Mathbox for Wolf Lammen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-df3-3mintru2 Structured version   Visualization version   GIF version

Theorem wl-df3-3mintru2 34896
 Description: The adder carry in conjunctive normal form. An alternative highly symmetric definition emphasizing the independance of order of the inputs 𝜑, 𝜓 and 𝜒. Copy of cadan 1611. (Contributed by Mario Carneiro, 4-Sep-2016.) df-cad redefined. (Revised by Wolf Lammen, 18-Jun-2024.)
Assertion
Ref Expression
wl-df3-3mintru2 (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∧ (𝜑𝜒) ∧ (𝜓𝜒)))

Proof of Theorem wl-df3-3mintru2
StepHypRef Expression
1 ordi 1003 . . 3 ((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
21anbi1i 626 . 2 (((𝜑 ∨ (𝜓𝜒)) ∧ (𝜓𝜒)) ↔ (((𝜑𝜓) ∧ (𝜑𝜒)) ∧ (𝜓𝜒)))
3 wl-df-3mintru2 34894 . . 3 (cadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, (𝜓𝜒), (𝜓𝜒)))
4 animorl 975 . . . 4 ((𝜓𝜒) → (𝜓𝜒))
5 wl-ifp4impr 34877 . . . 4 (((𝜓𝜒) → (𝜓𝜒)) → (if-(𝜑, (𝜓𝜒), (𝜓𝜒)) ↔ ((𝜑 ∨ (𝜓𝜒)) ∧ (𝜓𝜒))))
64, 5ax-mp 5 . . 3 (if-(𝜑, (𝜓𝜒), (𝜓𝜒)) ↔ ((𝜑 ∨ (𝜓𝜒)) ∧ (𝜓𝜒)))
73, 6bitri 278 . 2 (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∨ (𝜓𝜒)) ∧ (𝜓𝜒)))
8 df-3an 1086 . 2 (((𝜑𝜓) ∧ (𝜑𝜒) ∧ (𝜓𝜒)) ↔ (((𝜑𝜓) ∧ (𝜑𝜒)) ∧ (𝜓𝜒)))
92, 7, 83bitr4i 306 1 (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∧ (𝜑𝜒) ∧ (𝜓𝜒)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844  if-wif 1058   ∧ w3a 1084  caddwcad 1608 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-xor 1503  df-cad 1609 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator