MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelres Structured version   Visualization version   GIF version

Theorem opelres 5933
Description: Ordered pair elementhood in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.) (Revised by BJ, 18-Feb-2022.) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022.)
Assertion
Ref Expression
opelres (𝐶𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅)))

Proof of Theorem opelres
StepHypRef Expression
1 df-res 5626 . . 3 (𝑅𝐴) = (𝑅 ∩ (𝐴 × V))
21elin2 4150 . 2 (⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴) ↔ (⟨𝐵, 𝐶⟩ ∈ 𝑅 ∧ ⟨𝐵, 𝐶⟩ ∈ (𝐴 × V)))
3 opelxp 5650 . . . 4 (⟨𝐵, 𝐶⟩ ∈ (𝐴 × V) ↔ (𝐵𝐴𝐶 ∈ V))
4 elex 3457 . . . . 5 (𝐶𝑉𝐶 ∈ V)
54biantrud 531 . . . 4 (𝐶𝑉 → (𝐵𝐴 ↔ (𝐵𝐴𝐶 ∈ V)))
63, 5bitr4id 290 . . 3 (𝐶𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝐴 × V) ↔ 𝐵𝐴))
76anbi1cd 635 . 2 (𝐶𝑉 → ((⟨𝐵, 𝐶⟩ ∈ 𝑅 ∧ ⟨𝐵, 𝐶⟩ ∈ (𝐴 × V)) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅)))
82, 7bitrid 283 1 (𝐶𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  Vcvv 3436  cop 4579   × cxp 5612  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-opab 5152  df-xp 5620  df-res 5626
This theorem is referenced by:  brres  5934  opelresi  5935  opelidres  5939  h2hlm  30960  setsnidel  47487
  Copyright terms: Public domain W3C validator