|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rexeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) Remove usage of ax-10 2140, ax-11 2156, and ax-12 2176. (Revised by Steven Nguyen, 30-Apr-2023.) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025.) | 
| Ref | Expression | 
|---|---|
| rexeq | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfcleq 2729 | . . 3 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | anbi1 633 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 3 | 2 | alexbii 1832 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) | 
| 4 | 1, 3 | sylbi 217 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) | 
| 5 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∃wrex 3069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-rex 3070 | 
| This theorem is referenced by: raleq 3322 rexeqi 3324 rexeqdv 3326 reueq1 3416 axrep6g 5289 exss 5467 qseq1 8802 pssnn 9209 1sdomOLD 9286 indexfi 9401 supeq1 9486 bnd2 9934 dfac2b 10172 cflem 10286 cflemOLD 10287 cflecard 10294 cfeq0 10297 cfsuc 10298 cfflb 10300 cofsmo 10310 elwina 10727 eltskg 10791 rankcf 10818 elnp 11028 elnpi 11029 genpv 11040 xrsupsslem 13350 xrinfmsslem 13351 xrsupss 13352 xrinfmss 13353 hashge2el2difr 14521 cat1 18143 isdrs 18348 isipodrs 18583 neifval 23108 ishaus 23331 2ndc1stc 23460 1stcrest 23462 lly1stc 23505 isref 23518 islocfin 23526 tx1stc 23659 isust 24213 iscfilu 24298 met1stc 24535 iscfil 25300 noetasuplem4 27782 precsexlemcbv 28231 precsexlem3 28234 ishpg 28768 isgrpo 30517 chne0 31514 rprmdvdsprod 33563 constrsuc 33780 pstmfval 33896 dya2iocuni 34286 satfvsuc 35367 satf0suc 35382 sat1el2xp 35385 fmlasuc0 35390 altxpeq1 35975 altxpeq2 35976 elhf2 36177 bj-sngleq 36969 cover2g 37724 indexdom 37742 istotbnd 37777 pmapglb2xN 39775 paddval 39801 elpadd0 39812 diophrex 42791 hbtlem1 43140 hbtlem7 43142 tfsconcatb0 43362 mnuop23d 44290 ismnushort 44325 sprval 47471 sprsymrelfvlem 47482 sprsymrelfv 47486 sprsymrelfo 47489 prprval 47506 | 
| Copyright terms: Public domain | W3C validator |