MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvreslem Structured version   Visualization version   GIF version

Theorem dvreslem 24978
Description: Lemma for dvres 24980. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) Commute the consequent and shorten proof. (Revised by Peter Mazsa, 2-Oct-2022.)
Hypotheses
Ref Expression
dvres.k 𝐾 = (TopOpen‘ℂfld)
dvres.t 𝑇 = (𝐾t 𝑆)
dvres.g 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
dvres.s (𝜑𝑆 ⊆ ℂ)
dvres.f (𝜑𝐹:𝐴⟶ℂ)
dvres.a (𝜑𝐴𝑆)
dvres.b (𝜑𝐵𝑆)
dvres.y (𝜑𝑦 ∈ ℂ)
Assertion
Ref Expression
dvreslem (𝜑 → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑧,𝐾   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑧)   𝐾(𝑥,𝑦)

Proof of Theorem dvreslem
StepHypRef Expression
1 difss 4062 . . . . . . . . . . . . . . 15 ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴𝐵)
2 inss2 4160 . . . . . . . . . . . . . . 15 (𝐴𝐵) ⊆ 𝐵
31, 2sstri 3926 . . . . . . . . . . . . . 14 ((𝐴𝐵) ∖ {𝑥}) ⊆ 𝐵
4 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}))
53, 4sselid 3915 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → 𝑧𝐵)
65fvresd 6776 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
7 dvres.t . . . . . . . . . . . . . . . . . 18 𝑇 = (𝐾t 𝑆)
8 dvres.k . . . . . . . . . . . . . . . . . . . 20 𝐾 = (TopOpen‘ℂfld)
98cnfldtop 23853 . . . . . . . . . . . . . . . . . . 19 𝐾 ∈ Top
10 dvres.s . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆 ⊆ ℂ)
11 cnex 10883 . . . . . . . . . . . . . . . . . . . 20 ℂ ∈ V
12 ssexg 5242 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
1310, 11, 12sylancl 585 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑆 ∈ V)
14 resttop 22219 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Top ∧ 𝑆 ∈ V) → (𝐾t 𝑆) ∈ Top)
159, 13, 14sylancr 586 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾t 𝑆) ∈ Top)
167, 15eqeltrid 2843 . . . . . . . . . . . . . . . . 17 (𝜑𝑇 ∈ Top)
17 inss1 4159 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐵) ⊆ 𝐴
18 dvres.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴𝑆)
1917, 18sstrid 3928 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝐵) ⊆ 𝑆)
208cnfldtopon 23852 . . . . . . . . . . . . . . . . . . . . 21 𝐾 ∈ (TopOn‘ℂ)
21 resttopon 22220 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
2220, 10, 21sylancr 586 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
237, 22eqeltrid 2843 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ (TopOn‘𝑆))
24 toponuni 21971 . . . . . . . . . . . . . . . . . . 19 (𝑇 ∈ (TopOn‘𝑆) → 𝑆 = 𝑇)
2523, 24syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 = 𝑇)
2619, 25sseqtrd 3957 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴𝐵) ⊆ 𝑇)
27 eqid 2738 . . . . . . . . . . . . . . . . . 18 𝑇 = 𝑇
2827ntrss2 22116 . . . . . . . . . . . . . . . . 17 ((𝑇 ∈ Top ∧ (𝐴𝐵) ⊆ 𝑇) → ((int‘𝑇)‘(𝐴𝐵)) ⊆ (𝐴𝐵))
2916, 26, 28syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ (𝐴𝐵))
3029, 2sstrdi 3929 . . . . . . . . . . . . . . 15 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ 𝐵)
3130sselda 3917 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥𝐵)
3231fvresd 6776 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
3332adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
346, 33oveq12d 7273 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → (((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) = ((𝐹𝑧) − (𝐹𝑥)))
3534oveq1d 7270 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
3635mpteq2dva 5170 . . . . . . . . 9 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
37 dvres.g . . . . . . . . . . 11 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
3837reseq1i 5876 . . . . . . . . . 10 (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) = ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥}))
39 ssdif 4070 . . . . . . . . . . 11 ((𝐴𝐵) ⊆ 𝐴 → ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}))
40 resmpt 5934 . . . . . . . . . . 11 (((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}) → ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
4117, 39, 40mp2b 10 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
4238, 41eqtri 2766 . . . . . . . . 9 (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
4336, 42eqtr4di 2797 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})))
4443oveq1d 7270 . . . . . . 7 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥) = ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥))
45 dvres.f . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ℂ)
4645adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝐹:𝐴⟶ℂ)
4718, 10sstrd 3927 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℂ)
4847adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝐴 ⊆ ℂ)
4929, 17sstrdi 3929 . . . . . . . . . . 11 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ 𝐴)
5049sselda 3917 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥𝐴)
5146, 48, 50dvlem 24965 . . . . . . . . 9 (((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) ∧ 𝑧 ∈ (𝐴 ∖ {𝑥})) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) ∈ ℂ)
5251, 37fmptd 6970 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝐺:(𝐴 ∖ {𝑥})⟶ℂ)
5317, 39mp1i 13 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}))
54 difss 4062 . . . . . . . . 9 (𝐴 ∖ {𝑥}) ⊆ 𝐴
5554, 48sstrid 3928 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝐴 ∖ {𝑥}) ⊆ ℂ)
56 eqid 2738 . . . . . . . 8 (𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥})) = (𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
57 difssd 4063 . . . . . . . . . . . . . 14 (𝜑 → ( 𝑇𝐴) ⊆ 𝑇)
5826, 57unssd 4116 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐵) ∪ ( 𝑇𝐴)) ⊆ 𝑇)
59 ssun1 4102 . . . . . . . . . . . . . 14 (𝐴𝐵) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐴))
6059a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐴)))
6127ntrss 22114 . . . . . . . . . . . . 13 ((𝑇 ∈ Top ∧ ((𝐴𝐵) ∪ ( 𝑇𝐴)) ⊆ 𝑇 ∧ (𝐴𝐵) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐴))) → ((int‘𝑇)‘(𝐴𝐵)) ⊆ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))))
6216, 58, 60, 61syl3anc 1369 . . . . . . . . . . . 12 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))))
6362, 49ssind 4163 . . . . . . . . . . 11 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))) ∩ 𝐴))
6418, 25sseqtrd 3957 . . . . . . . . . . . . 13 (𝜑𝐴 𝑇)
6517a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
66 eqid 2738 . . . . . . . . . . . . . 14 (𝑇t 𝐴) = (𝑇t 𝐴)
6727, 66restntr 22241 . . . . . . . . . . . . 13 ((𝑇 ∈ Top ∧ 𝐴 𝑇 ∧ (𝐴𝐵) ⊆ 𝐴) → ((int‘(𝑇t 𝐴))‘(𝐴𝐵)) = (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))) ∩ 𝐴))
6816, 64, 65, 67syl3anc 1369 . . . . . . . . . . . 12 (𝜑 → ((int‘(𝑇t 𝐴))‘(𝐴𝐵)) = (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))) ∩ 𝐴))
697oveq1i 7265 . . . . . . . . . . . . . . 15 (𝑇t 𝐴) = ((𝐾t 𝑆) ↾t 𝐴)
709a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ Top)
71 restabs 22224 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Top ∧ 𝐴𝑆𝑆 ∈ V) → ((𝐾t 𝑆) ↾t 𝐴) = (𝐾t 𝐴))
7270, 18, 13, 71syl3anc 1369 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐾t 𝑆) ↾t 𝐴) = (𝐾t 𝐴))
7369, 72syl5eq 2791 . . . . . . . . . . . . . 14 (𝜑 → (𝑇t 𝐴) = (𝐾t 𝐴))
7473fveq2d 6760 . . . . . . . . . . . . 13 (𝜑 → (int‘(𝑇t 𝐴)) = (int‘(𝐾t 𝐴)))
7574fveq1d 6758 . . . . . . . . . . . 12 (𝜑 → ((int‘(𝑇t 𝐴))‘(𝐴𝐵)) = ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
7668, 75eqtr3d 2780 . . . . . . . . . . 11 (𝜑 → (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐴))) ∩ 𝐴) = ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
7763, 76sseqtrd 3957 . . . . . . . . . 10 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) ⊆ ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
7877sselda 3917 . . . . . . . . 9 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥 ∈ ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
79 undif1 4406 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = (𝐴 ∪ {𝑥})
8029sselda 3917 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥 ∈ (𝐴𝐵))
8180snssd 4739 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → {𝑥} ⊆ (𝐴𝐵))
8281, 17sstrdi 3929 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → {𝑥} ⊆ 𝐴)
83 ssequn2 4113 . . . . . . . . . . . . . 14 ({𝑥} ⊆ 𝐴 ↔ (𝐴 ∪ {𝑥}) = 𝐴)
8482, 83sylib 217 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝐴 ∪ {𝑥}) = 𝐴)
8579, 84syl5eq 2791 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴)
8685oveq2d 7271 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥})) = (𝐾t 𝐴))
8786fveq2d 6760 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (int‘(𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥}))) = (int‘(𝐾t 𝐴)))
88 undif1 4406 . . . . . . . . . . 11 (((𝐴𝐵) ∖ {𝑥}) ∪ {𝑥}) = ((𝐴𝐵) ∪ {𝑥})
89 ssequn2 4113 . . . . . . . . . . . 12 ({𝑥} ⊆ (𝐴𝐵) ↔ ((𝐴𝐵) ∪ {𝑥}) = (𝐴𝐵))
9081, 89sylib 217 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐴𝐵) ∪ {𝑥}) = (𝐴𝐵))
9188, 90syl5eq 2791 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (((𝐴𝐵) ∖ {𝑥}) ∪ {𝑥}) = (𝐴𝐵))
9287, 91fveq12d 6763 . . . . . . . . 9 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((int‘(𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥})))‘(((𝐴𝐵) ∖ {𝑥}) ∪ {𝑥})) = ((int‘(𝐾t 𝐴))‘(𝐴𝐵)))
9378, 92eleqtrrd 2842 . . . . . . . 8 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → 𝑥 ∈ ((int‘(𝐾t ((𝐴 ∖ {𝑥}) ∪ {𝑥})))‘(((𝐴𝐵) ∖ {𝑥}) ∪ {𝑥})))
9452, 53, 55, 8, 56, 93limcres 24955 . . . . . . 7 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥) = (𝐺 lim 𝑥))
9544, 94eqtrd 2778 . . . . . 6 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥) = (𝐺 lim 𝑥))
9695eleq2d 2824 . . . . 5 ((𝜑𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵))) → (𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥) ↔ 𝑦 ∈ (𝐺 lim 𝑥)))
9796pm5.32da 578 . . . 4 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ (𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
98 dvres.b . . . . . . . . 9 (𝜑𝐵𝑆)
9998, 25sseqtrd 3957 . . . . . . . 8 (𝜑𝐵 𝑇)
10027ntrin 22120 . . . . . . . 8 ((𝑇 ∈ Top ∧ 𝐴 𝑇𝐵 𝑇) → ((int‘𝑇)‘(𝐴𝐵)) = (((int‘𝑇)‘𝐴) ∩ ((int‘𝑇)‘𝐵)))
10116, 64, 99, 100syl3anc 1369 . . . . . . 7 (𝜑 → ((int‘𝑇)‘(𝐴𝐵)) = (((int‘𝑇)‘𝐴) ∩ ((int‘𝑇)‘𝐵)))
102101eleq2d 2824 . . . . . 6 (𝜑 → (𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ↔ 𝑥 ∈ (((int‘𝑇)‘𝐴) ∩ ((int‘𝑇)‘𝐵))))
103 elin 3899 . . . . . 6 (𝑥 ∈ (((int‘𝑇)‘𝐴) ∩ ((int‘𝑇)‘𝐵)) ↔ (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)))
104102, 103bitrdi 286 . . . . 5 (𝜑 → (𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ↔ (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵))))
105104anbi1d 629 . . . 4 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
10697, 105bitrd 278 . . 3 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
107 an32 642 . . 3 (((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵)))
108106, 107bitrdi 286 . 2 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵))))
109 eqid 2738 . . 3 (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)))
110 fresin 6627 . . . 4 (𝐹:𝐴⟶ℂ → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
11145, 110syl 17 . . 3 (𝜑 → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
1127, 8, 109, 10, 111, 19eldv 24967 . 2 (𝜑 → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥))))
1137, 8, 37, 10, 45, 18eldv 24967 . . 3 (𝜑 → (𝑥(𝑆 D 𝐹)𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
114113anbi1cd 633 . 2 (𝜑 → ((𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦) ↔ ((𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥)) ∧ 𝑥 ∈ ((int‘𝑇)‘𝐵))))
115108, 112, 1143bitr4d 310 1 (𝜑 → (𝑥(𝑆 D (𝐹𝐵))𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐵) ∧ 𝑥(𝑆 D 𝐹)𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  {csn 4558   cuni 4836   class class class wbr 5070  cmpt 5153  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cmin 11135   / cdiv 11562  t crest 17048  TopOpenctopn 17049  fldccnfld 20510  Topctop 21950  TopOnctopon 21967  intcnt 22076   lim climc 24931   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-cnp 22287  df-xms 23381  df-ms 23382  df-limc 24935  df-dv 24936
This theorem is referenced by:  dvres  24980
  Copyright terms: Public domain W3C validator