Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eccnvepres Structured version   Visualization version   GIF version

Theorem eccnvepres 36342
Description: Restricted converse epsilon coset of 𝐵. (Contributed by Peter Mazsa, 11-Feb-2018.) (Revised by Peter Mazsa, 21-Oct-2021.)
Assertion
Ref Expression
eccnvepres (𝐵𝑉 → [𝐵]( E ↾ 𝐴) = {𝑥𝐵𝐵𝐴})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉

Proof of Theorem eccnvepres
StepHypRef Expression
1 brcnvep 36331 . . . 4 (𝐵𝑉 → (𝐵 E 𝑥𝑥𝐵))
21anbi1cd 633 . . 3 (𝐵𝑉 → ((𝐵𝐴𝐵 E 𝑥) ↔ (𝑥𝐵𝐵𝐴)))
32abbidv 2808 . 2 (𝐵𝑉 → {𝑥 ∣ (𝐵𝐴𝐵 E 𝑥)} = {𝑥 ∣ (𝑥𝐵𝐵𝐴)})
4 ecres 36340 . 2 [𝐵]( E ↾ 𝐴) = {𝑥 ∣ (𝐵𝐴𝐵 E 𝑥)}
5 df-rab 3072 . 2 {𝑥𝐵𝐵𝐴} = {𝑥 ∣ (𝑥𝐵𝐵𝐴)}
63, 4, 53eqtr4g 2804 1 (𝐵𝑉 → [𝐵]( E ↾ 𝐴) = {𝑥𝐵𝐵𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  {crab 3067   class class class wbr 5070   E cep 5485  ccnv 5579  cres 5582  [cec 8454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-eprel 5486  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ec 8458
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator