MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvreslem Structured version   Visualization version   GIF version

Theorem dvreslem 24806
Description: Lemma for dvres 24808. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) Commute the consequent and shorten proof. (Revised by Peter Mazsa, 2-Oct-2022.)
Hypotheses
Ref Expression
dvres.k 𝐾 = (TopOpen‘ℂfld)
dvres.t 𝑇 = (𝐾t 𝑆)
dvres.g 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
dvres.s (𝜑𝑆 ⊆ ℂ)
dvres.f (𝜑𝐹:𝐴⟶ℂ)
dvres.a (𝜑𝐴𝑆)
dvres.b (𝜑𝐵𝑆)
dvres.y (𝜑𝑦 ∈ ℂ)
Assertion
Ref Expression
dvreslem (𝜑 → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑧,𝐾   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑧)   𝐾(𝑥,𝑦)

Proof of Theorem dvreslem
StepHypRef Expression
1 difss 4046 . . . . . . . . . . . . . . 15 ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴𝐵)
2 inss2 4144 . . . . . . . . . . . . . . 15 (𝐴𝐵) ⊆ 𝐵
31, 2sstri 3910 . . . . . . . . . . . . . 14 ((𝐴𝐵) ∖ {𝑥}) ⊆ 𝐵
4 simpr 488 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}))
53, 4sseldi 3899 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → 𝑧𝐵)
65fvresd 6737 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
7 dvres.t . . . . . . . . . . . . . . . . . 18 𝑇 = (𝐾t 𝑆)
8 dvres.k . . . . . . . . . . . . . . . . . . . 20 𝐾 = (TopOpen‘ℂfld)
98cnfldtop 23681 . . . . . . . . . . . . . . . . . . 19 𝐾 ∈ Top
10 dvres.s . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆 ⊆ ℂ)
11 cnex 10810 . . . . . . . . . . . . . . . . . . . 20 ℂ ∈ V
12 ssexg 5216 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
1310, 11, 12sylancl 589 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑆 ∈ V)
14 resttop 22057 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Top ∧ 𝑆 ∈ V) → (𝐾t 𝑆) ∈ Top)
159, 13, 14sylancr 590 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾t 𝑆) ∈ Top)
167, 15eqeltrid 2842 . . . . . . . . . . . . . . . . 17 (𝜑𝑇 ∈ Top)
17 inss1 4143 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐵) ⊆ 𝐴
18 dvres.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴𝑆)
1917, 18sstrid 3912 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝐵) ⊆ 𝑆)
208cnfldtopon 23680 . . . . . . . . . . . . . . . . . . . . 21 𝐾 ∈ (TopOn‘ℂ)
21 resttopon 22058 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
2220, 10, 21sylancr 590 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
237, 22eqeltrid 2842 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ (TopOn‘𝑆))
24 toponuni 21811 . . . . . . . . . . . . . . . . . . 19 (𝑇 ∈ (TopOn‘𝑆) → 𝑆 = 𝑇)
2523, 24syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 = 𝑇)
2619, 25sseqtrd 3941 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴𝐵) ⊆ 𝑇)
27 eqid 2737 . . . . . . . . . . . . . . . . . 18 𝑇 = 𝑇
2827ntrss2 21954 . . . . . . . . . . . . . . . . 17 ((𝑇 ∈ Top ∧ (𝐴𝐵) ⊆ 𝑇) → ((int‘𝑇)‘(𝐴𝐵)) ⊆ (𝐴𝐵))
2916, 26, 28syl2anc 587 . . . . . . . . . . . . . . . 16 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ (𝐴𝐵))
3029, 2sstrdi 3913 . . . . . . . . . . . . . . 15 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ 𝐵)
3130sselda 3901 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥𝐵)
3231fvresd 6737 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
3332adantr 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
346, 33oveq12d 7231 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → (((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) = ((𝐹𝑧) − (𝐹𝑥)))
3534oveq1d 7228 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
3635mpteq2dva 5150 . . . . . . . . 9 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
37 dvres.g . . . . . . . . . . 11 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
3837reseq1i 5847 . . . . . . . . . 10 (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) = ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥}))
39 ssdif 4054 . . . . . . . . . . 11 ((𝐴𝐵) ⊆ 𝐴 → ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}))
40 resmpt 5905 . . . . . . . . . . 11 (((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}) → ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
4117, 39, 40mp2b 10 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
4238, 41eqtri 2765 . . . . . . . . 9 (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
4336, 42eqtr4di 2796 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})))
4443oveq1d 7228 . . . . . . 7 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥) = ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥))
45 dvres.f . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ℂ)
4645adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝐹:𝐴⟶ℂ)
4718, 10sstrd 3911 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℂ)
4847adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝐴 ⊆ ℂ)
4929, 17sstrdi 3913 . . . . . . . . . . 11 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ 𝐴)
5049sselda 3901 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥𝐴)
5146, 48, 50dvlem 24793 . . . . . . . . 9 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ (𝐴 ∖ {𝑥})) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) ∈ ℂ)
5251, 37fmptd 6931 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝐺:(𝐴 ∖ {𝑥})⟶ℂ)
5317, 39mp1i 13 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}))
54 difss 4046 . . . . . . . . 9 (𝐴 ∖ {𝑥}) ⊆ 𝐴
5554, 48sstrid 3912 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝐴 ∖ {𝑥}) ⊆ ℂ)
56 eqid 2737 . . . . . . . 8 (𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥})) = (𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
57 difssd 4047 . . . . . . . . . . . . . 14 (𝜑 → ( 𝑇𝐴) ⊆ 𝑇)
5826, 57unssd 4100 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐵) ∪ ( 𝑇𝐴)) ⊆ 𝑇)
59 ssun1 4086 . . . . . . . . . . . . . 14 (𝐴𝐵) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐴))
6059a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐴)))
6127ntrss 21952 . . . . . . . . . . . . 13 ((𝑇 ∈ Top ∧ ((𝐴𝐵) ∪ ( 𝑇𝐴)) ⊆ 𝑇 ∧ (𝐴𝐵) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐴))) → ((int‘𝑇)‘(𝐴𝐵)) ⊆ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))))
6216, 58, 60, 61syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))))
6362, 49ssind 4147 . . . . . . . . . . 11 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))) ∩ 𝐴))
6418, 25sseqtrd 3941 . . . . . . . . . . . . 13 (𝜑𝐴 𝑇)
6517a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
66 eqid 2737 . . . . . . . . . . . . . 14 (𝑇t 𝐴) = (𝑇t 𝐴)
6727, 66restntr 22079 . . . . . . . . . . . . 13 ((𝑇 ∈ Top ∧ 𝐴 𝑇 ∧ (𝐴𝐵) ⊆ 𝐴) → ((int‘(𝑇t 𝐴))‘(𝐴𝐵)) = (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))) ∩ 𝐴))
6816, 64, 65, 67syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → ((int‘(𝑇t 𝐴))‘(𝐴𝐵)) = (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))) ∩ 𝐴))
697oveq1i 7223 . . . . . . . . . . . . . . 15 (𝑇t 𝐴) = ((𝐾t 𝑆) ↾t 𝐴)
709a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ Top)
71 restabs 22062 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Top ∧ 𝐴𝑆𝑆 ∈ V) → ((𝐾t 𝑆) ↾t 𝐴) = (𝐾t 𝐴))
7270, 18, 13, 71syl3anc 1373 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐾t 𝑆) ↾t 𝐴) = (𝐾t 𝐴))
7369, 72syl5eq 2790 . . . . . . . . . . . . . 14 (𝜑 → (𝑇t 𝐴) = (𝐾t 𝐴))
7473fveq2d 6721 . . . . . . . . . . . . 13 (𝜑 → (int‘(𝑇t 𝐴)) = (int‘(𝐾t 𝐴)))
7574fveq1d 6719 . . . . . . . . . . . 12 (𝜑 → ((int‘(𝑇t 𝐴))‘(𝐴𝐵)) = ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
7668, 75eqtr3d 2779 . . . . . . . . . . 11 (𝜑 → (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))) ∩ 𝐴) = ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
7763, 76sseqtrd 3941 . . . . . . . . . 10 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
7877sselda 3901 . . . . . . . . 9 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥 ∈ ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
79 undif1 4390 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = (𝐴 ∪ {𝑥})
8029sselda 3901 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥 ∈ (𝐴𝐵))
8180snssd 4722 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → {𝑥} ⊆ (𝐴𝐵))
8281, 17sstrdi 3913 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → {𝑥} ⊆ 𝐴)
83 ssequn2 4097 . . . . . . . . . . . . . 14 ({𝑥} ⊆ 𝐴 ↔ (𝐴 ∪ {𝑥}) = 𝐴)
8482, 83sylib 221 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝐴 ∪ {𝑥}) = 𝐴)
8579, 84syl5eq 2790 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴)
8685oveq2d 7229 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥})) = (𝐾t 𝐴))
8786fveq2d 6721 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (int‘(𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥}))) = (int‘(𝐾t 𝐴)))
88 undif1 4390 . . . . . . . . . . 11 (((𝐴𝐵) ∖ {𝑥}) ∪ {𝑥}) = ((𝐴𝐵) ∪ {𝑥})
89 ssequn2 4097 . . . . . . . . . . . 12 ({𝑥} ⊆ (𝐴𝐵) ↔ ((𝐴𝐵) ∪ {𝑥}) = (𝐴𝐵))
9081, 89sylib 221 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐴𝐵) ∪ {𝑥}) = (𝐴𝐵))
9188, 90syl5eq 2790 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (((𝐴𝐵) ∖ {𝑥}) ∪ {𝑥}) = (𝐴𝐵))
9287, 91fveq12d 6724 . . . . . . . . 9 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((int‘(𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥})))‘(((𝐴𝐵) ∖ {𝑥}) ∪ {𝑥})) = ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
9378, 92eleqtrrd 2841 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥 ∈ ((int‘(𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥})))‘(((𝐴𝐵) ∖ {𝑥}) ∪ {𝑥})))
9452, 53, 55, 8, 56, 93limcres 24783 . . . . . . 7 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥) = (𝐺 lim 𝑥))
9544, 94eqtrd 2777 . . . . . 6 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥) = (𝐺 lim 𝑥))
9695eleq2d 2823 . . . . 5 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥) ↔ 𝑦 ∈ (𝐺 lim 𝑥)))
9796pm5.32da 582 . . . 4 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ (𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
98 dvres.b . . . . . . . . 9 (𝜑𝐵𝑆)
9998, 25sseqtrd 3941 . . . . . . . 8 (𝜑𝐵 𝑇)
10027ntrin 21958 . . . . . . . 8 ((𝑇 ∈ Top ∧ 𝐴 𝑇𝐵 𝑇) → ((int‘𝑇)‘(𝐴𝐵)) = (((int‘𝑇)‘𝐴) ∩ ((int‘𝑇)‘𝐵)))
10116, 64, 99, 100syl3anc 1373 . . . . . . 7 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) = (((int‘𝑇)‘𝐴) ∩ ((int‘𝑇)‘𝐵)))
102101eleq2d 2823 . . . . . 6 (𝜑 → (𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ↔ 𝑥 ∈ (((int‘𝑇)‘𝐴) ∩ ((int‘𝑇)‘𝐵))))
103 elin 3882 . . . . . 6 (𝑥 ∈ (((int‘𝑇)‘𝐴) ∩ ((int‘𝑇)‘𝐵)) ↔ (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)))
104102, 103bitrdi 290 . . . . 5 (𝜑 → (𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ↔ (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵))))
105104anbi1d 633 . . . 4 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
10697, 105bitrd 282 . . 3 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
107 an32 646 . . 3 (((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)))
108106, 107bitrdi 290 . 2 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵))))
109 eqid 2737 . . 3 (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)))
110 fresin 6588 . . . 4 (𝐹:𝐴⟶ℂ → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
11145, 110syl 17 . . 3 (𝜑 → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
1127, 8, 109, 10, 111, 19eldv 24795 . 2 (𝜑 → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥))))
1137, 8, 37, 10, 45, 18eldv 24795 . . 3 (𝜑 → (𝑥(𝑆 D 𝐹)𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
114113anbi1cd 637 . 2 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵))))
115108, 112, 1143bitr4d 314 1 (𝜑 → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  Vcvv 3408  cdif 3863  cun 3864  cin 3865  wss 3866  {csn 4541   cuni 4819   class class class wbr 5053  cmpt 5135  cres 5553  wf 6376  cfv 6380  (class class class)co 7213  cc 10727  cmin 11062   / cdiv 11489  t crest 16925  TopOpenctopn 16926  fldccnfld 20363  Topctop 21790  TopOnctopon 21807  intcnt 21914   lim climc 24759   D cdv 24760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fi 9027  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-fz 13096  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-struct 16700  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-mulr 16816  df-starv 16817  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-rest 16927  df-topn 16928  df-topgen 16948  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-cnp 22125  df-xms 23218  df-ms 23219  df-limc 24763  df-dv 24764
This theorem is referenced by:  dvres  24808
  Copyright terms: Public domain W3C validator