![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > grlicsymb | Structured version Visualization version GIF version |
Description: Graph local isomorphism is symmetric in both directions for hypergraphs. (Contributed by AV, 9-Jun-2025.) |
Ref | Expression |
---|---|
grlicsymb | ⊢ ((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph) → (𝐴 ≃𝑙𝑔𝑟 𝐵 ↔ 𝐵 ≃𝑙𝑔𝑟 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grlicsym 47536 | . 2 ⊢ (𝐴 ∈ UHGraph → (𝐴 ≃𝑙𝑔𝑟 𝐵 → 𝐵 ≃𝑙𝑔𝑟 𝐴)) | |
2 | grlicsym 47536 | . 2 ⊢ (𝐵 ∈ UHGraph → (𝐵 ≃𝑙𝑔𝑟 𝐴 → 𝐴 ≃𝑙𝑔𝑟 𝐵)) | |
3 | 1, 2 | anbiim 639 | 1 ⊢ ((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph) → (𝐴 ≃𝑙𝑔𝑟 𝐵 ↔ 𝐵 ≃𝑙𝑔𝑟 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2099 class class class wbr 5143 UHGraphcuhgr 28986 ≃𝑙𝑔𝑟 cgrlic 47516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7992 df-2nd 7993 df-1o 8485 df-map 8846 df-vtx 28928 df-iedg 28929 df-uhgr 28988 df-clnbgr 47424 df-isubgr 47461 df-grim 47476 df-gric 47479 df-grlim 47517 df-grlic 47520 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |