Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eccnvepres Structured version   Visualization version   GIF version

Theorem eccnvepres 38265
Description: Restricted converse epsilon coset of 𝐵. (Contributed by Peter Mazsa, 11-Feb-2018.) (Revised by Peter Mazsa, 21-Oct-2021.)
Assertion
Ref Expression
eccnvepres (𝐵𝑉 → [𝐵]( E ↾ 𝐴) = {𝑥𝐵𝐵𝐴})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉

Proof of Theorem eccnvepres
StepHypRef Expression
1 brcnvep 38250 . . . 4 (𝐵𝑉 → (𝐵 E 𝑥𝑥𝐵))
21anbi1cd 635 . . 3 (𝐵𝑉 → ((𝐵𝐴𝐵 E 𝑥) ↔ (𝑥𝐵𝐵𝐴)))
32abbidv 2796 . 2 (𝐵𝑉 → {𝑥 ∣ (𝐵𝐴𝐵 E 𝑥)} = {𝑥 ∣ (𝑥𝐵𝐵𝐴)})
4 ecres 38263 . 2 [𝐵]( E ↾ 𝐴) = {𝑥 ∣ (𝐵𝐴𝐵 E 𝑥)}
5 df-rab 3412 . 2 {𝑥𝐵𝐵𝐴} = {𝑥 ∣ (𝑥𝐵𝐵𝐴)}
63, 4, 53eqtr4g 2790 1 (𝐵𝑉 → [𝐵]( E ↾ 𝐴) = {𝑥𝐵𝐵𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2708  {crab 3411   class class class wbr 5115   E cep 5545  ccnv 5645  cres 5648  [cec 8680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-br 5116  df-opab 5178  df-eprel 5546  df-xp 5652  df-rel 5653  df-cnv 5654  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-ec 8684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator