| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) Remove usage of ax-10 2142, ax-11 2158, and ax-12 2178. (Revised by Steven Nguyen, 30-Apr-2023.) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| rexeq | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2723 | . . 3 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | anbi1 633 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 3 | 2 | alexbii 1833 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 4 | 1, 3 | sylbi 217 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 5 | df-rex 3055 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | df-rex 3055 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-rex 3055 |
| This theorem is referenced by: raleq 3298 rexeqi 3300 rexeqdv 3302 reueq1 3391 axrep6g 5248 exss 5426 qseq1 8733 pssnn 9138 1sdomOLD 9203 indexfi 9318 supeq1 9403 bnd2 9853 dfac2b 10091 cflem 10205 cflemOLD 10206 cflecard 10213 cfeq0 10216 cfsuc 10217 cfflb 10219 cofsmo 10229 elwina 10646 eltskg 10710 rankcf 10737 elnp 10947 elnpi 10948 genpv 10959 xrsupsslem 13274 xrinfmsslem 13275 xrsupss 13276 xrinfmss 13277 hashge2el2difr 14453 cat1 18066 isdrs 18269 isipodrs 18503 neifval 22993 ishaus 23216 2ndc1stc 23345 1stcrest 23347 lly1stc 23390 isref 23403 islocfin 23411 tx1stc 23544 isust 24098 iscfilu 24182 met1stc 24416 iscfil 25172 noetasuplem4 27655 precsexlemcbv 28115 precsexlem3 28118 ishpg 28693 isgrpo 30433 chne0 31430 rprmdvdsprod 33512 constrsuc 33735 constrcbvlem 33752 pstmfval 33893 dya2iocuni 34281 satfvsuc 35355 satf0suc 35370 sat1el2xp 35373 fmlasuc0 35378 altxpeq1 35968 altxpeq2 35969 elhf2 36170 bj-sngleq 36962 cover2g 37717 indexdom 37735 istotbnd 37770 pmapglb2xN 39773 paddval 39799 elpadd0 39810 diophrex 42770 hbtlem1 43119 hbtlem7 43121 tfsconcatb0 43340 mnuop23d 44262 ismnushort 44297 sprval 47484 sprsymrelfvlem 47495 sprsymrelfv 47499 sprsymrelfo 47502 prprval 47519 |
| Copyright terms: Public domain | W3C validator |