Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindsimp1 Structured version   Visualization version   GIF version

Theorem lindslinindsimp1 46528
Description: Implication 1 for lindslininds 46535. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) (Proof shortened by II, 16-Feb-2023.)
Hypotheses
Ref Expression
lindslinind.r 𝑅 = (Scalar‘𝑀)
lindslinind.b 𝐵 = (Base‘𝑅)
lindslinind.0 0 = (0g𝑅)
lindslinind.z 𝑍 = (0g𝑀)
Assertion
Ref Expression
lindslinindsimp1 ((𝑆𝑉𝑀 ∈ LMod) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))))
Distinct variable groups:   𝐵,𝑓,𝑠,𝑦   𝑓,𝑀,𝑠,𝑦   𝑅,𝑓,𝑥   𝑆,𝑓,𝑠,𝑥,𝑦   𝑉,𝑠,𝑦   𝑓,𝑍,𝑠,𝑦   0 ,𝑓,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑦,𝑠)   𝑀(𝑥)   𝑉(𝑥,𝑓)   𝑍(𝑥)

Proof of Theorem lindslinindsimp1
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 4567 . . . 4 (𝑆 ∈ 𝒫 (Base‘𝑀) → 𝑆 ⊆ (Base‘𝑀))
21ad2antrl 726 . . 3 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → 𝑆 ⊆ (Base‘𝑀))
3 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆𝑉𝑀 ∈ LMod) → 𝑀 ∈ LMod)
43anim2i 617 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod))
54ancomd 462 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)))
65ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)))
7 eldifi 4086 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦𝐵)
87adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → 𝑦𝐵)
98adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦𝐵)
109adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑦𝐵)
11 simprl 769 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑠𝑆)
1211adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑠𝑆)
13 simprl 769 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})))
1410, 12, 133jca 1128 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑦𝐵𝑠𝑆𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))))
15 simprrl 779 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑔 finSupp 0 )
16 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝑀) = (Base‘𝑀)
17 lindslinind.r . . . . . . . . . . . . . . . . . . . . . 22 𝑅 = (Scalar‘𝑀)
18 lindslinind.b . . . . . . . . . . . . . . . . . . . . . 22 𝐵 = (Base‘𝑅)
19 lindslinind.0 . . . . . . . . . . . . . . . . . . . . . 22 0 = (0g𝑅)
20 lindslinind.z . . . . . . . . . . . . . . . . . . . . . 22 𝑍 = (0g𝑀)
21 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (invg𝑅) = (invg𝑅)
22 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))
2316, 17, 18, 19, 20, 21, 22lincext2 46526 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦𝐵𝑠𝑆𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))) ∧ 𝑔 finSupp 0 ) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 )
246, 14, 15, 23syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 )
254adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod))
2625ancomd 462 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)))
2726adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)))
2816, 17, 18, 19, 20, 21, 22lincext1 46525 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦𝐵𝑠𝑆𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})))) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) ∈ (𝐵m 𝑆))
2927, 14, 28syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) ∈ (𝐵m 𝑆))
30 breq1 5108 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → (𝑓 finSupp 0 ↔ (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 ))
31 oveq1 7364 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → (𝑓( linC ‘𝑀)𝑆) = ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆))
3231eqeq1d 2738 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍))
3330, 32anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍)))
34 fveq1 6841 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → (𝑓𝑥) = ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥))
3534eqeq1d 2738 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → ((𝑓𝑥) = 0 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 ))
3635ralbidv 3174 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → (∀𝑥𝑆 (𝑓𝑥) = 0 ↔ ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 ))
3733, 36imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 )))
3837rspcv 3577 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) ∈ (𝐵m 𝑆) → (∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 )))
3929, 38syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 )))
4039exp4a 432 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 ))))
4124, 40mpid 44 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 )))
42 simprr 771 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
4316, 17, 18, 19, 20, 21, 22lincext3 46527 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦𝐵𝑠𝑆𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍)
446, 14, 42, 43syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍)
45 fveqeq2 6851 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑠 → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = 0 ))
4645rspcv 3577 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠𝑆 → (∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = 0 ))
4712, 46syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = 0 ))
48 eqidd 2737 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))))
49 iftrue 4492 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑠 → if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)) = ((invg𝑅)‘𝑦))
5049adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑧 = 𝑠) → if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)) = ((invg𝑅)‘𝑦))
51 fvexd 6857 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((invg𝑅)‘𝑦) ∈ V)
5248, 50, 11, 51fvmptd 6955 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = ((invg𝑅)‘𝑦))
5352adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = ((invg𝑅)‘𝑦))
5453eqeq1d 2738 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = 0 ↔ ((invg𝑅)‘𝑦) = 0 ))
5517lmodfgrp 20331 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
5618, 19, 21grpinvnzcl 18819 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑅 ∈ Grp ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → ((invg𝑅)‘𝑦) ∈ (𝐵 ∖ { 0 }))
57 eldif 3920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((invg𝑅)‘𝑦) ∈ (𝐵 ∖ { 0 }) ↔ (((invg𝑅)‘𝑦) ∈ 𝐵 ∧ ¬ ((invg𝑅)‘𝑦) ∈ { 0 }))
58 fvex 6855 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((invg𝑅)‘𝑦) ∈ V
5958elsn 4601 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((invg𝑅)‘𝑦) ∈ { 0 } ↔ ((invg𝑅)‘𝑦) = 0 )
60 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (¬ ((invg𝑅)‘𝑦) = 0 → (((invg𝑅)‘𝑦) = 0 → (𝑆𝑉 → (𝑠𝑆 → (𝑆 ∈ 𝒫 (Base‘𝑀) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6160com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (¬ ((invg𝑅)‘𝑦) = 0 → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6259, 61sylnbi 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (¬ ((invg𝑅)‘𝑦) ∈ { 0 } → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6357, 62simplbiim 505 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((invg𝑅)‘𝑦) ∈ (𝐵 ∖ { 0 }) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6456, 63syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ Grp ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6564ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑅 ∈ Grp → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))))
6655, 65syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑀 ∈ LMod → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))))
6766com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀 ∈ LMod → (𝑆𝑉 → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))))
6867impcom 408 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆𝑉𝑀 ∈ LMod) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6968impcom 408 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
7069com13 88 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠𝑆 → (𝑦 ∈ (𝐵 ∖ { 0 }) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
7170imp 407 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
7271impcom 408 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7372adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7454, 73sylbid 239 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7547, 74syld 47 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7644, 75embantd 59 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ((((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 ) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7741, 76syldc 48 . . . . . . . . . . . . . . . . . 18 (∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7877exp5j 446 . . . . . . . . . . . . . . . . 17 (∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (𝑆 ∈ 𝒫 (Base‘𝑀) → ((𝑆𝑉𝑀 ∈ LMod) → ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
7978impcom 408 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )) → ((𝑆𝑉𝑀 ∈ LMod) → ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
8079impcom 408 . . . . . . . . . . . . . . 15 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
8180imp 407 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
8281expdimp 453 . . . . . . . . . . . . 13 (((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))) → ((𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
8382expd 416 . . . . . . . . . . . 12 (((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))) → (𝑔 finSupp 0 → ((𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
8483impcom 408 . . . . . . . . . . 11 ((𝑔 finSupp 0 ∧ ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})))) → ((𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
8584pm2.01d 189 . . . . . . . . . 10 ((𝑔 finSupp 0 ∧ ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))
8685olcd 872 . . . . . . . . 9 ((𝑔 finSupp 0 ∧ ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})))) → (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
87 animorl 976 . . . . . . . . 9 ((¬ 𝑔 finSupp 0 ∧ ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})))) → (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
8886, 87pm2.61ian 810 . . . . . . . 8 (((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))) → (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
8988ralrimiva 3143 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
90 ralnex 3075 . . . . . . . 8 (∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ¬ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
91 ianor 980 . . . . . . . . 9 (¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
9291ralbii 3096 . . . . . . . 8 (∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
9390, 92bitr3i 276 . . . . . . 7 (¬ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
9489, 93sylibr 233 . . . . . 6 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
9594intnand 489 . . . . 5 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
963ad2antrr 724 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑀 ∈ LMod)
97 difexg 5284 . . . . . . . . . 10 (𝑆𝑉 → (𝑆 ∖ {𝑠}) ∈ V)
9897ad2antrr 724 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ∈ V)
991ssdifssd 4102 . . . . . . . . . 10 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀))
10099ad2antrl 726 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀))
10198, 100elpwd 4566 . . . . . . . 8 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))
102101adantr 481 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))
10316lspeqlco 46510 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo (𝑆 ∖ {𝑠})) = ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))
104103eleq2d 2823 . . . . . . . 8 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))))
105104bicomd 222 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠}))))
10696, 102, 105syl2anc 584 . . . . . 6 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠}))))
1073adantr 481 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → 𝑀 ∈ LMod)
108 difexg 5284 . . . . . . . . . . 11 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑠}) ∈ V)
109108, 99elpwd 4566 . . . . . . . . . 10 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))
110109ad2antrl 726 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))
111107, 110jca 512 . . . . . . . 8 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)))
112111adantr 481 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)))
11316, 17, 18lcoval 46483 . . . . . . . 8 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
11419eqcomi 2745 . . . . . . . . . . . 12 (0g𝑅) = 0
115114breq2i 5113 . . . . . . . . . . 11 (𝑔 finSupp (0g𝑅) ↔ 𝑔 finSupp 0 )
116115anbi1i 624 . . . . . . . . . 10 ((𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
117116rexbii 3097 . . . . . . . . 9 (∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
118117anbi2i 623 . . . . . . . 8 (((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
119113, 118bitrdi 286 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
120112, 119syl 17 . . . . . 6 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
121106, 120bitrd 278 . . . . 5 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
12295, 121mtbird 324 . . . 4 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))
123122ralrimivva 3197 . . 3 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))
1242, 123jca 512 . 2 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))))
125124ex 413 1 ((𝑆𝑉𝑀 ∈ LMod) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  cdif 3907  wss 3910  ifcif 4486  𝒫 cpw 4560  {csn 4586   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  m cmap 8765   finSupp cfsupp 9305  Basecbs 17083  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321  Grpcgrp 18748  invgcminusg 18749  LModclmod 20322  LSpanclspn 20432   linC clinc 46475   LinCo clinco 46476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-gsum 17324  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-lmod 20324  df-lss 20393  df-lsp 20433  df-linc 46477  df-lco 46478
This theorem is referenced by:  lindslininds  46535
  Copyright terms: Public domain W3C validator