Step | Hyp | Ref
| Expression |
1 | | readdcl 10954 |
. . . 4
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) |
2 | 1 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ) |
3 | | mbfadd.3 |
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
4 | | mbfadd.4 |
. . 3
⊢ (𝜑 → 𝐺:𝐴⟶ℝ) |
5 | 3 | fdmd 6611 |
. . . 4
⊢ (𝜑 → dom 𝐹 = 𝐴) |
6 | | mbfadd.1 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ MblFn) |
7 | | mbfdm 24790 |
. . . . 5
⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom
vol) |
8 | 6, 7 | syl 17 |
. . . 4
⊢ (𝜑 → dom 𝐹 ∈ dom vol) |
9 | 5, 8 | eqeltrrd 2840 |
. . 3
⊢ (𝜑 → 𝐴 ∈ dom vol) |
10 | | inidm 4152 |
. . 3
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
11 | 2, 3, 4, 9, 9, 10 | off 7551 |
. 2
⊢ (𝜑 → (𝐹 ∘f + 𝐺):𝐴⟶ℝ) |
12 | | eliun 4928 |
. . . . 5
⊢ (𝑥 ∈ ∪ 𝑟 ∈ ℚ ((◡𝐹 “ (𝑟(,)+∞)) ∩ (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞))) ↔ ∃𝑟 ∈ ℚ 𝑥 ∈ ((◡𝐹 “ (𝑟(,)+∞)) ∩ (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞)))) |
13 | | r19.42v 3279 |
. . . . . . 7
⊢
(∃𝑟 ∈
ℚ (𝑥 ∈ 𝐴 ∧ ((𝐹‘𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺‘𝑥) ∈ ((𝑦 − 𝑟)(,)+∞))) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑟 ∈ ℚ ((𝐹‘𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺‘𝑥) ∈ ((𝑦 − 𝑟)(,)+∞)))) |
14 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ ℝ) |
15 | 4 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐺:𝐴⟶ℝ) |
16 | 15 | ffvelrnda 6961 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ ℝ) |
17 | 3 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐹:𝐴⟶ℝ) |
18 | 17 | ffvelrnda 6961 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ) |
19 | 14, 16, 18 | ltsubaddd 11571 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝑦 − (𝐺‘𝑥)) < (𝐹‘𝑥) ↔ 𝑦 < ((𝐹‘𝑥) + (𝐺‘𝑥)))) |
20 | 14 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℚ) → 𝑦 ∈ ℝ) |
21 | | qre 12693 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 ∈ ℚ → 𝑟 ∈
ℝ) |
22 | 21 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℚ) → 𝑟 ∈ ℝ) |
23 | 16 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℚ) → (𝐺‘𝑥) ∈ ℝ) |
24 | | ltsub23 11455 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ (𝐺‘𝑥) ∈ ℝ) → ((𝑦 − 𝑟) < (𝐺‘𝑥) ↔ (𝑦 − (𝐺‘𝑥)) < 𝑟)) |
25 | 20, 22, 23, 24 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℚ) → ((𝑦 − 𝑟) < (𝐺‘𝑥) ↔ (𝑦 − (𝐺‘𝑥)) < 𝑟)) |
26 | 25 | anbi1cd 634 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℚ) → ((𝑟 < (𝐹‘𝑥) ∧ (𝑦 − 𝑟) < (𝐺‘𝑥)) ↔ ((𝑦 − (𝐺‘𝑥)) < 𝑟 ∧ 𝑟 < (𝐹‘𝑥)))) |
27 | 26 | rexbidva 3225 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (∃𝑟 ∈ ℚ (𝑟 < (𝐹‘𝑥) ∧ (𝑦 − 𝑟) < (𝐺‘𝑥)) ↔ ∃𝑟 ∈ ℚ ((𝑦 − (𝐺‘𝑥)) < 𝑟 ∧ 𝑟 < (𝐹‘𝑥)))) |
28 | 14, 16 | resubcld 11403 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝑦 − (𝐺‘𝑥)) ∈ ℝ) |
29 | 28 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℚ) → (𝑦 − (𝐺‘𝑥)) ∈ ℝ) |
30 | 18 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℚ) → (𝐹‘𝑥) ∈ ℝ) |
31 | | lttr 11051 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 − (𝐺‘𝑥)) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ (𝐹‘𝑥) ∈ ℝ) → (((𝑦 − (𝐺‘𝑥)) < 𝑟 ∧ 𝑟 < (𝐹‘𝑥)) → (𝑦 − (𝐺‘𝑥)) < (𝐹‘𝑥))) |
32 | 29, 22, 30, 31 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℚ) → (((𝑦 − (𝐺‘𝑥)) < 𝑟 ∧ 𝑟 < (𝐹‘𝑥)) → (𝑦 − (𝐺‘𝑥)) < (𝐹‘𝑥))) |
33 | 32 | rexlimdva 3213 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (∃𝑟 ∈ ℚ ((𝑦 − (𝐺‘𝑥)) < 𝑟 ∧ 𝑟 < (𝐹‘𝑥)) → (𝑦 − (𝐺‘𝑥)) < (𝐹‘𝑥))) |
34 | | qbtwnre 12933 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 − (𝐺‘𝑥)) ∈ ℝ ∧ (𝐹‘𝑥) ∈ ℝ ∧ (𝑦 − (𝐺‘𝑥)) < (𝐹‘𝑥)) → ∃𝑟 ∈ ℚ ((𝑦 − (𝐺‘𝑥)) < 𝑟 ∧ 𝑟 < (𝐹‘𝑥))) |
35 | 34 | 3expia 1120 |
. . . . . . . . . . . . 13
⊢ (((𝑦 − (𝐺‘𝑥)) ∈ ℝ ∧ (𝐹‘𝑥) ∈ ℝ) → ((𝑦 − (𝐺‘𝑥)) < (𝐹‘𝑥) → ∃𝑟 ∈ ℚ ((𝑦 − (𝐺‘𝑥)) < 𝑟 ∧ 𝑟 < (𝐹‘𝑥)))) |
36 | 28, 18, 35 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝑦 − (𝐺‘𝑥)) < (𝐹‘𝑥) → ∃𝑟 ∈ ℚ ((𝑦 − (𝐺‘𝑥)) < 𝑟 ∧ 𝑟 < (𝐹‘𝑥)))) |
37 | 33, 36 | impbid 211 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (∃𝑟 ∈ ℚ ((𝑦 − (𝐺‘𝑥)) < 𝑟 ∧ 𝑟 < (𝐹‘𝑥)) ↔ (𝑦 − (𝐺‘𝑥)) < (𝐹‘𝑥))) |
38 | 27, 37 | bitrd 278 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (∃𝑟 ∈ ℚ (𝑟 < (𝐹‘𝑥) ∧ (𝑦 − 𝑟) < (𝐺‘𝑥)) ↔ (𝑦 − (𝐺‘𝑥)) < (𝐹‘𝑥))) |
39 | 3 | ffnd 6601 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 Fn 𝐴) |
40 | 39 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐹 Fn 𝐴) |
41 | 4 | ffnd 6601 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 Fn 𝐴) |
42 | 41 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐺 Fn 𝐴) |
43 | 9 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ dom vol) |
44 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
45 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐺‘𝑥)) |
46 | 40, 42, 43, 43, 10, 44, 45 | ofval 7544 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f + 𝐺)‘𝑥) = ((𝐹‘𝑥) + (𝐺‘𝑥))) |
47 | 46 | breq2d 5086 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝑦 < ((𝐹 ∘f + 𝐺)‘𝑥) ↔ 𝑦 < ((𝐹‘𝑥) + (𝐺‘𝑥)))) |
48 | 19, 38, 47 | 3bitr4d 311 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (∃𝑟 ∈ ℚ (𝑟 < (𝐹‘𝑥) ∧ (𝑦 − 𝑟) < (𝐺‘𝑥)) ↔ 𝑦 < ((𝐹 ∘f + 𝐺)‘𝑥))) |
49 | 22 | rexrd 11025 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℚ) → 𝑟 ∈ ℝ*) |
50 | | elioopnf 13175 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ ℝ*
→ ((𝐹‘𝑥) ∈ (𝑟(,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 𝑟 < (𝐹‘𝑥)))) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐹‘𝑥) ∈ (𝑟(,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 𝑟 < (𝐹‘𝑥)))) |
52 | 30, 51 | mpbirand 704 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐹‘𝑥) ∈ (𝑟(,)+∞) ↔ 𝑟 < (𝐹‘𝑥))) |
53 | 20, 22 | resubcld 11403 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℚ) → (𝑦 − 𝑟) ∈ ℝ) |
54 | 53 | rexrd 11025 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℚ) → (𝑦 − 𝑟) ∈
ℝ*) |
55 | | elioopnf 13175 |
. . . . . . . . . . . . 13
⊢ ((𝑦 − 𝑟) ∈ ℝ* → ((𝐺‘𝑥) ∈ ((𝑦 − 𝑟)(,)+∞) ↔ ((𝐺‘𝑥) ∈ ℝ ∧ (𝑦 − 𝑟) < (𝐺‘𝑥)))) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐺‘𝑥) ∈ ((𝑦 − 𝑟)(,)+∞) ↔ ((𝐺‘𝑥) ∈ ℝ ∧ (𝑦 − 𝑟) < (𝐺‘𝑥)))) |
57 | 23, 56 | mpbirand 704 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐺‘𝑥) ∈ ((𝑦 − 𝑟)(,)+∞) ↔ (𝑦 − 𝑟) < (𝐺‘𝑥))) |
58 | 52, 57 | anbi12d 631 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑟 ∈ ℚ) → (((𝐹‘𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺‘𝑥) ∈ ((𝑦 − 𝑟)(,)+∞)) ↔ (𝑟 < (𝐹‘𝑥) ∧ (𝑦 − 𝑟) < (𝐺‘𝑥)))) |
59 | 58 | rexbidva 3225 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (∃𝑟 ∈ ℚ ((𝐹‘𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺‘𝑥) ∈ ((𝑦 − 𝑟)(,)+∞)) ↔ ∃𝑟 ∈ ℚ (𝑟 < (𝐹‘𝑥) ∧ (𝑦 − 𝑟) < (𝐺‘𝑥)))) |
60 | 11 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹 ∘f + 𝐺):𝐴⟶ℝ) |
61 | 60 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f + 𝐺)‘𝑥) ∈ ℝ) |
62 | 14 | rexrd 11025 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ ℝ*) |
63 | | elioopnf 13175 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ*
→ (((𝐹
∘f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞) ↔ (((𝐹 ∘f + 𝐺)‘𝑥) ∈ ℝ ∧ 𝑦 < ((𝐹 ∘f + 𝐺)‘𝑥)))) |
64 | 62, 63 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (((𝐹 ∘f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞) ↔ (((𝐹 ∘f + 𝐺)‘𝑥) ∈ ℝ ∧ 𝑦 < ((𝐹 ∘f + 𝐺)‘𝑥)))) |
65 | 61, 64 | mpbirand 704 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (((𝐹 ∘f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞) ↔ 𝑦 < ((𝐹 ∘f + 𝐺)‘𝑥))) |
66 | 48, 59, 65 | 3bitr4d 311 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (∃𝑟 ∈ ℚ ((𝐹‘𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺‘𝑥) ∈ ((𝑦 − 𝑟)(,)+∞)) ↔ ((𝐹 ∘f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞))) |
67 | 66 | pm5.32da 579 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑥 ∈ 𝐴 ∧ ∃𝑟 ∈ ℚ ((𝐹‘𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺‘𝑥) ∈ ((𝑦 − 𝑟)(,)+∞))) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐹 ∘f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞)))) |
68 | 13, 67 | bitrid 282 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∃𝑟 ∈ ℚ (𝑥 ∈ 𝐴 ∧ ((𝐹‘𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺‘𝑥) ∈ ((𝑦 − 𝑟)(,)+∞))) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐹 ∘f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞)))) |
69 | | elpreima 6935 |
. . . . . . . . . 10
⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ (𝑟(,)+∞)) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ (𝑟(,)+∞)))) |
70 | 40, 69 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (𝑟(,)+∞)) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ (𝑟(,)+∞)))) |
71 | | elpreima 6935 |
. . . . . . . . . 10
⊢ (𝐺 Fn 𝐴 → (𝑥 ∈ (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞)) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) ∈ ((𝑦 − 𝑟)(,)+∞)))) |
72 | 42, 71 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑥 ∈ (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞)) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) ∈ ((𝑦 − 𝑟)(,)+∞)))) |
73 | 70, 72 | anbi12d 631 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑥 ∈ (◡𝐹 “ (𝑟(,)+∞)) ∧ 𝑥 ∈ (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞))) ↔ ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ (𝑟(,)+∞)) ∧ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) ∈ ((𝑦 − 𝑟)(,)+∞))))) |
74 | | elin 3903 |
. . . . . . . 8
⊢ (𝑥 ∈ ((◡𝐹 “ (𝑟(,)+∞)) ∩ (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞))) ↔ (𝑥 ∈ (◡𝐹 “ (𝑟(,)+∞)) ∧ 𝑥 ∈ (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞)))) |
75 | | anandi 673 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ ((𝐹‘𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺‘𝑥) ∈ ((𝑦 − 𝑟)(,)+∞))) ↔ ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ (𝑟(,)+∞)) ∧ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) ∈ ((𝑦 − 𝑟)(,)+∞)))) |
76 | 73, 74, 75 | 3bitr4g 314 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑥 ∈ ((◡𝐹 “ (𝑟(,)+∞)) ∩ (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞))) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐹‘𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺‘𝑥) ∈ ((𝑦 − 𝑟)(,)+∞))))) |
77 | 76 | rexbidv 3226 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∃𝑟 ∈ ℚ 𝑥 ∈ ((◡𝐹 “ (𝑟(,)+∞)) ∩ (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞))) ↔ ∃𝑟 ∈ ℚ (𝑥 ∈ 𝐴 ∧ ((𝐹‘𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺‘𝑥) ∈ ((𝑦 − 𝑟)(,)+∞))))) |
78 | 11 | ffnd 6601 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ∘f + 𝐺) Fn 𝐴) |
79 | 78 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹 ∘f + 𝐺) Fn 𝐴) |
80 | | elpreima 6935 |
. . . . . . 7
⊢ ((𝐹 ∘f + 𝐺) Fn 𝐴 → (𝑥 ∈ (◡(𝐹 ∘f + 𝐺) “ (𝑦(,)+∞)) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐹 ∘f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞)))) |
81 | 79, 80 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑥 ∈ (◡(𝐹 ∘f + 𝐺) “ (𝑦(,)+∞)) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐹 ∘f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞)))) |
82 | 68, 77, 81 | 3bitr4d 311 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∃𝑟 ∈ ℚ 𝑥 ∈ ((◡𝐹 “ (𝑟(,)+∞)) ∩ (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞))) ↔ 𝑥 ∈ (◡(𝐹 ∘f + 𝐺) “ (𝑦(,)+∞)))) |
83 | 12, 82 | bitrid 282 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑥 ∈ ∪
𝑟 ∈ ℚ ((◡𝐹 “ (𝑟(,)+∞)) ∩ (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞))) ↔ 𝑥 ∈ (◡(𝐹 ∘f + 𝐺) “ (𝑦(,)+∞)))) |
84 | 83 | eqrdv 2736 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ∪ 𝑟 ∈ ℚ ((◡𝐹 “ (𝑟(,)+∞)) ∩ (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞))) = (◡(𝐹 ∘f + 𝐺) “ (𝑦(,)+∞))) |
85 | | qnnen 15922 |
. . . . 5
⊢ ℚ
≈ ℕ |
86 | | endom 8767 |
. . . . 5
⊢ (ℚ
≈ ℕ → ℚ ≼ ℕ) |
87 | 85, 86 | ax-mp 5 |
. . . 4
⊢ ℚ
≼ ℕ |
88 | | mbfima 24794 |
. . . . . . . 8
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ (𝑟(,)+∞)) ∈ dom
vol) |
89 | 6, 3, 88 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (◡𝐹 “ (𝑟(,)+∞)) ∈ dom
vol) |
90 | | mbfadd.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ MblFn) |
91 | | mbfima 24794 |
. . . . . . . 8
⊢ ((𝐺 ∈ MblFn ∧ 𝐺:𝐴⟶ℝ) → (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞)) ∈ dom
vol) |
92 | 90, 4, 91 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞)) ∈ dom
vol) |
93 | | inmbl 24706 |
. . . . . . 7
⊢ (((◡𝐹 “ (𝑟(,)+∞)) ∈ dom vol ∧ (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞)) ∈ dom vol) → ((◡𝐹 “ (𝑟(,)+∞)) ∩ (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞))) ∈ dom
vol) |
94 | 89, 92, 93 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((◡𝐹 “ (𝑟(,)+∞)) ∩ (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞))) ∈ dom
vol) |
95 | 94 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℚ) → ((◡𝐹 “ (𝑟(,)+∞)) ∩ (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞))) ∈ dom
vol) |
96 | 95 | ralrimiva 3103 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ∀𝑟 ∈ ℚ ((◡𝐹 “ (𝑟(,)+∞)) ∩ (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞))) ∈ dom
vol) |
97 | | iunmbl2 24721 |
. . . 4
⊢ ((ℚ
≼ ℕ ∧ ∀𝑟 ∈ ℚ ((◡𝐹 “ (𝑟(,)+∞)) ∩ (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞))) ∈ dom vol) →
∪ 𝑟 ∈ ℚ ((◡𝐹 “ (𝑟(,)+∞)) ∩ (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞))) ∈ dom
vol) |
98 | 87, 96, 97 | sylancr 587 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ∪ 𝑟 ∈ ℚ ((◡𝐹 “ (𝑟(,)+∞)) ∩ (◡𝐺 “ ((𝑦 − 𝑟)(,)+∞))) ∈ dom
vol) |
99 | 84, 98 | eqeltrrd 2840 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (◡(𝐹 ∘f + 𝐺) “ (𝑦(,)+∞)) ∈ dom
vol) |
100 | 11, 99 | ismbf3d 24818 |
1
⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ MblFn) |