| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eccnvepres | Structured version Visualization version GIF version | ||
| Description: Restricted converse epsilon coset of 𝐵. (Contributed by Peter Mazsa, 11-Feb-2018.) (Revised by Peter Mazsa, 21-Oct-2021.) |
| Ref | Expression |
|---|---|
| eccnvepres | ⊢ (𝐵 ∈ 𝑉 → [𝐵](◡ E ↾ 𝐴) = {𝑥 ∈ 𝐵 ∣ 𝐵 ∈ 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcnvep 38249 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝐵◡ E 𝑥 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anbi1cd 635 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ((𝐵 ∈ 𝐴 ∧ 𝐵◡ E 𝑥) ↔ (𝑥 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴))) |
| 3 | 2 | abbidv 2796 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑥 ∣ (𝐵 ∈ 𝐴 ∧ 𝐵◡ E 𝑥)} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)}) |
| 4 | ecres 38262 | . 2 ⊢ [𝐵](◡ E ↾ 𝐴) = {𝑥 ∣ (𝐵 ∈ 𝐴 ∧ 𝐵◡ E 𝑥)} | |
| 5 | df-rab 3409 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝐵 ∈ 𝐴} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)} | |
| 6 | 3, 4, 5 | 3eqtr4g 2790 | 1 ⊢ (𝐵 ∈ 𝑉 → [𝐵](◡ E ↾ 𝐴) = {𝑥 ∈ 𝐵 ∣ 𝐵 ∈ 𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 {crab 3408 class class class wbr 5109 E cep 5539 ◡ccnv 5639 ↾ cres 5642 [cec 8671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-eprel 5540 df-xp 5646 df-rel 5647 df-cnv 5648 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-ec 8675 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |