|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > anbiim | Structured version Visualization version GIF version | ||
| Description: Adding biconditional when antecedents are conjuncted. (Contributed by metakunt, 16-Apr-2024.) (Proof shortened by Wolf Lammen, 7-May-2025.) | 
| Ref | Expression | 
|---|---|
| anbiim.1 | ⊢ (𝜑 → (𝜒 → 𝜃)) | 
| anbiim.2 | ⊢ (𝜓 → (𝜃 → 𝜒)) | 
| Ref | Expression | 
|---|---|
| anbiim | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | anbiim.1 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | 
| 3 | anbiim.2 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜒)) | |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜃 → 𝜒)) | 
| 5 | 2, 4 | impbid 212 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: sseq1 4009 sseq2 4010 gricsymb 47891 grlicsymb 47974 | 
| Copyright terms: Public domain | W3C validator |