Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eccnvepres | Structured version Visualization version GIF version |
Description: Restricted converse epsilon coset of 𝐵. (Contributed by Peter Mazsa, 11-Feb-2018.) (Revised by Peter Mazsa, 21-Oct-2021.) |
Ref | Expression |
---|---|
eccnvepres | ⊢ (𝐵 ∈ 𝑉 → [𝐵](◡ E ↾ 𝐴) = {𝑥 ∈ 𝐵 ∣ 𝐵 ∈ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcnvep 36331 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝐵◡ E 𝑥 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | anbi1cd 633 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ((𝐵 ∈ 𝐴 ∧ 𝐵◡ E 𝑥) ↔ (𝑥 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴))) |
3 | 2 | abbidv 2808 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑥 ∣ (𝐵 ∈ 𝐴 ∧ 𝐵◡ E 𝑥)} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)}) |
4 | ecres 36340 | . 2 ⊢ [𝐵](◡ E ↾ 𝐴) = {𝑥 ∣ (𝐵 ∈ 𝐴 ∧ 𝐵◡ E 𝑥)} | |
5 | df-rab 3072 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝐵 ∈ 𝐴} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)} | |
6 | 3, 4, 5 | 3eqtr4g 2804 | 1 ⊢ (𝐵 ∈ 𝑉 → [𝐵](◡ E ↾ 𝐴) = {𝑥 ∈ 𝐵 ∣ 𝐵 ∈ 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 {crab 3067 class class class wbr 5070 E cep 5485 ◡ccnv 5579 ↾ cres 5582 [cec 8454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-eprel 5486 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |