![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelres | Structured version Visualization version GIF version |
Description: Ordered pair elementhood in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.) (Revised by BJ, 18-Feb-2022.) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022.) |
Ref | Expression |
---|---|
opelres | ⊢ (𝐶 ∈ 𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5650 | . . 3 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × V)) | |
2 | 1 | elin2 4162 | . 2 ⊢ (⟨𝐵, 𝐶⟩ ∈ (𝑅 ↾ 𝐴) ↔ (⟨𝐵, 𝐶⟩ ∈ 𝑅 ∧ ⟨𝐵, 𝐶⟩ ∈ (𝐴 × V))) |
3 | opelxp 5674 | . . . 4 ⊢ (⟨𝐵, 𝐶⟩ ∈ (𝐴 × V) ↔ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ V)) | |
4 | elex 3466 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
5 | 4 | biantrud 533 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → (𝐵 ∈ 𝐴 ↔ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ V))) |
6 | 3, 5 | bitr4id 290 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝐴 × V) ↔ 𝐵 ∈ 𝐴)) |
7 | 6 | anbi1cd 635 | . 2 ⊢ (𝐶 ∈ 𝑉 → ((⟨𝐵, 𝐶⟩ ∈ 𝑅 ∧ ⟨𝐵, 𝐶⟩ ∈ (𝐴 × V)) ↔ (𝐵 ∈ 𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅))) |
8 | 2, 7 | bitrid 283 | 1 ⊢ (𝐶 ∈ 𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 Vcvv 3448 ⟨cop 4597 × cxp 5636 ↾ cres 5640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-opab 5173 df-xp 5644 df-res 5650 |
This theorem is referenced by: brres 5949 opelresi 5950 opelidres 5954 h2hlm 29964 setsnidel 45643 |
Copyright terms: Public domain | W3C validator |