| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grlicsymb | Structured version Visualization version GIF version | ||
| Description: Graph local isomorphism is symmetric in both directions for hypergraphs. (Contributed by AV, 9-Jun-2025.) |
| Ref | Expression |
|---|---|
| grlicsymb | ⊢ ((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph) → (𝐴 ≃𝑙𝑔𝑟 𝐵 ↔ 𝐵 ≃𝑙𝑔𝑟 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grlicsym 48018 | . 2 ⊢ (𝐴 ∈ UHGraph → (𝐴 ≃𝑙𝑔𝑟 𝐵 → 𝐵 ≃𝑙𝑔𝑟 𝐴)) | |
| 2 | grlicsym 48018 | . 2 ⊢ (𝐵 ∈ UHGraph → (𝐵 ≃𝑙𝑔𝑟 𝐴 → 𝐴 ≃𝑙𝑔𝑟 𝐵)) | |
| 3 | 1, 2 | anbiim 641 | 1 ⊢ ((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph) → (𝐴 ≃𝑙𝑔𝑟 𝐵 ↔ 𝐵 ≃𝑙𝑔𝑟 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5119 UHGraphcuhgr 29035 ≃𝑙𝑔𝑟 cgrlic 47989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-1o 8480 df-map 8842 df-vtx 28977 df-iedg 28978 df-uhgr 29037 df-clnbgr 47833 df-isubgr 47874 df-grim 47891 df-gric 47894 df-grlim 47990 df-grlic 47993 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |