| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) Remove usage of ax-10 2144, ax-11 2160, and ax-12 2180. (Revised by Steven Nguyen, 30-Apr-2023.) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| rexeq | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2724 | . . 3 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | anbi1 633 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 3 | 2 | alexbii 1834 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 4 | 1, 3 | sylbi 217 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 5 | df-rex 3057 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | df-rex 3057 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-rex 3057 |
| This theorem is referenced by: raleq 3289 rexeqi 3291 rexeqdv 3293 reueq1 3378 axrep6g 5228 exss 5403 qseq1 8681 pssnn 9078 indexfi 9244 supeq1 9329 bnd2 9786 dfac2b 10022 cflem 10136 cflemOLD 10137 cflecard 10144 cfeq0 10147 cfsuc 10148 cfflb 10150 cofsmo 10160 elwina 10577 eltskg 10641 rankcf 10668 elnp 10878 elnpi 10879 genpv 10890 xrsupsslem 13206 xrinfmsslem 13207 xrsupss 13208 xrinfmss 13209 hashge2el2difr 14388 cat1 18004 isdrs 18207 isipodrs 18443 neifval 23015 ishaus 23238 2ndc1stc 23367 1stcrest 23369 lly1stc 23412 isref 23425 islocfin 23433 tx1stc 23566 isust 24120 iscfilu 24203 met1stc 24437 iscfil 25193 noetasuplem4 27676 precsexlemcbv 28145 precsexlem3 28148 ishpg 28738 isgrpo 30475 chne0 31472 rprmdvdsprod 33497 constrsuc 33749 constrcbvlem 33766 pstmfval 33907 dya2iocuni 34294 satfvsuc 35403 satf0suc 35418 sat1el2xp 35421 fmlasuc0 35426 altxpeq1 36013 altxpeq2 36014 elhf2 36215 bj-sngleq 37007 cover2g 37762 indexdom 37780 istotbnd 37815 pmapglb2xN 39817 paddval 39843 elpadd0 39854 diophrex 42814 hbtlem1 43162 hbtlem7 43164 tfsconcatb0 43383 mnuop23d 44305 ismnushort 44340 sprval 47516 sprsymrelfvlem 47527 sprsymrelfv 47531 sprsymrelfo 47534 prprval 47551 |
| Copyright terms: Public domain | W3C validator |