![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexeq | Structured version Visualization version GIF version |
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) Remove usage of ax-10 2141, ax-11 2158, and ax-12 2178. (Revised by Steven Nguyen, 30-Apr-2023.) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025.) |
Ref | Expression |
---|---|
rexeq | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2733 | . . 3 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | anbi1 632 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
3 | 2 | alexbii 1831 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
4 | 1, 3 | sylbi 217 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
5 | df-rex 3077 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | df-rex 3077 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-rex 3077 |
This theorem is referenced by: raleq 3331 rexeqi 3333 rexeqdv 3335 reueq1 3426 axrep6g 5311 exss 5483 qseq1 8819 pssnn 9234 1sdomOLD 9312 indexfi 9430 supeq1 9514 bnd2 9962 dfac2b 10200 cflem 10314 cflemOLD 10315 cflecard 10322 cfeq0 10325 cfsuc 10326 cfflb 10328 cofsmo 10338 elwina 10755 eltskg 10819 rankcf 10846 elnp 11056 elnpi 11057 genpv 11068 xrsupsslem 13369 xrinfmsslem 13370 xrsupss 13371 xrinfmss 13372 hashge2el2difr 14530 cat1 18164 isdrs 18371 isipodrs 18607 neifval 23128 ishaus 23351 2ndc1stc 23480 1stcrest 23482 lly1stc 23525 isref 23538 islocfin 23546 tx1stc 23679 isust 24233 iscfilu 24318 met1stc 24555 iscfil 25318 noetasuplem4 27799 precsexlemcbv 28248 precsexlem3 28251 ishpg 28785 isgrpo 30529 chne0 31526 rprmdvdsprod 33527 constrsuc 33728 pstmfval 33842 dya2iocuni 34248 satfvsuc 35329 satf0suc 35344 sat1el2xp 35347 fmlasuc0 35352 altxpeq1 35937 altxpeq2 35938 elhf2 36139 bj-sngleq 36933 cover2g 37676 indexdom 37694 istotbnd 37729 pmapglb2xN 39729 paddval 39755 elpadd0 39766 diophrex 42731 hbtlem1 43080 hbtlem7 43082 tfsconcatb0 43306 mnuop23d 44235 ismnushort 44270 sprval 47353 sprsymrelfvlem 47364 sprsymrelfv 47368 sprsymrelfo 47371 prprval 47388 |
Copyright terms: Public domain | W3C validator |