| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) Remove usage of ax-10 2142, ax-11 2158, and ax-12 2178. (Revised by Steven Nguyen, 30-Apr-2023.) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| rexeq | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2722 | . . 3 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | anbi1 633 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 3 | 2 | alexbii 1833 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 4 | 1, 3 | sylbi 217 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 5 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-rex 3054 |
| This theorem is referenced by: raleq 3287 rexeqi 3289 rexeqdv 3291 reueq1 3379 axrep6g 5232 exss 5410 qseq1 8691 pssnn 9092 indexfi 9269 supeq1 9354 bnd2 9808 dfac2b 10044 cflem 10158 cflemOLD 10159 cflecard 10166 cfeq0 10169 cfsuc 10170 cfflb 10172 cofsmo 10182 elwina 10599 eltskg 10663 rankcf 10690 elnp 10900 elnpi 10901 genpv 10912 xrsupsslem 13227 xrinfmsslem 13228 xrsupss 13229 xrinfmss 13230 hashge2el2difr 14406 cat1 18022 isdrs 18225 isipodrs 18461 neifval 23002 ishaus 23225 2ndc1stc 23354 1stcrest 23356 lly1stc 23399 isref 23412 islocfin 23420 tx1stc 23553 isust 24107 iscfilu 24191 met1stc 24425 iscfil 25181 noetasuplem4 27664 precsexlemcbv 28131 precsexlem3 28134 ishpg 28722 isgrpo 30459 chne0 31456 rprmdvdsprod 33484 constrsuc 33707 constrcbvlem 33724 pstmfval 33865 dya2iocuni 34253 satfvsuc 35336 satf0suc 35351 sat1el2xp 35354 fmlasuc0 35359 altxpeq1 35949 altxpeq2 35950 elhf2 36151 bj-sngleq 36943 cover2g 37698 indexdom 37716 istotbnd 37751 pmapglb2xN 39754 paddval 39780 elpadd0 39791 diophrex 42751 hbtlem1 43099 hbtlem7 43101 tfsconcatb0 43320 mnuop23d 44242 ismnushort 44277 sprval 47467 sprsymrelfvlem 47478 sprsymrelfv 47482 sprsymrelfo 47485 prprval 47502 |
| Copyright terms: Public domain | W3C validator |