Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opelres | Structured version Visualization version GIF version |
Description: Ordered pair elementhood in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.) (Revised by BJ, 18-Feb-2022.) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022.) |
Ref | Expression |
---|---|
opelres | ⊢ (𝐶 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5601 | . . 3 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × V)) | |
2 | 1 | elin2 4131 | . 2 ⊢ (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (〈𝐵, 𝐶〉 ∈ 𝑅 ∧ 〈𝐵, 𝐶〉 ∈ (𝐴 × V))) |
3 | opelxp 5625 | . . . 4 ⊢ (〈𝐵, 𝐶〉 ∈ (𝐴 × V) ↔ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ V)) | |
4 | elex 3450 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
5 | 4 | biantrud 532 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → (𝐵 ∈ 𝐴 ↔ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ V))) |
6 | 3, 5 | bitr4id 290 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (𝐴 × V) ↔ 𝐵 ∈ 𝐴)) |
7 | 6 | anbi1cd 634 | . 2 ⊢ (𝐶 ∈ 𝑉 → ((〈𝐵, 𝐶〉 ∈ 𝑅 ∧ 〈𝐵, 𝐶〉 ∈ (𝐴 × V)) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅))) |
8 | 2, 7 | bitrid 282 | 1 ⊢ (𝐶 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 〈cop 4567 × cxp 5587 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-xp 5595 df-res 5601 |
This theorem is referenced by: brres 5898 opelresi 5899 opelidres 5903 h2hlm 29342 setsnidel 44829 |
Copyright terms: Public domain | W3C validator |