MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfaddlem Structured version   Visualization version   GIF version

Theorem mbfaddlem 25611
Description: The sum of two measurable functions is measurable. (Contributed by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
mbfadd.1 (𝜑𝐹 ∈ MblFn)
mbfadd.2 (𝜑𝐺 ∈ MblFn)
mbfadd.3 (𝜑𝐹:𝐴⟶ℝ)
mbfadd.4 (𝜑𝐺:𝐴⟶ℝ)
Assertion
Ref Expression
mbfaddlem (𝜑 → (𝐹f + 𝐺) ∈ MblFn)

Proof of Theorem mbfaddlem
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 readdcl 11210 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
21adantl 481 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
3 mbfadd.3 . . 3 (𝜑𝐹:𝐴⟶ℝ)
4 mbfadd.4 . . 3 (𝜑𝐺:𝐴⟶ℝ)
53fdmd 6715 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
6 mbfadd.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
7 mbfdm 25577 . . . . 5 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
86, 7syl 17 . . . 4 (𝜑 → dom 𝐹 ∈ dom vol)
95, 8eqeltrrd 2835 . . 3 (𝜑𝐴 ∈ dom vol)
10 inidm 4202 . . 3 (𝐴𝐴) = 𝐴
112, 3, 4, 9, 9, 10off 7687 . 2 (𝜑 → (𝐹f + 𝐺):𝐴⟶ℝ)
12 eliun 4971 . . . . 5 (𝑥 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ ∃𝑟 ∈ ℚ 𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))))
13 r19.42v 3176 . . . . . . 7 (∃𝑟 ∈ ℚ (𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))) ↔ (𝑥𝐴 ∧ ∃𝑟 ∈ ℚ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))))
14 simplr 768 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
154adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐺:𝐴⟶ℝ)
1615ffvelcdmda 7073 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℝ)
173adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐹:𝐴⟶ℝ)
1817ffvelcdmda 7073 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
1914, 16, 18ltsubaddd 11831 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑦 − (𝐺𝑥)) < (𝐹𝑥) ↔ 𝑦 < ((𝐹𝑥) + (𝐺𝑥))))
2014adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → 𝑦 ∈ ℝ)
21 qre 12967 . . . . . . . . . . . . . . 15 (𝑟 ∈ ℚ → 𝑟 ∈ ℝ)
2221adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → 𝑟 ∈ ℝ)
2316adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝐺𝑥) ∈ ℝ)
24 ltsub23 11715 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ (𝐺𝑥) ∈ ℝ) → ((𝑦𝑟) < (𝐺𝑥) ↔ (𝑦 − (𝐺𝑥)) < 𝑟))
2520, 22, 23, 24syl3anc 1373 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝑦𝑟) < (𝐺𝑥) ↔ (𝑦 − (𝐺𝑥)) < 𝑟))
2625anbi1cd 635 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥))))
2726rexbidva 3162 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ ∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥))))
2814, 16resubcld 11663 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 − (𝐺𝑥)) ∈ ℝ)
2928adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝑦 − (𝐺𝑥)) ∈ ℝ)
3018adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝐹𝑥) ∈ ℝ)
31 lttr 11309 . . . . . . . . . . . . . 14 (((𝑦 − (𝐺𝑥)) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → (((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)) → (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
3229, 22, 30, 31syl3anc 1373 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)) → (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
3332rexlimdva 3141 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)) → (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
34 qbtwnre 13213 . . . . . . . . . . . . . 14 (((𝑦 − (𝐺𝑥)) ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ ∧ (𝑦 − (𝐺𝑥)) < (𝐹𝑥)) → ∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)))
35343expia 1121 . . . . . . . . . . . . 13 (((𝑦 − (𝐺𝑥)) ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → ((𝑦 − (𝐺𝑥)) < (𝐹𝑥) → ∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥))))
3628, 18, 35syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑦 − (𝐺𝑥)) < (𝐹𝑥) → ∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥))))
3733, 36impbid 212 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)) ↔ (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
3827, 37bitrd 279 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
393ffnd 6706 . . . . . . . . . . . . 13 (𝜑𝐹 Fn 𝐴)
4039adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐹 Fn 𝐴)
414ffnd 6706 . . . . . . . . . . . . 13 (𝜑𝐺 Fn 𝐴)
4241adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐺 Fn 𝐴)
439adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐴 ∈ dom vol)
44 eqidd 2736 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
45 eqidd 2736 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
4640, 42, 43, 43, 10, 44, 45ofval 7680 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹f + 𝐺)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
4746breq2d 5131 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < ((𝐹f + 𝐺)‘𝑥) ↔ 𝑦 < ((𝐹𝑥) + (𝐺𝑥))))
4819, 38, 473bitr4d 311 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ 𝑦 < ((𝐹f + 𝐺)‘𝑥)))
4922rexrd 11283 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → 𝑟 ∈ ℝ*)
50 elioopnf 13458 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ* → ((𝐹𝑥) ∈ (𝑟(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑟 < (𝐹𝑥))))
5149, 50syl 17 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐹𝑥) ∈ (𝑟(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑟 < (𝐹𝑥))))
5230, 51mpbirand 707 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐹𝑥) ∈ (𝑟(,)+∞) ↔ 𝑟 < (𝐹𝑥)))
5320, 22resubcld 11663 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝑦𝑟) ∈ ℝ)
5453rexrd 11283 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝑦𝑟) ∈ ℝ*)
55 elioopnf 13458 . . . . . . . . . . . . 13 ((𝑦𝑟) ∈ ℝ* → ((𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞) ↔ ((𝐺𝑥) ∈ ℝ ∧ (𝑦𝑟) < (𝐺𝑥))))
5654, 55syl 17 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞) ↔ ((𝐺𝑥) ∈ ℝ ∧ (𝑦𝑟) < (𝐺𝑥))))
5723, 56mpbirand 707 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞) ↔ (𝑦𝑟) < (𝐺𝑥)))
5852, 57anbi12d 632 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)) ↔ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥))))
5958rexbidva 3162 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)) ↔ ∃𝑟 ∈ ℚ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥))))
6011adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → (𝐹f + 𝐺):𝐴⟶ℝ)
6160ffvelcdmda 7073 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹f + 𝐺)‘𝑥) ∈ ℝ)
6214rexrd 11283 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
63 elioopnf 13458 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞) ↔ (((𝐹f + 𝐺)‘𝑥) ∈ ℝ ∧ 𝑦 < ((𝐹f + 𝐺)‘𝑥))))
6462, 63syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞) ↔ (((𝐹f + 𝐺)‘𝑥) ∈ ℝ ∧ 𝑦 < ((𝐹f + 𝐺)‘𝑥))))
6561, 64mpbirand 707 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞) ↔ 𝑦 < ((𝐹f + 𝐺)‘𝑥)))
6648, 59, 653bitr4d 311 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)) ↔ ((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞)))
6766pm5.32da 579 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ∧ ∃𝑟 ∈ ℚ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))) ↔ (𝑥𝐴 ∧ ((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞))))
6813, 67bitrid 283 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑟 ∈ ℚ (𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))) ↔ (𝑥𝐴 ∧ ((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞))))
69 elpreima 7047 . . . . . . . . . 10 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ (𝑟(,)+∞)) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (𝑟(,)+∞))))
7040, 69syl 17 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (𝑟(,)+∞)) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (𝑟(,)+∞))))
71 elpreima 7047 . . . . . . . . . 10 (𝐺 Fn 𝐴 → (𝑥 ∈ (𝐺 “ ((𝑦𝑟)(,)+∞)) ↔ (𝑥𝐴 ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))))
7242, 71syl 17 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑥 ∈ (𝐺 “ ((𝑦𝑟)(,)+∞)) ↔ (𝑥𝐴 ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))))
7370, 72anbi12d 632 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → ((𝑥 ∈ (𝐹 “ (𝑟(,)+∞)) ∧ 𝑥 ∈ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ∈ (𝑟(,)+∞)) ∧ (𝑥𝐴 ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)))))
74 elin 3942 . . . . . . . 8 (𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ (𝑥 ∈ (𝐹 “ (𝑟(,)+∞)) ∧ 𝑥 ∈ (𝐺 “ ((𝑦𝑟)(,)+∞))))
75 anandi 676 . . . . . . . 8 ((𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ∈ (𝑟(,)+∞)) ∧ (𝑥𝐴 ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))))
7673, 74, 753bitr4g 314 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)))))
7776rexbidv 3164 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑟 ∈ ℚ 𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ ∃𝑟 ∈ ℚ (𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)))))
7811ffnd 6706 . . . . . . . 8 (𝜑 → (𝐹f + 𝐺) Fn 𝐴)
7978adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝐹f + 𝐺) Fn 𝐴)
80 elpreima 7047 . . . . . . 7 ((𝐹f + 𝐺) Fn 𝐴 → (𝑥 ∈ ((𝐹f + 𝐺) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞))))
8179, 80syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑥 ∈ ((𝐹f + 𝐺) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞))))
8268, 77, 813bitr4d 311 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (∃𝑟 ∈ ℚ 𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ 𝑥 ∈ ((𝐹f + 𝐺) “ (𝑦(,)+∞))))
8312, 82bitrid 283 . . . 4 ((𝜑𝑦 ∈ ℝ) → (𝑥 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ 𝑥 ∈ ((𝐹f + 𝐺) “ (𝑦(,)+∞))))
8483eqrdv 2733 . . 3 ((𝜑𝑦 ∈ ℝ) → 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) = ((𝐹f + 𝐺) “ (𝑦(,)+∞)))
85 qnnen 16229 . . . . 5 ℚ ≈ ℕ
86 endom 8991 . . . . 5 (ℚ ≈ ℕ → ℚ ≼ ℕ)
8785, 86ax-mp 5 . . . 4 ℚ ≼ ℕ
88 mbfima 25581 . . . . . . . 8 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (𝑟(,)+∞)) ∈ dom vol)
896, 3, 88syl2anc 584 . . . . . . 7 (𝜑 → (𝐹 “ (𝑟(,)+∞)) ∈ dom vol)
90 mbfadd.2 . . . . . . . 8 (𝜑𝐺 ∈ MblFn)
91 mbfima 25581 . . . . . . . 8 ((𝐺 ∈ MblFn ∧ 𝐺:𝐴⟶ℝ) → (𝐺 “ ((𝑦𝑟)(,)+∞)) ∈ dom vol)
9290, 4, 91syl2anc 584 . . . . . . 7 (𝜑 → (𝐺 “ ((𝑦𝑟)(,)+∞)) ∈ dom vol)
93 inmbl 25493 . . . . . . 7 (((𝐹 “ (𝑟(,)+∞)) ∈ dom vol ∧ (𝐺 “ ((𝑦𝑟)(,)+∞)) ∈ dom vol) → ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
9489, 92, 93syl2anc 584 . . . . . 6 (𝜑 → ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
9594ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℚ) → ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
9695ralrimiva 3132 . . . 4 ((𝜑𝑦 ∈ ℝ) → ∀𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
97 iunmbl2 25508 . . . 4 ((ℚ ≼ ℕ ∧ ∀𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol) → 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
9887, 96, 97sylancr 587 . . 3 ((𝜑𝑦 ∈ ℝ) → 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
9984, 98eqeltrrd 2835 . 2 ((𝜑𝑦 ∈ ℝ) → ((𝐹f + 𝐺) “ (𝑦(,)+∞)) ∈ dom vol)
10011, 99ismbf3d 25605 1 (𝜑 → (𝐹f + 𝐺) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3051  wrex 3060  cin 3925   ciun 4967   class class class wbr 5119  ccnv 5653  dom cdm 5654  cima 5657   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403  f cof 7667  cen 8954  cdom 8955  cr 11126   + caddc 11130  +∞cpnf 11264  *cxr 11266   < clt 11267  cmin 11464  cn 12238  cq 12962  (,)cioo 13360  volcvol 25414  MblFncmbf 25565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cc 10447  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-acn 9954  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xadd 13127  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-rlim 15503  df-sum 15701  df-xmet 21306  df-met 21307  df-ovol 25415  df-vol 25416  df-mbf 25570
This theorem is referenced by:  mbfadd  25612
  Copyright terms: Public domain W3C validator