![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexeq | Structured version Visualization version GIF version |
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) Remove usage of ax-10 2136, ax-11 2153, and ax-12 2170. (Revised by Steven Nguyen, 30-Apr-2023.) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025.) |
Ref | Expression |
---|---|
rexeq | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2724 | . . 3 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | anbi1 631 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
3 | 2 | alexbii 1834 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
4 | 1, 3 | sylbi 216 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
5 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ∃wrex 3069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-cleq 2723 df-rex 3070 |
This theorem is referenced by: raleq 3321 rexeqi 3323 rexeqdv 3325 reueq1 3414 unieqOLD 4920 axrep6g 5293 exss 5463 qseq1 8763 pssnn 9174 1sdomOLD 9255 pssnnOLD 9271 indexfi 9366 supeq1 9446 bnd2 9894 dfac2b 10131 cflem 10247 cflecard 10254 cfeq0 10257 cfsuc 10258 cfflb 10260 cofsmo 10270 elwina 10687 eltskg 10751 rankcf 10778 elnp 10988 elnpi 10989 genpv 11000 xrsupsslem 13293 xrinfmsslem 13294 xrsupss 13295 xrinfmss 13296 hashge2el2difr 14449 cat1 18057 isdrs 18264 isipodrs 18500 neifval 22923 ishaus 23146 2ndc1stc 23275 1stcrest 23277 lly1stc 23320 isref 23333 islocfin 23341 tx1stc 23474 isust 24028 iscfilu 24113 met1stc 24350 iscfil 25113 noetasuplem4 27582 precsexlemcbv 28017 precsexlem3 28020 ishpg 28443 isgrpo 30183 chne0 31180 pstmfval 33340 dya2iocuni 33746 satfvsuc 34816 satf0suc 34831 sat1el2xp 34834 fmlasuc0 34839 altxpeq1 35415 altxpeq2 35416 elhf2 35617 bj-sngleq 36312 cover2g 37048 indexdom 37066 istotbnd 37101 pmapglb2xN 39107 paddval 39133 elpadd0 39144 diophrex 41976 hbtlem1 42328 hbtlem7 42330 tfsconcatb0 42557 mnuop23d 43488 ismnushort 43523 sprval 46606 sprsymrelfvlem 46617 sprsymrelfv 46621 sprsymrelfo 46624 prprval 46641 |
Copyright terms: Public domain | W3C validator |