MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfaddlem Structured version   Visualization version   GIF version

Theorem mbfaddlem 24529
Description: The sum of two measurable functions is measurable. (Contributed by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
mbfadd.1 (𝜑𝐹 ∈ MblFn)
mbfadd.2 (𝜑𝐺 ∈ MblFn)
mbfadd.3 (𝜑𝐹:𝐴⟶ℝ)
mbfadd.4 (𝜑𝐺:𝐴⟶ℝ)
Assertion
Ref Expression
mbfaddlem (𝜑 → (𝐹f + 𝐺) ∈ MblFn)

Proof of Theorem mbfaddlem
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 readdcl 10795 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
21adantl 485 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
3 mbfadd.3 . . 3 (𝜑𝐹:𝐴⟶ℝ)
4 mbfadd.4 . . 3 (𝜑𝐺:𝐴⟶ℝ)
53fdmd 6545 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
6 mbfadd.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
7 mbfdm 24495 . . . . 5 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
86, 7syl 17 . . . 4 (𝜑 → dom 𝐹 ∈ dom vol)
95, 8eqeltrrd 2835 . . 3 (𝜑𝐴 ∈ dom vol)
10 inidm 4123 . . 3 (𝐴𝐴) = 𝐴
112, 3, 4, 9, 9, 10off 7475 . 2 (𝜑 → (𝐹f + 𝐺):𝐴⟶ℝ)
12 eliun 4898 . . . . 5 (𝑥 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ ∃𝑟 ∈ ℚ 𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))))
13 r19.42v 3256 . . . . . . 7 (∃𝑟 ∈ ℚ (𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))) ↔ (𝑥𝐴 ∧ ∃𝑟 ∈ ℚ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))))
14 simplr 769 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
154adantr 484 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐺:𝐴⟶ℝ)
1615ffvelrnda 6893 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℝ)
173adantr 484 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐹:𝐴⟶ℝ)
1817ffvelrnda 6893 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
1914, 16, 18ltsubaddd 11411 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑦 − (𝐺𝑥)) < (𝐹𝑥) ↔ 𝑦 < ((𝐹𝑥) + (𝐺𝑥))))
2014adantr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → 𝑦 ∈ ℝ)
21 qre 12532 . . . . . . . . . . . . . . 15 (𝑟 ∈ ℚ → 𝑟 ∈ ℝ)
2221adantl 485 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → 𝑟 ∈ ℝ)
2316adantr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝐺𝑥) ∈ ℝ)
24 ltsub23 11295 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ (𝐺𝑥) ∈ ℝ) → ((𝑦𝑟) < (𝐺𝑥) ↔ (𝑦 − (𝐺𝑥)) < 𝑟))
2520, 22, 23, 24syl3anc 1373 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝑦𝑟) < (𝐺𝑥) ↔ (𝑦 − (𝐺𝑥)) < 𝑟))
2625anbi1cd 637 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥))))
2726rexbidva 3208 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ ∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥))))
2814, 16resubcld 11243 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 − (𝐺𝑥)) ∈ ℝ)
2928adantr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝑦 − (𝐺𝑥)) ∈ ℝ)
3018adantr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝐹𝑥) ∈ ℝ)
31 lttr 10892 . . . . . . . . . . . . . 14 (((𝑦 − (𝐺𝑥)) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → (((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)) → (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
3229, 22, 30, 31syl3anc 1373 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)) → (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
3332rexlimdva 3196 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)) → (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
34 qbtwnre 12772 . . . . . . . . . . . . . 14 (((𝑦 − (𝐺𝑥)) ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ ∧ (𝑦 − (𝐺𝑥)) < (𝐹𝑥)) → ∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)))
35343expia 1123 . . . . . . . . . . . . 13 (((𝑦 − (𝐺𝑥)) ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → ((𝑦 − (𝐺𝑥)) < (𝐹𝑥) → ∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥))))
3628, 18, 35syl2anc 587 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑦 − (𝐺𝑥)) < (𝐹𝑥) → ∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥))))
3733, 36impbid 215 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)) ↔ (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
3827, 37bitrd 282 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
393ffnd 6535 . . . . . . . . . . . . 13 (𝜑𝐹 Fn 𝐴)
4039adantr 484 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐹 Fn 𝐴)
414ffnd 6535 . . . . . . . . . . . . 13 (𝜑𝐺 Fn 𝐴)
4241adantr 484 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐺 Fn 𝐴)
439adantr 484 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐴 ∈ dom vol)
44 eqidd 2735 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
45 eqidd 2735 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
4640, 42, 43, 43, 10, 44, 45ofval 7468 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹f + 𝐺)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
4746breq2d 5055 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < ((𝐹f + 𝐺)‘𝑥) ↔ 𝑦 < ((𝐹𝑥) + (𝐺𝑥))))
4819, 38, 473bitr4d 314 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ 𝑦 < ((𝐹f + 𝐺)‘𝑥)))
4922rexrd 10866 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → 𝑟 ∈ ℝ*)
50 elioopnf 13014 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ* → ((𝐹𝑥) ∈ (𝑟(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑟 < (𝐹𝑥))))
5149, 50syl 17 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐹𝑥) ∈ (𝑟(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑟 < (𝐹𝑥))))
5230, 51mpbirand 707 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐹𝑥) ∈ (𝑟(,)+∞) ↔ 𝑟 < (𝐹𝑥)))
5320, 22resubcld 11243 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝑦𝑟) ∈ ℝ)
5453rexrd 10866 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝑦𝑟) ∈ ℝ*)
55 elioopnf 13014 . . . . . . . . . . . . 13 ((𝑦𝑟) ∈ ℝ* → ((𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞) ↔ ((𝐺𝑥) ∈ ℝ ∧ (𝑦𝑟) < (𝐺𝑥))))
5654, 55syl 17 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞) ↔ ((𝐺𝑥) ∈ ℝ ∧ (𝑦𝑟) < (𝐺𝑥))))
5723, 56mpbirand 707 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞) ↔ (𝑦𝑟) < (𝐺𝑥)))
5852, 57anbi12d 634 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)) ↔ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥))))
5958rexbidva 3208 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)) ↔ ∃𝑟 ∈ ℚ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥))))
6011adantr 484 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → (𝐹f + 𝐺):𝐴⟶ℝ)
6160ffvelrnda 6893 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹f + 𝐺)‘𝑥) ∈ ℝ)
6214rexrd 10866 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
63 elioopnf 13014 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞) ↔ (((𝐹f + 𝐺)‘𝑥) ∈ ℝ ∧ 𝑦 < ((𝐹f + 𝐺)‘𝑥))))
6462, 63syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞) ↔ (((𝐹f + 𝐺)‘𝑥) ∈ ℝ ∧ 𝑦 < ((𝐹f + 𝐺)‘𝑥))))
6561, 64mpbirand 707 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞) ↔ 𝑦 < ((𝐹f + 𝐺)‘𝑥)))
6648, 59, 653bitr4d 314 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)) ↔ ((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞)))
6766pm5.32da 582 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ∧ ∃𝑟 ∈ ℚ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))) ↔ (𝑥𝐴 ∧ ((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞))))
6813, 67syl5bb 286 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑟 ∈ ℚ (𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))) ↔ (𝑥𝐴 ∧ ((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞))))
69 elpreima 6867 . . . . . . . . . 10 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ (𝑟(,)+∞)) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (𝑟(,)+∞))))
7040, 69syl 17 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (𝑟(,)+∞)) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (𝑟(,)+∞))))
71 elpreima 6867 . . . . . . . . . 10 (𝐺 Fn 𝐴 → (𝑥 ∈ (𝐺 “ ((𝑦𝑟)(,)+∞)) ↔ (𝑥𝐴 ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))))
7242, 71syl 17 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑥 ∈ (𝐺 “ ((𝑦𝑟)(,)+∞)) ↔ (𝑥𝐴 ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))))
7370, 72anbi12d 634 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → ((𝑥 ∈ (𝐹 “ (𝑟(,)+∞)) ∧ 𝑥 ∈ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ∈ (𝑟(,)+∞)) ∧ (𝑥𝐴 ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)))))
74 elin 3873 . . . . . . . 8 (𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ (𝑥 ∈ (𝐹 “ (𝑟(,)+∞)) ∧ 𝑥 ∈ (𝐺 “ ((𝑦𝑟)(,)+∞))))
75 anandi 676 . . . . . . . 8 ((𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ∈ (𝑟(,)+∞)) ∧ (𝑥𝐴 ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))))
7673, 74, 753bitr4g 317 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)))))
7776rexbidv 3209 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑟 ∈ ℚ 𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ ∃𝑟 ∈ ℚ (𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)))))
7811ffnd 6535 . . . . . . . 8 (𝜑 → (𝐹f + 𝐺) Fn 𝐴)
7978adantr 484 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝐹f + 𝐺) Fn 𝐴)
80 elpreima 6867 . . . . . . 7 ((𝐹f + 𝐺) Fn 𝐴 → (𝑥 ∈ ((𝐹f + 𝐺) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞))))
8179, 80syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑥 ∈ ((𝐹f + 𝐺) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝐹f + 𝐺)‘𝑥) ∈ (𝑦(,)+∞))))
8268, 77, 813bitr4d 314 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (∃𝑟 ∈ ℚ 𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ 𝑥 ∈ ((𝐹f + 𝐺) “ (𝑦(,)+∞))))
8312, 82syl5bb 286 . . . 4 ((𝜑𝑦 ∈ ℝ) → (𝑥 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ 𝑥 ∈ ((𝐹f + 𝐺) “ (𝑦(,)+∞))))
8483eqrdv 2732 . . 3 ((𝜑𝑦 ∈ ℝ) → 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) = ((𝐹f + 𝐺) “ (𝑦(,)+∞)))
85 qnnen 15755 . . . . 5 ℚ ≈ ℕ
86 endom 8644 . . . . 5 (ℚ ≈ ℕ → ℚ ≼ ℕ)
8785, 86ax-mp 5 . . . 4 ℚ ≼ ℕ
88 mbfima 24499 . . . . . . . 8 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (𝑟(,)+∞)) ∈ dom vol)
896, 3, 88syl2anc 587 . . . . . . 7 (𝜑 → (𝐹 “ (𝑟(,)+∞)) ∈ dom vol)
90 mbfadd.2 . . . . . . . 8 (𝜑𝐺 ∈ MblFn)
91 mbfima 24499 . . . . . . . 8 ((𝐺 ∈ MblFn ∧ 𝐺:𝐴⟶ℝ) → (𝐺 “ ((𝑦𝑟)(,)+∞)) ∈ dom vol)
9290, 4, 91syl2anc 587 . . . . . . 7 (𝜑 → (𝐺 “ ((𝑦𝑟)(,)+∞)) ∈ dom vol)
93 inmbl 24411 . . . . . . 7 (((𝐹 “ (𝑟(,)+∞)) ∈ dom vol ∧ (𝐺 “ ((𝑦𝑟)(,)+∞)) ∈ dom vol) → ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
9489, 92, 93syl2anc 587 . . . . . 6 (𝜑 → ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
9594ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℚ) → ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
9695ralrimiva 3098 . . . 4 ((𝜑𝑦 ∈ ℝ) → ∀𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
97 iunmbl2 24426 . . . 4 ((ℚ ≼ ℕ ∧ ∀𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol) → 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
9887, 96, 97sylancr 590 . . 3 ((𝜑𝑦 ∈ ℝ) → 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
9984, 98eqeltrrd 2835 . 2 ((𝜑𝑦 ∈ ℝ) → ((𝐹f + 𝐺) “ (𝑦(,)+∞)) ∈ dom vol)
10011, 99ismbf3d 24523 1 (𝜑 → (𝐹f + 𝐺) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2110  wral 3054  wrex 3055  cin 3856   ciun 4894   class class class wbr 5043  ccnv 5539  dom cdm 5540  cima 5543   Fn wfn 6364  wf 6365  cfv 6369  (class class class)co 7202  f cof 7456  cen 8612  cdom 8613  cr 10711   + caddc 10715  +∞cpnf 10847  *cxr 10849   < clt 10850  cmin 11045  cn 11813  cq 12527  (,)cioo 12918  volcvol 24332  MblFncmbf 24483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cc 10032  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-disj 5009  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-oadd 8195  df-omul 8196  df-er 8380  df-map 8499  df-pm 8500  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-inf 9048  df-oi 9115  df-dju 9500  df-card 9538  df-acn 9541  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-z 12160  df-uz 12422  df-q 12528  df-rp 12570  df-xadd 12688  df-ioo 12922  df-ioc 12923  df-ico 12924  df-icc 12925  df-fz 13079  df-fzo 13222  df-fl 13350  df-seq 13558  df-exp 13619  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-clim 15032  df-rlim 15033  df-sum 15233  df-xmet 20328  df-met 20329  df-ovol 24333  df-vol 24334  df-mbf 24488
This theorem is referenced by:  mbfadd  24530
  Copyright terms: Public domain W3C validator