| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) Remove usage of ax-10 2142, ax-11 2158, and ax-12 2178. (Revised by Steven Nguyen, 30-Apr-2023.) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| rexeq | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2722 | . . 3 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | anbi1 633 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 3 | 2 | alexbii 1833 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 4 | 1, 3 | sylbi 217 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 5 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-rex 3054 |
| This theorem is referenced by: raleq 3296 rexeqi 3298 rexeqdv 3300 reueq1 3388 axrep6g 5245 exss 5423 qseq1 8730 pssnn 9132 1sdomOLD 9196 indexfi 9311 supeq1 9396 bnd2 9846 dfac2b 10084 cflem 10198 cflemOLD 10199 cflecard 10206 cfeq0 10209 cfsuc 10210 cfflb 10212 cofsmo 10222 elwina 10639 eltskg 10703 rankcf 10730 elnp 10940 elnpi 10941 genpv 10952 xrsupsslem 13267 xrinfmsslem 13268 xrsupss 13269 xrinfmss 13270 hashge2el2difr 14446 cat1 18059 isdrs 18262 isipodrs 18496 neifval 22986 ishaus 23209 2ndc1stc 23338 1stcrest 23340 lly1stc 23383 isref 23396 islocfin 23404 tx1stc 23537 isust 24091 iscfilu 24175 met1stc 24409 iscfil 25165 noetasuplem4 27648 precsexlemcbv 28108 precsexlem3 28111 ishpg 28686 isgrpo 30426 chne0 31423 rprmdvdsprod 33505 constrsuc 33728 constrcbvlem 33745 pstmfval 33886 dya2iocuni 34274 satfvsuc 35348 satf0suc 35363 sat1el2xp 35366 fmlasuc0 35371 altxpeq1 35961 altxpeq2 35962 elhf2 36163 bj-sngleq 36955 cover2g 37710 indexdom 37728 istotbnd 37763 pmapglb2xN 39766 paddval 39792 elpadd0 39803 diophrex 42763 hbtlem1 43112 hbtlem7 43114 tfsconcatb0 43333 mnuop23d 44255 ismnushort 44290 sprval 47480 sprsymrelfvlem 47491 sprsymrelfv 47495 sprsymrelfo 47498 prprval 47515 |
| Copyright terms: Public domain | W3C validator |