Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gricsymb Structured version   Visualization version   GIF version

Theorem gricsymb 47952
Description: Graph isomorphism is symmetric in both directions for hypergraphs. (Contributed by AV, 11-Nov-2022.) (Proof shortened by AV, 3-May-2025.)
Assertion
Ref Expression
gricsymb ((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph) → (𝐴𝑔𝑟 𝐵𝐵𝑔𝑟 𝐴))

Proof of Theorem gricsymb
StepHypRef Expression
1 gricsym 47951 . 2 (𝐴 ∈ UHGraph → (𝐴𝑔𝑟 𝐵𝐵𝑔𝑟 𝐴))
2 gricsym 47951 . 2 (𝐵 ∈ UHGraph → (𝐵𝑔𝑟 𝐴𝐴𝑔𝑟 𝐵))
31, 2anbiim 641 1 ((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph) → (𝐴𝑔𝑟 𝐵𝐵𝑔𝑟 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111   class class class wbr 5091  UHGraphcuhgr 29032  𝑔𝑟 cgric 47906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-1o 8385  df-map 8752  df-uhgr 29034  df-grim 47908  df-gric 47911
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator