Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eccnvepres Structured version   Visualization version   GIF version

Theorem eccnvepres 38328
Description: Restricted converse epsilon coset of 𝐵. (Contributed by Peter Mazsa, 11-Feb-2018.) (Revised by Peter Mazsa, 21-Oct-2021.)
Assertion
Ref Expression
eccnvepres (𝐵𝑉 → [𝐵]( E ↾ 𝐴) = {𝑥𝐵𝐵𝐴})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉

Proof of Theorem eccnvepres
StepHypRef Expression
1 brcnvep 38312 . . . 4 (𝐵𝑉 → (𝐵 E 𝑥𝑥𝐵))
21anbi1cd 635 . . 3 (𝐵𝑉 → ((𝐵𝐴𝐵 E 𝑥) ↔ (𝑥𝐵𝐵𝐴)))
32abbidv 2797 . 2 (𝐵𝑉 → {𝑥 ∣ (𝐵𝐴𝐵 E 𝑥)} = {𝑥 ∣ (𝑥𝐵𝐵𝐴)})
4 ecres 38327 . 2 [𝐵]( E ↾ 𝐴) = {𝑥 ∣ (𝐵𝐴𝐵 E 𝑥)}
5 df-rab 3396 . 2 {𝑥𝐵𝐵𝐴} = {𝑥 ∣ (𝑥𝐵𝐵𝐴)}
63, 4, 53eqtr4g 2791 1 (𝐵𝑉 → [𝐵]( E ↾ 𝐴) = {𝑥𝐵𝐵𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  {crab 3395   class class class wbr 5089   E cep 5513  ccnv 5613  cres 5616  [cec 8620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-eprel 5514  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator