Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opelres | Structured version Visualization version GIF version |
Description: Ordered pair elementhood in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.) (Revised by BJ, 18-Feb-2022.) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022.) |
Ref | Expression |
---|---|
opelres | ⊢ (𝐶 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5537 | . . 3 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × V)) | |
2 | 1 | elin2 4087 | . 2 ⊢ (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (〈𝐵, 𝐶〉 ∈ 𝑅 ∧ 〈𝐵, 𝐶〉 ∈ (𝐴 × V))) |
3 | opelxp 5561 | . . . 4 ⊢ (〈𝐵, 𝐶〉 ∈ (𝐴 × V) ↔ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ V)) | |
4 | elex 3416 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
5 | 4 | biantrud 535 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → (𝐵 ∈ 𝐴 ↔ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ V))) |
6 | 3, 5 | bitr4id 293 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (𝐴 × V) ↔ 𝐵 ∈ 𝐴)) |
7 | 6 | anbi1cd 637 | . 2 ⊢ (𝐶 ∈ 𝑉 → ((〈𝐵, 𝐶〉 ∈ 𝑅 ∧ 〈𝐵, 𝐶〉 ∈ (𝐴 × V)) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅))) |
8 | 2, 7 | syl5bb 286 | 1 ⊢ (𝐶 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2114 Vcvv 3398 〈cop 4522 × cxp 5523 ↾ cres 5527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-opab 5093 df-xp 5531 df-res 5537 |
This theorem is referenced by: brres 5832 opelresi 5833 opelidres 5837 h2hlm 28915 setsnidel 44363 |
Copyright terms: Public domain | W3C validator |