Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brxrn Structured version   Visualization version   GIF version

Theorem brxrn 36836
Description: Characterize a ternary relation over a range Cartesian product. Together with xrnss3v 36834, this characterizes elementhood in a range cross. (Contributed by Peter Mazsa, 27-Jun-2021.)
Assertion
Ref Expression
brxrn ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴(𝑅𝑆)⟨𝐵, 𝐶⟩ ↔ (𝐴𝑅𝐵𝐴𝑆𝐶)))

Proof of Theorem brxrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xrn 36833 . . . 4 (𝑅𝑆) = (((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))
21breqi 5111 . . 3 (𝐴(𝑅𝑆)⟨𝐵, 𝐶⟩ ↔ 𝐴(((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))⟨𝐵, 𝐶⟩)
32a1i 11 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴(𝑅𝑆)⟨𝐵, 𝐶⟩ ↔ 𝐴(((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))⟨𝐵, 𝐶⟩))
4 brin 5157 . . 3 (𝐴(((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))⟨𝐵, 𝐶⟩ ↔ (𝐴((1st ↾ (V × V)) ∘ 𝑅)⟨𝐵, 𝐶⟩ ∧ 𝐴((2nd ↾ (V × V)) ∘ 𝑆)⟨𝐵, 𝐶⟩))
54a1i 11 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴(((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))⟨𝐵, 𝐶⟩ ↔ (𝐴((1st ↾ (V × V)) ∘ 𝑅)⟨𝐵, 𝐶⟩ ∧ 𝐴((2nd ↾ (V × V)) ∘ 𝑆)⟨𝐵, 𝐶⟩)))
6 opex 5421 . . . . . 6 𝐵, 𝐶⟩ ∈ V
7 brcog 5822 . . . . . 6 ((𝐴𝑉 ∧ ⟨𝐵, 𝐶⟩ ∈ V) → (𝐴((1st ↾ (V × V)) ∘ 𝑅)⟨𝐵, 𝐶⟩ ↔ ∃𝑥(𝐴𝑅𝑥𝑥(1st ↾ (V × V))⟨𝐵, 𝐶⟩)))
86, 7mpan2 689 . . . . 5 (𝐴𝑉 → (𝐴((1st ↾ (V × V)) ∘ 𝑅)⟨𝐵, 𝐶⟩ ↔ ∃𝑥(𝐴𝑅𝑥𝑥(1st ↾ (V × V))⟨𝐵, 𝐶⟩)))
983ad2ant1 1133 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴((1st ↾ (V × V)) ∘ 𝑅)⟨𝐵, 𝐶⟩ ↔ ∃𝑥(𝐴𝑅𝑥𝑥(1st ↾ (V × V))⟨𝐵, 𝐶⟩)))
10 brcnvg 5835 . . . . . . . . 9 ((𝑥 ∈ V ∧ ⟨𝐵, 𝐶⟩ ∈ V) → (𝑥(1st ↾ (V × V))⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩(1st ↾ (V × V))𝑥))
116, 10mpan2 689 . . . . . . . 8 (𝑥 ∈ V → (𝑥(1st ↾ (V × V))⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩(1st ↾ (V × V))𝑥))
1211elv 3451 . . . . . . 7 (𝑥(1st ↾ (V × V))⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩(1st ↾ (V × V))𝑥)
13 brres 5944 . . . . . . . . . . 11 (𝑥 ∈ V → (⟨𝐵, 𝐶⟩(1st ↾ (V × V))𝑥 ↔ (⟨𝐵, 𝐶⟩ ∈ (V × V) ∧ ⟨𝐵, 𝐶⟩1st 𝑥)))
1413elv 3451 . . . . . . . . . 10 (⟨𝐵, 𝐶⟩(1st ↾ (V × V))𝑥 ↔ (⟨𝐵, 𝐶⟩ ∈ (V × V) ∧ ⟨𝐵, 𝐶⟩1st 𝑥))
15 opelvvg 5673 . . . . . . . . . . 11 ((𝐵𝑊𝐶𝑋) → ⟨𝐵, 𝐶⟩ ∈ (V × V))
1615biantrurd 533 . . . . . . . . . 10 ((𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶⟩1st 𝑥 ↔ (⟨𝐵, 𝐶⟩ ∈ (V × V) ∧ ⟨𝐵, 𝐶⟩1st 𝑥)))
1714, 16bitr4id 289 . . . . . . . . 9 ((𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶⟩(1st ↾ (V × V))𝑥 ↔ ⟨𝐵, 𝐶⟩1st 𝑥))
18 br1steqg 7943 . . . . . . . . 9 ((𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶⟩1st 𝑥𝑥 = 𝐵))
1917, 18bitrd 278 . . . . . . . 8 ((𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶⟩(1st ↾ (V × V))𝑥𝑥 = 𝐵))
20193adant1 1130 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶⟩(1st ↾ (V × V))𝑥𝑥 = 𝐵))
2112, 20bitrid 282 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝑥(1st ↾ (V × V))⟨𝐵, 𝐶⟩ ↔ 𝑥 = 𝐵))
2221anbi1cd 634 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝑅𝑥𝑥(1st ↾ (V × V))⟨𝐵, 𝐶⟩) ↔ (𝑥 = 𝐵𝐴𝑅𝑥)))
2322exbidv 1924 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∃𝑥(𝐴𝑅𝑥𝑥(1st ↾ (V × V))⟨𝐵, 𝐶⟩) ↔ ∃𝑥(𝑥 = 𝐵𝐴𝑅𝑥)))
24 breq2 5109 . . . . . 6 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
2524ceqsexgv 3604 . . . . 5 (𝐵𝑊 → (∃𝑥(𝑥 = 𝐵𝐴𝑅𝑥) ↔ 𝐴𝑅𝐵))
26253ad2ant2 1134 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∃𝑥(𝑥 = 𝐵𝐴𝑅𝑥) ↔ 𝐴𝑅𝐵))
279, 23, 263bitrd 304 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴((1st ↾ (V × V)) ∘ 𝑅)⟨𝐵, 𝐶⟩ ↔ 𝐴𝑅𝐵))
28 brcog 5822 . . . . . 6 ((𝐴𝑉 ∧ ⟨𝐵, 𝐶⟩ ∈ V) → (𝐴((2nd ↾ (V × V)) ∘ 𝑆)⟨𝐵, 𝐶⟩ ↔ ∃𝑦(𝐴𝑆𝑦𝑦(2nd ↾ (V × V))⟨𝐵, 𝐶⟩)))
296, 28mpan2 689 . . . . 5 (𝐴𝑉 → (𝐴((2nd ↾ (V × V)) ∘ 𝑆)⟨𝐵, 𝐶⟩ ↔ ∃𝑦(𝐴𝑆𝑦𝑦(2nd ↾ (V × V))⟨𝐵, 𝐶⟩)))
30293ad2ant1 1133 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴((2nd ↾ (V × V)) ∘ 𝑆)⟨𝐵, 𝐶⟩ ↔ ∃𝑦(𝐴𝑆𝑦𝑦(2nd ↾ (V × V))⟨𝐵, 𝐶⟩)))
31 brcnvg 5835 . . . . . . . . 9 ((𝑦 ∈ V ∧ ⟨𝐵, 𝐶⟩ ∈ V) → (𝑦(2nd ↾ (V × V))⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩(2nd ↾ (V × V))𝑦))
326, 31mpan2 689 . . . . . . . 8 (𝑦 ∈ V → (𝑦(2nd ↾ (V × V))⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩(2nd ↾ (V × V))𝑦))
3332elv 3451 . . . . . . 7 (𝑦(2nd ↾ (V × V))⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩(2nd ↾ (V × V))𝑦)
34 brres 5944 . . . . . . . . . . 11 (𝑦 ∈ V → (⟨𝐵, 𝐶⟩(2nd ↾ (V × V))𝑦 ↔ (⟨𝐵, 𝐶⟩ ∈ (V × V) ∧ ⟨𝐵, 𝐶⟩2nd 𝑦)))
3534elv 3451 . . . . . . . . . 10 (⟨𝐵, 𝐶⟩(2nd ↾ (V × V))𝑦 ↔ (⟨𝐵, 𝐶⟩ ∈ (V × V) ∧ ⟨𝐵, 𝐶⟩2nd 𝑦))
3615biantrurd 533 . . . . . . . . . 10 ((𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶⟩2nd 𝑦 ↔ (⟨𝐵, 𝐶⟩ ∈ (V × V) ∧ ⟨𝐵, 𝐶⟩2nd 𝑦)))
3735, 36bitr4id 289 . . . . . . . . 9 ((𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶⟩(2nd ↾ (V × V))𝑦 ↔ ⟨𝐵, 𝐶⟩2nd 𝑦))
38 br2ndeqg 7944 . . . . . . . . 9 ((𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶⟩2nd 𝑦𝑦 = 𝐶))
3937, 38bitrd 278 . . . . . . . 8 ((𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶⟩(2nd ↾ (V × V))𝑦𝑦 = 𝐶))
40393adant1 1130 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶⟩(2nd ↾ (V × V))𝑦𝑦 = 𝐶))
4133, 40bitrid 282 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝑦(2nd ↾ (V × V))⟨𝐵, 𝐶⟩ ↔ 𝑦 = 𝐶))
4241anbi1cd 634 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝑆𝑦𝑦(2nd ↾ (V × V))⟨𝐵, 𝐶⟩) ↔ (𝑦 = 𝐶𝐴𝑆𝑦)))
4342exbidv 1924 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∃𝑦(𝐴𝑆𝑦𝑦(2nd ↾ (V × V))⟨𝐵, 𝐶⟩) ↔ ∃𝑦(𝑦 = 𝐶𝐴𝑆𝑦)))
44 breq2 5109 . . . . . 6 (𝑦 = 𝐶 → (𝐴𝑆𝑦𝐴𝑆𝐶))
4544ceqsexgv 3604 . . . . 5 (𝐶𝑋 → (∃𝑦(𝑦 = 𝐶𝐴𝑆𝑦) ↔ 𝐴𝑆𝐶))
46453ad2ant3 1135 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∃𝑦(𝑦 = 𝐶𝐴𝑆𝑦) ↔ 𝐴𝑆𝐶))
4730, 43, 463bitrd 304 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴((2nd ↾ (V × V)) ∘ 𝑆)⟨𝐵, 𝐶⟩ ↔ 𝐴𝑆𝐶))
4827, 47anbi12d 631 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴((1st ↾ (V × V)) ∘ 𝑅)⟨𝐵, 𝐶⟩ ∧ 𝐴((2nd ↾ (V × V)) ∘ 𝑆)⟨𝐵, 𝐶⟩) ↔ (𝐴𝑅𝐵𝐴𝑆𝐶)))
493, 5, 483bitrd 304 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴(𝑅𝑆)⟨𝐵, 𝐶⟩ ↔ (𝐴𝑅𝐵𝐴𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  Vcvv 3445  cin 3909  cop 4592   class class class wbr 5105   × cxp 5631  ccnv 5632  cres 5635  ccom 5637  1st c1st 7919  2nd c2nd 7920  cxrn 36633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fo 6502  df-fv 6504  df-1st 7921  df-2nd 7922  df-xrn 36833
This theorem is referenced by:  brxrn2  36837  dfxrn2  36838  brin2  36871  br1cossxrnres  36910
  Copyright terms: Public domain W3C validator