Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brxrn Structured version   Visualization version   GIF version

Theorem brxrn 35786
Description: Characterize a ternary relation over a range Cartesian product. Together with xrnss3v 35784, this characterizes elementhood in a range cross. (Contributed by Peter Mazsa, 27-Jun-2021.)
Assertion
Ref Expression
brxrn ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴(𝑅𝑆)⟨𝐵, 𝐶⟩ ↔ (𝐴𝑅𝐵𝐴𝑆𝐶)))

Proof of Theorem brxrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xrn 35783 . . . 4 (𝑅𝑆) = (((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))
21breqi 5036 . . 3 (𝐴(𝑅𝑆)⟨𝐵, 𝐶⟩ ↔ 𝐴(((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))⟨𝐵, 𝐶⟩)
32a1i 11 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴(𝑅𝑆)⟨𝐵, 𝐶⟩ ↔ 𝐴(((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))⟨𝐵, 𝐶⟩))
4 brin 5082 . . 3 (𝐴(((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))⟨𝐵, 𝐶⟩ ↔ (𝐴((1st ↾ (V × V)) ∘ 𝑅)⟨𝐵, 𝐶⟩ ∧ 𝐴((2nd ↾ (V × V)) ∘ 𝑆)⟨𝐵, 𝐶⟩))
54a1i 11 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴(((1st ↾ (V × V)) ∘ 𝑅) ∩ ((2nd ↾ (V × V)) ∘ 𝑆))⟨𝐵, 𝐶⟩ ↔ (𝐴((1st ↾ (V × V)) ∘ 𝑅)⟨𝐵, 𝐶⟩ ∧ 𝐴((2nd ↾ (V × V)) ∘ 𝑆)⟨𝐵, 𝐶⟩)))
6 opex 5321 . . . . . 6 𝐵, 𝐶⟩ ∈ V
7 brcog 5701 . . . . . 6 ((𝐴𝑉 ∧ ⟨𝐵, 𝐶⟩ ∈ V) → (𝐴((1st ↾ (V × V)) ∘ 𝑅)⟨𝐵, 𝐶⟩ ↔ ∃𝑥(𝐴𝑅𝑥𝑥(1st ↾ (V × V))⟨𝐵, 𝐶⟩)))
86, 7mpan2 690 . . . . 5 (𝐴𝑉 → (𝐴((1st ↾ (V × V)) ∘ 𝑅)⟨𝐵, 𝐶⟩ ↔ ∃𝑥(𝐴𝑅𝑥𝑥(1st ↾ (V × V))⟨𝐵, 𝐶⟩)))
983ad2ant1 1130 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴((1st ↾ (V × V)) ∘ 𝑅)⟨𝐵, 𝐶⟩ ↔ ∃𝑥(𝐴𝑅𝑥𝑥(1st ↾ (V × V))⟨𝐵, 𝐶⟩)))
10 brcnvg 5714 . . . . . . . . 9 ((𝑥 ∈ V ∧ ⟨𝐵, 𝐶⟩ ∈ V) → (𝑥(1st ↾ (V × V))⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩(1st ↾ (V × V))𝑥))
116, 10mpan2 690 . . . . . . . 8 (𝑥 ∈ V → (𝑥(1st ↾ (V × V))⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩(1st ↾ (V × V))𝑥))
1211elv 3446 . . . . . . 7 (𝑥(1st ↾ (V × V))⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩(1st ↾ (V × V))𝑥)
13 brres 5825 . . . . . . . . . . 11 (𝑥 ∈ V → (⟨𝐵, 𝐶⟩(1st ↾ (V × V))𝑥 ↔ (⟨𝐵, 𝐶⟩ ∈ (V × V) ∧ ⟨𝐵, 𝐶⟩1st 𝑥)))
1413elv 3446 . . . . . . . . . 10 (⟨𝐵, 𝐶⟩(1st ↾ (V × V))𝑥 ↔ (⟨𝐵, 𝐶⟩ ∈ (V × V) ∧ ⟨𝐵, 𝐶⟩1st 𝑥))
15 opelvvg 5559 . . . . . . . . . . 11 ((𝐵𝑊𝐶𝑋) → ⟨𝐵, 𝐶⟩ ∈ (V × V))
1615biantrurd 536 . . . . . . . . . 10 ((𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶⟩1st 𝑥 ↔ (⟨𝐵, 𝐶⟩ ∈ (V × V) ∧ ⟨𝐵, 𝐶⟩1st 𝑥)))
1714, 16bitr4id 293 . . . . . . . . 9 ((𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶⟩(1st ↾ (V × V))𝑥 ↔ ⟨𝐵, 𝐶⟩1st 𝑥))
18 br1steqg 7693 . . . . . . . . 9 ((𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶⟩1st 𝑥𝑥 = 𝐵))
1917, 18bitrd 282 . . . . . . . 8 ((𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶⟩(1st ↾ (V × V))𝑥𝑥 = 𝐵))
20193adant1 1127 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶⟩(1st ↾ (V × V))𝑥𝑥 = 𝐵))
2112, 20syl5bb 286 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝑥(1st ↾ (V × V))⟨𝐵, 𝐶⟩ ↔ 𝑥 = 𝐵))
2221anbi1cd 636 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝑅𝑥𝑥(1st ↾ (V × V))⟨𝐵, 𝐶⟩) ↔ (𝑥 = 𝐵𝐴𝑅𝑥)))
2322exbidv 1922 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∃𝑥(𝐴𝑅𝑥𝑥(1st ↾ (V × V))⟨𝐵, 𝐶⟩) ↔ ∃𝑥(𝑥 = 𝐵𝐴𝑅𝑥)))
24 breq2 5034 . . . . . 6 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
2524ceqsexgv 3595 . . . . 5 (𝐵𝑊 → (∃𝑥(𝑥 = 𝐵𝐴𝑅𝑥) ↔ 𝐴𝑅𝐵))
26253ad2ant2 1131 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∃𝑥(𝑥 = 𝐵𝐴𝑅𝑥) ↔ 𝐴𝑅𝐵))
279, 23, 263bitrd 308 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴((1st ↾ (V × V)) ∘ 𝑅)⟨𝐵, 𝐶⟩ ↔ 𝐴𝑅𝐵))
28 brcog 5701 . . . . . 6 ((𝐴𝑉 ∧ ⟨𝐵, 𝐶⟩ ∈ V) → (𝐴((2nd ↾ (V × V)) ∘ 𝑆)⟨𝐵, 𝐶⟩ ↔ ∃𝑦(𝐴𝑆𝑦𝑦(2nd ↾ (V × V))⟨𝐵, 𝐶⟩)))
296, 28mpan2 690 . . . . 5 (𝐴𝑉 → (𝐴((2nd ↾ (V × V)) ∘ 𝑆)⟨𝐵, 𝐶⟩ ↔ ∃𝑦(𝐴𝑆𝑦𝑦(2nd ↾ (V × V))⟨𝐵, 𝐶⟩)))
30293ad2ant1 1130 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴((2nd ↾ (V × V)) ∘ 𝑆)⟨𝐵, 𝐶⟩ ↔ ∃𝑦(𝐴𝑆𝑦𝑦(2nd ↾ (V × V))⟨𝐵, 𝐶⟩)))
31 brcnvg 5714 . . . . . . . . 9 ((𝑦 ∈ V ∧ ⟨𝐵, 𝐶⟩ ∈ V) → (𝑦(2nd ↾ (V × V))⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩(2nd ↾ (V × V))𝑦))
326, 31mpan2 690 . . . . . . . 8 (𝑦 ∈ V → (𝑦(2nd ↾ (V × V))⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩(2nd ↾ (V × V))𝑦))
3332elv 3446 . . . . . . 7 (𝑦(2nd ↾ (V × V))⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩(2nd ↾ (V × V))𝑦)
34 brres 5825 . . . . . . . . . . 11 (𝑦 ∈ V → (⟨𝐵, 𝐶⟩(2nd ↾ (V × V))𝑦 ↔ (⟨𝐵, 𝐶⟩ ∈ (V × V) ∧ ⟨𝐵, 𝐶⟩2nd 𝑦)))
3534elv 3446 . . . . . . . . . 10 (⟨𝐵, 𝐶⟩(2nd ↾ (V × V))𝑦 ↔ (⟨𝐵, 𝐶⟩ ∈ (V × V) ∧ ⟨𝐵, 𝐶⟩2nd 𝑦))
3615biantrurd 536 . . . . . . . . . 10 ((𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶⟩2nd 𝑦 ↔ (⟨𝐵, 𝐶⟩ ∈ (V × V) ∧ ⟨𝐵, 𝐶⟩2nd 𝑦)))
3735, 36bitr4id 293 . . . . . . . . 9 ((𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶⟩(2nd ↾ (V × V))𝑦 ↔ ⟨𝐵, 𝐶⟩2nd 𝑦))
38 br2ndeqg 7694 . . . . . . . . 9 ((𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶⟩2nd 𝑦𝑦 = 𝐶))
3937, 38bitrd 282 . . . . . . . 8 ((𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶⟩(2nd ↾ (V × V))𝑦𝑦 = 𝐶))
40393adant1 1127 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶⟩(2nd ↾ (V × V))𝑦𝑦 = 𝐶))
4133, 40syl5bb 286 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝑦(2nd ↾ (V × V))⟨𝐵, 𝐶⟩ ↔ 𝑦 = 𝐶))
4241anbi1cd 636 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝑆𝑦𝑦(2nd ↾ (V × V))⟨𝐵, 𝐶⟩) ↔ (𝑦 = 𝐶𝐴𝑆𝑦)))
4342exbidv 1922 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∃𝑦(𝐴𝑆𝑦𝑦(2nd ↾ (V × V))⟨𝐵, 𝐶⟩) ↔ ∃𝑦(𝑦 = 𝐶𝐴𝑆𝑦)))
44 breq2 5034 . . . . . 6 (𝑦 = 𝐶 → (𝐴𝑆𝑦𝐴𝑆𝐶))
4544ceqsexgv 3595 . . . . 5 (𝐶𝑋 → (∃𝑦(𝑦 = 𝐶𝐴𝑆𝑦) ↔ 𝐴𝑆𝐶))
46453ad2ant3 1132 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∃𝑦(𝑦 = 𝐶𝐴𝑆𝑦) ↔ 𝐴𝑆𝐶))
4730, 43, 463bitrd 308 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴((2nd ↾ (V × V)) ∘ 𝑆)⟨𝐵, 𝐶⟩ ↔ 𝐴𝑆𝐶))
4827, 47anbi12d 633 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴((1st ↾ (V × V)) ∘ 𝑅)⟨𝐵, 𝐶⟩ ∧ 𝐴((2nd ↾ (V × V)) ∘ 𝑆)⟨𝐵, 𝐶⟩) ↔ (𝐴𝑅𝐵𝐴𝑆𝐶)))
493, 5, 483bitrd 308 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴(𝑅𝑆)⟨𝐵, 𝐶⟩ ↔ (𝐴𝑅𝐵𝐴𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  Vcvv 3441  cin 3880  cop 4531   class class class wbr 5030   × cxp 5517  ccnv 5518  cres 5521  ccom 5523  1st c1st 7669  2nd c2nd 7670  cxrn 35612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fo 6330  df-fv 6332  df-1st 7671  df-2nd 7672  df-xrn 35783
This theorem is referenced by:  brxrn2  35787  dfxrn2  35788  brin2  35817  br1cossxrnres  35848
  Copyright terms: Public domain W3C validator