![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eccnvepres | Structured version Visualization version GIF version |
Description: Restricted converse epsilon coset of 𝐵. (Contributed by Peter Mazsa, 11-Feb-2018.) (Revised by Peter Mazsa, 21-Oct-2021.) |
Ref | Expression |
---|---|
eccnvepres | ⊢ (𝐵 ∈ 𝑉 → [𝐵](◡ E ↾ 𝐴) = {𝑥 ∈ 𝐵 ∣ 𝐵 ∈ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcnvep 37623 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝐵◡ E 𝑥 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | anbi1cd 633 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ((𝐵 ∈ 𝐴 ∧ 𝐵◡ E 𝑥) ↔ (𝑥 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴))) |
3 | 2 | abbidv 2793 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑥 ∣ (𝐵 ∈ 𝐴 ∧ 𝐵◡ E 𝑥)} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)}) |
4 | ecres 37636 | . 2 ⊢ [𝐵](◡ E ↾ 𝐴) = {𝑥 ∣ (𝐵 ∈ 𝐴 ∧ 𝐵◡ E 𝑥)} | |
5 | df-rab 3425 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝐵 ∈ 𝐴} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)} | |
6 | 3, 4, 5 | 3eqtr4g 2789 | 1 ⊢ (𝐵 ∈ 𝑉 → [𝐵](◡ E ↾ 𝐴) = {𝑥 ∈ 𝐵 ∣ 𝐵 ∈ 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {cab 2701 {crab 3424 class class class wbr 5138 E cep 5569 ◡ccnv 5665 ↾ cres 5668 [cec 8697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-eprel 5570 df-xp 5672 df-rel 5673 df-cnv 5674 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-ec 8701 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |