-rex 3062 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-rex 3062 |
| This theorem is referenced by: raleq 3306 rexeqi 3308 rexeqdv 3310 reueq1 3401 axrep6g 5265 exss 5443 qseq1 8780 pssnn 9187 1sdomOLD 9262 indexfi 9377 supeq1 9462 bnd2 9912 dfac2b 10150 cflem 10264 cflemOLD 10265 cflecard 10272 cfeq0 10275 cfsuc 10276 cfflb 10278 cofsmo 10288 elwina 10705 eltskg 10769 rankcf 10796 elnp 11006 elnpi 11007 genpv 11018 xrsupsslem 13328 xrinfmsslem 13329 xrsupss 13330 xrinfmss 13331 hashge2el2difr 14504 cat1 18115 isdrs 18318 isipodrs 18552 neifval 23042 ishaus 23265 2ndc1stc 23394 1stcrest 23396 lly1stc 23439 isref 23452 islocfin 23460 tx1stc 23593 isust 24147 iscfilu 24231 met1stc 24465 iscfil 25222 noetasuplem4 27705 precsexlemcbv 28165 precsexlem3 28168 ishpg 28743 isgrpo 30483 chne0 31480 rprmdvdsprod 33554 constrsuc 33777 constrcbvlem 33794 pstmfval 33932 dya2iocuni 34320 satfvsuc 35388 satf0suc 35403 sat1el2xp 35406 fmlasuc0 35411 altxpeq1 35996 altxpeq2 35997 elhf2 36198 bj-sngleq 36990 cover2g 37745 indexdom 37763 istotbnd 37798 pmapglb2xN 39796 paddval 39822 elpadd0 39833 diophrex 42765 hbtlem1 43114 hbtlem7 43116 tfsconcatb0 43335 mnuop23d 44257 ismnushort 44292 sprval 47460 sprsymrelfvlem 47471 sprsymrelfv 47475 sprsymrelfo 47478 prprval 47495 |
| Copyright terms: Public domain | W3C validator |