| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-df3-3mintru2 | Structured version Visualization version GIF version | ||
| Description: The adder carry in conjunctive normal form. An alternative highly symmetric definition emphasizing the independence of order of the inputs 𝜑, 𝜓 and 𝜒. Copy of cadan 1609. (Contributed by Mario Carneiro, 4-Sep-2016.) df-cad redefined. (Revised by Wolf Lammen, 18-Jun-2024.) |
| Ref | Expression |
|---|---|
| wl-df3-3mintru2 | ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordi 1007 | . . 3 ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ (((𝜑 ∨ (𝜓 ∧ 𝜒)) ∧ (𝜓 ∨ 𝜒)) ↔ (((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒)) ∧ (𝜓 ∨ 𝜒))) |
| 3 | wl-df-3mintru2 37507 | . . 3 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, (𝜓 ∨ 𝜒), (𝜓 ∧ 𝜒))) | |
| 4 | animorl 979 | . . . 4 ⊢ ((𝜓 ∧ 𝜒) → (𝜓 ∨ 𝜒)) | |
| 5 | wl-ifp4impr 37490 | . . . 4 ⊢ (((𝜓 ∧ 𝜒) → (𝜓 ∨ 𝜒)) → (if-(𝜑, (𝜓 ∨ 𝜒), (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ∧ (𝜓 ∨ 𝜒)))) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (if-(𝜑, (𝜓 ∨ 𝜒), (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ∧ (𝜓 ∨ 𝜒))) |
| 7 | 3, 6 | bitri 275 | . 2 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ∧ (𝜓 ∨ 𝜒))) |
| 8 | df-3an 1088 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒)) ↔ (((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒)) ∧ (𝜓 ∨ 𝜒))) | |
| 9 | 2, 7, 8 | 3bitr4i 303 | 1 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 if-wif 1062 ∧ w3a 1086 caddwcad 1606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-xor 1512 df-cad 1607 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |