Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eccnvepres | Structured version Visualization version GIF version |
Description: Restricted converse epsilon coset of 𝐵. (Contributed by Peter Mazsa, 11-Feb-2018.) (Revised by Peter Mazsa, 21-Oct-2021.) |
Ref | Expression |
---|---|
eccnvepres | ⊢ (𝐵 ∈ 𝑉 → [𝐵](◡ E ↾ 𝐴) = {𝑥 ∈ 𝐵 ∣ 𝐵 ∈ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcnvep 36383 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝐵◡ E 𝑥 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | anbi1cd 633 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ((𝐵 ∈ 𝐴 ∧ 𝐵◡ E 𝑥) ↔ (𝑥 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴))) |
3 | 2 | abbidv 2808 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑥 ∣ (𝐵 ∈ 𝐴 ∧ 𝐵◡ E 𝑥)} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)}) |
4 | ecres 36392 | . 2 ⊢ [𝐵](◡ E ↾ 𝐴) = {𝑥 ∣ (𝐵 ∈ 𝐴 ∧ 𝐵◡ E 𝑥)} | |
5 | df-rab 3074 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝐵 ∈ 𝐴} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)} | |
6 | 3, 4, 5 | 3eqtr4g 2804 | 1 ⊢ (𝐵 ∈ 𝑉 → [𝐵](◡ E ↾ 𝐴) = {𝑥 ∈ 𝐵 ∣ 𝐵 ∈ 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 {cab 2716 {crab 3069 class class class wbr 5078 E cep 5493 ◡ccnv 5587 ↾ cres 5590 [cec 8470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-eprel 5494 df-xp 5594 df-rel 5595 df-cnv 5596 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-ec 8474 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |