MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anbiim Structured version   Visualization version   GIF version

Theorem anbiim 640
Description: Adding biconditional when antecedents are conjuncted. (Contributed by metakunt, 16-Apr-2024.) (Proof shortened by Wolf Lammen, 7-May-2025.)
Hypotheses
Ref Expression
anbiim.1 (𝜑 → (𝜒𝜃))
anbiim.2 (𝜓 → (𝜃𝜒))
Assertion
Ref Expression
anbiim ((𝜑𝜓) → (𝜒𝜃))

Proof of Theorem anbiim
StepHypRef Expression
1 anbiim.1 . . 3 (𝜑 → (𝜒𝜃))
21adantr 480 . 2 ((𝜑𝜓) → (𝜒𝜃))
3 anbiim.2 . . 3 (𝜓 → (𝜃𝜒))
43adantl 481 . 2 ((𝜑𝜓) → (𝜃𝜒))
52, 4impbid 212 1 ((𝜑𝜓) → (𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  gricsymb  47775  grlicsymb  47831
  Copyright terms: Public domain W3C validator