Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eccnvepres Structured version   Visualization version   GIF version

Theorem eccnvepres 38215
Description: Restricted converse epsilon coset of 𝐵. (Contributed by Peter Mazsa, 11-Feb-2018.) (Revised by Peter Mazsa, 21-Oct-2021.)
Assertion
Ref Expression
eccnvepres (𝐵𝑉 → [𝐵]( E ↾ 𝐴) = {𝑥𝐵𝐵𝐴})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉

Proof of Theorem eccnvepres
StepHypRef Expression
1 brcnvep 38200 . . . 4 (𝐵𝑉 → (𝐵 E 𝑥𝑥𝐵))
21anbi1cd 635 . . 3 (𝐵𝑉 → ((𝐵𝐴𝐵 E 𝑥) ↔ (𝑥𝐵𝐵𝐴)))
32abbidv 2800 . 2 (𝐵𝑉 → {𝑥 ∣ (𝐵𝐴𝐵 E 𝑥)} = {𝑥 ∣ (𝑥𝐵𝐵𝐴)})
4 ecres 38213 . 2 [𝐵]( E ↾ 𝐴) = {𝑥 ∣ (𝐵𝐴𝐵 E 𝑥)}
5 df-rab 3420 . 2 {𝑥𝐵𝐵𝐴} = {𝑥 ∣ (𝑥𝐵𝐵𝐴)}
63, 4, 53eqtr4g 2794 1 (𝐵𝑉 → [𝐵]( E ↾ 𝐴) = {𝑥𝐵𝐵𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2712  {crab 3419   class class class wbr 5123   E cep 5563  ccnv 5664  cres 5667  [cec 8724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-eprel 5564  df-xp 5671  df-rel 5672  df-cnv 5673  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ec 8728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator