MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelres Structured version   Visualization version   GIF version

Theorem opelres 5995
Description: Ordered pair elementhood in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.) (Revised by BJ, 18-Feb-2022.) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022.)
Assertion
Ref Expression
opelres (𝐶𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅)))

Proof of Theorem opelres
StepHypRef Expression
1 df-res 5694 . . 3 (𝑅𝐴) = (𝑅 ∩ (𝐴 × V))
21elin2 4199 . 2 (⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴) ↔ (⟨𝐵, 𝐶⟩ ∈ 𝑅 ∧ ⟨𝐵, 𝐶⟩ ∈ (𝐴 × V)))
3 opelxp 5718 . . . 4 (⟨𝐵, 𝐶⟩ ∈ (𝐴 × V) ↔ (𝐵𝐴𝐶 ∈ V))
4 elex 3492 . . . . 5 (𝐶𝑉𝐶 ∈ V)
54biantrud 530 . . . 4 (𝐶𝑉 → (𝐵𝐴 ↔ (𝐵𝐴𝐶 ∈ V)))
63, 5bitr4id 289 . . 3 (𝐶𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝐴 × V) ↔ 𝐵𝐴))
76anbi1cd 633 . 2 (𝐶𝑉 → ((⟨𝐵, 𝐶⟩ ∈ 𝑅 ∧ ⟨𝐵, 𝐶⟩ ∈ (𝐴 × V)) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅)))
82, 7bitrid 282 1 (𝐶𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2098  Vcvv 3473  cop 4638   × cxp 5680  cres 5684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-opab 5215  df-xp 5688  df-res 5694
This theorem is referenced by:  brres  5996  opelresi  5997  opelidres  6001  h2hlm  30810  setsnidel  46746
  Copyright terms: Public domain W3C validator