Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-df3-3mintru2 | Structured version Visualization version GIF version |
Description: The adder carry in conjunctive normal form. An alternative highly symmetric definition emphasizing the independence of order of the inputs 𝜑, 𝜓 and 𝜒. Copy of cadan 1608. (Contributed by Mario Carneiro, 4-Sep-2016.) df-cad redefined. (Revised by Wolf Lammen, 18-Jun-2024.) |
Ref | Expression |
---|---|
wl-df3-3mintru2 | ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordi 1004 | . . 3 ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) | |
2 | 1 | anbi1i 625 | . 2 ⊢ (((𝜑 ∨ (𝜓 ∧ 𝜒)) ∧ (𝜓 ∨ 𝜒)) ↔ (((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒)) ∧ (𝜓 ∨ 𝜒))) |
3 | wl-df-3mintru2 35703 | . . 3 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, (𝜓 ∨ 𝜒), (𝜓 ∧ 𝜒))) | |
4 | animorl 976 | . . . 4 ⊢ ((𝜓 ∧ 𝜒) → (𝜓 ∨ 𝜒)) | |
5 | wl-ifp4impr 35686 | . . . 4 ⊢ (((𝜓 ∧ 𝜒) → (𝜓 ∨ 𝜒)) → (if-(𝜑, (𝜓 ∨ 𝜒), (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ∧ (𝜓 ∨ 𝜒)))) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (if-(𝜑, (𝜓 ∨ 𝜒), (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ∧ (𝜓 ∨ 𝜒))) |
7 | 3, 6 | bitri 275 | . 2 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ∧ (𝜓 ∨ 𝜒))) |
8 | df-3an 1089 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒)) ↔ (((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒)) ∧ (𝜓 ∨ 𝜒))) | |
9 | 2, 7, 8 | 3bitr4i 303 | 1 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 845 if-wif 1061 ∧ w3a 1087 caddwcad 1605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-ifp 1062 df-3or 1088 df-3an 1089 df-xor 1508 df-cad 1606 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |