Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexeq | Structured version Visualization version GIF version |
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) Remove usage of ax-10 2139, ax-11 2156, and ax-12 2173. (Revised by Steven Nguyen, 30-Apr-2023.) |
Ref | Expression |
---|---|
rexeq | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 261 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜑)) | |
2 | 1 | rexeqbi1dv 3332 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-ral 3068 df-rex 3069 |
This theorem is referenced by: rexeqi 3338 rexeqdv 3340 unieqOLD 4848 exss 5372 qseq1 8510 pssnn 8913 1sdom 8955 pssnnOLD 8969 indexfi 9057 supeq1 9134 bnd2 9582 dfac2b 9817 cflem 9933 cflecard 9940 cfeq0 9943 cfsuc 9944 cfflb 9946 cofsmo 9956 elwina 10373 eltskg 10437 rankcf 10464 elnp 10674 elnpi 10675 genpv 10686 xrsupsslem 12970 xrinfmsslem 12971 xrsupss 12972 xrinfmss 12973 hashge2el2difr 14123 cat1 17728 isdrs 17934 isipodrs 18170 neifval 22158 ishaus 22381 2ndc1stc 22510 1stcrest 22512 lly1stc 22555 isref 22568 islocfin 22576 tx1stc 22709 isust 23263 iscfilu 23348 met1stc 23583 iscfil 24334 ishpg 27024 isgrpo 28760 chne0 29757 pstmfval 31748 dya2iocuni 32150 satfvsuc 33223 satf0suc 33238 sat1el2xp 33241 fmlasuc0 33246 noetasuplem4 33866 altxpeq1 34202 altxpeq2 34203 elhf2 34404 bj-sngleq 35084 cover2g 35800 indexdom 35819 istotbnd 35854 pmapglb2xN 37713 paddval 37739 elpadd0 37750 diophrex 40513 hbtlem1 40864 hbtlem7 40866 mnuop23d 41773 ismnushort 41808 sprval 44819 sprsymrelfvlem 44830 sprsymrelfv 44834 sprsymrelfo 44837 prprval 44854 |
Copyright terms: Public domain | W3C validator |