Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlicsymb Structured version   Visualization version   GIF version

Theorem grlicsymb 47537
Description: Graph local isomorphism is symmetric in both directions for hypergraphs. (Contributed by AV, 9-Jun-2025.)
Assertion
Ref Expression
grlicsymb ((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph) → (𝐴𝑙𝑔𝑟 𝐵𝐵𝑙𝑔𝑟 𝐴))

Proof of Theorem grlicsymb
StepHypRef Expression
1 grlicsym 47536 . 2 (𝐴 ∈ UHGraph → (𝐴𝑙𝑔𝑟 𝐵𝐵𝑙𝑔𝑟 𝐴))
2 grlicsym 47536 . 2 (𝐵 ∈ UHGraph → (𝐵𝑙𝑔𝑟 𝐴𝐴𝑙𝑔𝑟 𝐵))
31, 2anbiim 639 1 ((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph) → (𝐴𝑙𝑔𝑟 𝐵𝐵𝑙𝑔𝑟 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2099   class class class wbr 5143  UHGraphcuhgr 28986  𝑙𝑔𝑟 cgrlic 47516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7992  df-2nd 7993  df-1o 8485  df-map 8846  df-vtx 28928  df-iedg 28929  df-uhgr 28988  df-clnbgr 47424  df-isubgr 47461  df-grim 47476  df-gric 47479  df-grlim 47517  df-grlic 47520
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator