Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eccnvepres Structured version   Visualization version   GIF version

Theorem eccnvepres 37638
Description: Restricted converse epsilon coset of 𝐵. (Contributed by Peter Mazsa, 11-Feb-2018.) (Revised by Peter Mazsa, 21-Oct-2021.)
Assertion
Ref Expression
eccnvepres (𝐵𝑉 → [𝐵]( E ↾ 𝐴) = {𝑥𝐵𝐵𝐴})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉

Proof of Theorem eccnvepres
StepHypRef Expression
1 brcnvep 37623 . . . 4 (𝐵𝑉 → (𝐵 E 𝑥𝑥𝐵))
21anbi1cd 633 . . 3 (𝐵𝑉 → ((𝐵𝐴𝐵 E 𝑥) ↔ (𝑥𝐵𝐵𝐴)))
32abbidv 2793 . 2 (𝐵𝑉 → {𝑥 ∣ (𝐵𝐴𝐵 E 𝑥)} = {𝑥 ∣ (𝑥𝐵𝐵𝐴)})
4 ecres 37636 . 2 [𝐵]( E ↾ 𝐴) = {𝑥 ∣ (𝐵𝐴𝐵 E 𝑥)}
5 df-rab 3425 . 2 {𝑥𝐵𝐵𝐴} = {𝑥 ∣ (𝑥𝐵𝐵𝐴)}
63, 4, 53eqtr4g 2789 1 (𝐵𝑉 → [𝐵]( E ↾ 𝐴) = {𝑥𝐵𝐵𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  {cab 2701  {crab 3424   class class class wbr 5138   E cep 5569  ccnv 5665  cres 5668  [cec 8697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-eprel 5570  df-xp 5672  df-rel 5673  df-cnv 5674  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-ec 8701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator