MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfaddlem Structured version   Visualization version   GIF version

Theorem mbfaddlem 25608
Description: The sum of two measurable functions is measurable. (Contributed by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
mbfadd.1 (𝜑𝐹 ∈ MblFn)
mbfadd.2 (𝜑𝐺 ∈ MblFn)
mbfadd.3 (𝜑𝐹:𝐴⟶ℝ)
mbfadd.4 (𝜑𝐺:𝐴⟶ℝ)
Assertion
Ref Expression
mbfaddlem (𝜑 → (𝐹f + 𝐺) ∈ MblFn)

Proof of Theorem mbfaddlem
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 readdcl 11100 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
21adantl 481 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
3 mbfadd.3 . . 3 (𝜑𝐹:𝐴⟶ℝ)
4 mbfadd.4 . . 3 (𝜑𝐺:𝐴⟶ℝ)
53fdmd 6669 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
6 mbfadd.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
7 mbfdm 25574 . . . . 5 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
86, 7syl 17 . . . 4 (𝜑 → dom 𝐹 ∈ dom vol)
95, 8eqeltrrd 2834 . . 3 (𝜑𝐴 ∈ dom vol)
10 inidm 4176 . . 3 (𝐴𝐴) = 𝐴
112, 3, 4, 9, 9, 10off 7637 . 2 (𝜑 → (𝐹f + 𝐺):𝐴⟶ℝ)
12 eliun 4947 . . . . 5 (𝑥 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ ∃𝑟 ∈ ℚ 𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))))
13 r19.42v 3165 . . . . . . 7 (∃𝑟 ∈ ℚ (𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))) ↔ (𝑥𝐴 ∧ ∃𝑟 ∈ ℚ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))))
14 simplr 768 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
154adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐺:𝐴⟶ℝ)
1615ffvelcdmda 7026 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℝ)
173adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐹:𝐴⟶ℝ)
1817ffvelcdmda 7026 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
1914, 16, 18ltsubaddd 11724 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑦 − (𝐺𝑥)) < (𝐹𝑥) ↔ 𝑦 < ((𝐹𝑥) + (𝐺𝑥))))
2014adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → 𝑦 ∈ ℝ)
21 qre 12857 . . . . . . . . . . . . . . 15 (𝑟 ∈ ℚ → 𝑟 ∈ ℝ)
2221adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → 𝑟 ∈ ℝ)
2316adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝐺𝑥) ∈ ℝ)
24 ltsub23 11608 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ (𝐺𝑥) ∈ ℝ) → ((𝑦𝑟) < (𝐺𝑥) ↔ (𝑦 − (𝐺𝑥)) < 𝑟))
2520, 22, 23, 24syl3anc 1373 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝑦𝑟) < (𝐺𝑥) ↔ (𝑦 − (𝐺𝑥)) < 𝑟))
2625anbi1cd 635 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥))))
2726rexbidva 3155 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ ∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥))))
2814, 16resubcld 11556 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 − (𝐺𝑥)) ∈ ℝ)
2928adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝑦 − (𝐺𝑥)) ∈ ℝ)
3018adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝐹𝑥) ∈ ℝ)
31 lttr 11200 . . . . . . . . . . . . . 14 (((𝑦 − (𝐺𝑥)) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → (((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)) → (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
3229, 22, 30, 31syl3anc 1373 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)) → (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
3332rexlimdva 3134 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)) → (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
34 qbtwnre 13105 . . . . . . . . . . . . . 14 (((𝑦 − (𝐺𝑥)) ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ ∧ (𝑦 − (𝐺𝑥)) < (𝐹𝑥)) → ∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)))
35343expia 1121 . . . . . . . . . . . . 13 (((𝑦 − (𝐺𝑥)) ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → ((𝑦 − (𝐺𝑥)) < (𝐹𝑥) → ∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥))))
3628, 18, 35syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑦 − (𝐺𝑥)) < (𝐹𝑥) → ∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥))))
3733, 36impbid 212 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)) ↔ (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
3827, 37bitrd 279 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
393ffnd 6660 . . . . . . . . . . . . 13 (𝜑𝐹 Fn 𝐴)
4039adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐹 Fn 𝐴)
414ffnd 6660 . . . . . . . . . . . . 13 (𝜑𝐺 Fn 𝐴)
4241adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐺 Fn 𝐴)
439adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐴 ∈ dom vol)
44 eqidd 2734 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
45 eqidd 2734 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
4640, 42, 43, 43, 10, 44, 45ofval 7630 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹f + 𝐺)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
4746breq2d 5107 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < ((𝐹f + 𝐺)‘𝑥) ↔ 𝑦 < ((𝐹𝑥) + (𝐺𝑥))))
4819, 38, 473bitr4d 311 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ 𝑦 < ((𝐹f + 𝐺)‘𝑥)))
4922rexrd 11173 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → 𝑟 ∈ ℝ*)
50 elioopnf 13350 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ* → ((𝐹𝑥) ∈ (𝑟(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑟 < (𝐹𝑥))))
5149, 50syl 17 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐹𝑥) ∈ (𝑟(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑟 < (𝐹𝑥))))
5230, 51mpbirand 707 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐹𝑥) ∈ (𝑟(,)+∞) ↔ 𝑟 < (𝐹𝑥)))
5320, 22resubcld 11556 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝑦𝑟) ∈ ℝ)
5453rexrd 11173 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝑦𝑟) ∈ ℝ*)
55 elioopnf 13350 . . . . . . . . . . . . 13 ((𝑦𝑟) ∈ ℝ* → ((𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞) ↔ ((𝐺𝑥) ∈ ℝ ∧ (𝑦𝑟) < (𝐺𝑥))))
5654, 55syl 17 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞) ↔ ((𝐺𝑥) ∈ ℝ ∧ (𝑦𝑟) < (𝐺𝑥))))
5723, 56mpbirand 707 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞) ↔ (𝑦𝑟) < (𝐺𝑥)))
5852, 57anbi12d 632 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)) ↔ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥))))
5958rexbidva 3155 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)) ↔ ∃𝑟 ∈ ℚ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥))))
6011adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → (𝐹f + 𝐺):𝐴⟶ℝ)
6160ffvelcdmda 7026 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹f + 𝐺)‘𝑥) ∈ ℝ)
6214rexrd 11173 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
63 elioopnf 13350 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞) ↔ (((𝐹f + 𝐺)‘𝑥) ∈ ℝ ∧ 𝑦 < ((𝐹f + 𝐺)‘𝑥))))
6462, 63syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞) ↔ (((𝐹f + 𝐺)‘𝑥) ∈ ℝ ∧ 𝑦 < ((𝐹f + 𝐺)‘𝑥))))
6561, 64mpbirand 707 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞) ↔ 𝑦 < ((𝐹f + 𝐺)‘𝑥)))
6648, 59, 653bitr4d 311 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)) ↔ ((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞)))
6766pm5.32da 579 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ∧ ∃𝑟 ∈ ℚ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))) ↔ (𝑥𝐴 ∧ ((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞))))
6813, 67bitrid 283 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑟 ∈ ℚ (𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))) ↔ (𝑥𝐴 ∧ ((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞))))
69 elpreima 7000 . . . . . . . . . 10 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ (𝑟(,)+∞)) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (𝑟(,)+∞))))
7040, 69syl 17 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (𝑟(,)+∞)) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (𝑟(,)+∞))))
71 elpreima 7000 . . . . . . . . . 10 (𝐺 Fn 𝐴 → (𝑥 ∈ (𝐺 “ ((𝑦𝑟)(,)+∞)) ↔ (𝑥𝐴 ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))))
7242, 71syl 17 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑥 ∈ (𝐺 “ ((𝑦𝑟)(,)+∞)) ↔ (𝑥𝐴 ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))))
7370, 72anbi12d 632 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → ((𝑥 ∈ (𝐹 “ (𝑟(,)+∞)) ∧ 𝑥 ∈ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ∈ (𝑟(,)+∞)) ∧ (𝑥𝐴 ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)))))
74 elin 3914 . . . . . . . 8 (𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ (𝑥 ∈ (𝐹 “ (𝑟(,)+∞)) ∧ 𝑥 ∈ (𝐺 “ ((𝑦𝑟)(,)+∞))))
75 anandi 676 . . . . . . . 8 ((𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ∈ (𝑟(,)+∞)) ∧ (𝑥𝐴 ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))))
7673, 74, 753bitr4g 314 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)))))
7776rexbidv 3157 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑟 ∈ ℚ 𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ ∃𝑟 ∈ ℚ (𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)))))
7811ffnd 6660 . . . . . . . 8 (𝜑 → (𝐹f + 𝐺) Fn 𝐴)
7978adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝐹f + 𝐺) Fn 𝐴)
80 elpreima 7000 . . . . . . 7 ((𝐹f + 𝐺) Fn 𝐴 → (𝑥 ∈ ((𝐹f + 𝐺) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞))))
8179, 80syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑥 ∈ ((𝐹f + 𝐺) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞))))
8268, 77, 813bitr4d 311 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (∃𝑟 ∈ ℚ 𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ 𝑥 ∈ ((𝐹f + 𝐺) “ (𝑦(,)+∞))))
8312, 82bitrid 283 . . . 4 ((𝜑𝑦 ∈ ℝ) → (𝑥 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ 𝑥 ∈ ((𝐹f + 𝐺) “ (𝑦(,)+∞))))
8483eqrdv 2731 . . 3 ((𝜑𝑦 ∈ ℝ) → 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) = ((𝐹f + 𝐺) “ (𝑦(,)+∞)))
85 qnnen 16129 . . . . 5 ℚ ≈ ℕ
86 endom 8912 . . . . 5 (ℚ ≈ ℕ → ℚ ≼ ℕ)
8785, 86ax-mp 5 . . . 4 ℚ ≼ ℕ
88 mbfima 25578 . . . . . . . 8 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (𝑟(,)+∞)) ∈ dom vol)
896, 3, 88syl2anc 584 . . . . . . 7 (𝜑 → (𝐹 “ (𝑟(,)+∞)) ∈ dom vol)
90 mbfadd.2 . . . . . . . 8 (𝜑𝐺 ∈ MblFn)
91 mbfima 25578 . . . . . . . 8 ((𝐺 ∈ MblFn ∧ 𝐺:𝐴⟶ℝ) → (𝐺 “ ((𝑦𝑟)(,)+∞)) ∈ dom vol)
9290, 4, 91syl2anc 584 . . . . . . 7 (𝜑 → (𝐺 “ ((𝑦𝑟)(,)+∞)) ∈ dom vol)
93 inmbl 25490 . . . . . . 7 (((𝐹 “ (𝑟(,)+∞)) ∈ dom vol ∧ (𝐺 “ ((𝑦𝑟)(,)+∞)) ∈ dom vol) → ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
9489, 92, 93syl2anc 584 . . . . . 6 (𝜑 → ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
9594ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℚ) → ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
9695ralrimiva 3125 . . . 4 ((𝜑𝑦 ∈ ℝ) → ∀𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
97 iunmbl2 25505 . . . 4 ((ℚ ≼ ℕ ∧ ∀𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol) → 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
9887, 96, 97sylancr 587 . . 3 ((𝜑𝑦 ∈ ℝ) → 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
9984, 98eqeltrrd 2834 . 2 ((𝜑𝑦 ∈ ℝ) → ((𝐹f + 𝐺) “ (𝑦(,)+∞)) ∈ dom vol)
10011, 99ismbf3d 25602 1 (𝜑 → (𝐹f + 𝐺) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2113  wral 3048  wrex 3057  cin 3897   ciun 4943   class class class wbr 5095  ccnv 5620  dom cdm 5621  cima 5624   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  f cof 7617  cen 8876  cdom 8877  cr 11016   + caddc 11020  +∞cpnf 11154  *cxr 11156   < clt 11157  cmin 11355  cn 12136  cq 12852  (,)cioo 13252  volcvol 25411  MblFncmbf 25562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cc 10337  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-map 8761  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-oi 9407  df-dju 9805  df-card 9843  df-acn 9846  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-q 12853  df-rp 12897  df-xadd 13018  df-ioo 13256  df-ioc 13257  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-rlim 15403  df-sum 15601  df-xmet 21293  df-met 21294  df-ovol 25412  df-vol 25413  df-mbf 25567
This theorem is referenced by:  mbfadd  25609
  Copyright terms: Public domain W3C validator