Step | Hyp | Ref
| Expression |
1 | | elpwi 4542 |
. . . 4
⊢ (𝑆 ∈ 𝒫
(Base‘𝑀) → 𝑆 ⊆ (Base‘𝑀)) |
2 | 1 | ad2antrl 725 |
. . 3
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) → 𝑆 ⊆ (Base‘𝑀)) |
3 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → 𝑀 ∈ LMod) |
4 | 3 | anim2i 617 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) |
5 | 4 | ancomd 462 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀))) |
6 | 5 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀))) |
7 | | eldifi 4061 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦 ∈ 𝐵) |
8 | 7 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → 𝑦 ∈ 𝐵) |
9 | 8 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦 ∈ 𝐵) |
10 | 9 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑦 ∈ 𝐵) |
11 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑠 ∈ 𝑆) |
12 | 11 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑠 ∈ 𝑆) |
13 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))) |
14 | 10, 12, 13 | 3jca 1127 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑦 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆 ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})))) |
15 | | simprrl 778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑔 finSupp 0 ) |
16 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(Base‘𝑀) =
(Base‘𝑀) |
17 | | lindslinind.r |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑅 = (Scalar‘𝑀) |
18 | | lindslinind.b |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐵 = (Base‘𝑅) |
19 | | lindslinind.0 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 =
(0g‘𝑅) |
20 | | lindslinind.z |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑍 = (0g‘𝑀) |
21 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(invg‘𝑅) = (invg‘𝑅) |
22 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) |
23 | 16, 17, 18, 19, 20, 21, 22 | lincext2 45796 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫
(Base‘𝑀)) ∧
(𝑦 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆 ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))) ∧ 𝑔 finSupp 0 ) → (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) finSupp 0 ) |
24 | 6, 14, 15, 23 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) finSupp 0 ) |
25 | 4 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑆 ∈ 𝒫
(Base‘𝑀) ∧ 𝑀 ∈ LMod)) |
26 | 25 | ancomd 462 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫
(Base‘𝑀))) |
27 | 26 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀))) |
28 | 16, 17, 18, 19, 20, 21, 22 | lincext1 45795 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫
(Base‘𝑀)) ∧
(𝑦 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆 ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})))) → (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) ∈ (𝐵 ↑m 𝑆)) |
29 | 27, 14, 28 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) ∈ (𝐵 ↑m 𝑆)) |
30 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑓 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) → (𝑓 finSupp 0 ↔ (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) finSupp 0 )) |
31 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) → (𝑓( linC ‘𝑀)𝑆) = ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆)) |
32 | 31 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑓 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍)) |
33 | 30, 32 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ↔ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) finSupp 0 ∧ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍))) |
34 | | fveq1 6773 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) → (𝑓‘𝑥) = ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥)) |
35 | 34 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑓 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) → ((𝑓‘𝑥) = 0 ↔ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 )) |
36 | 35 | ralbidv 3112 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) → (∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ↔ ∀𝑥 ∈ 𝑆 ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 )) |
37 | 33, 36 | imbi12d 345 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ↔ (((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) finSupp 0 ∧ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 ))) |
38 | 37 | rspcv 3557 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) ∈ (𝐵 ↑m 𝑆) → (∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → (((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) finSupp 0 ∧ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 ))) |
39 | 29, 38 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → (((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) finSupp 0 ∧ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 ))) |
40 | 39 | exp4a 432 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) finSupp 0 → (((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 )))) |
41 | 24, 40 | mpid 44 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → (((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 ))) |
42 | | simprr 770 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
43 | 16, 17, 18, 19, 20, 21, 22 | lincext3 45797 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫
(Base‘𝑀)) ∧
(𝑦 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆 ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍) |
44 | 6, 14, 42, 43 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍) |
45 | | fveqeq2 6783 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑠 → (((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 ↔ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑠) = 0 )) |
46 | 45 | rspcv 3557 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 ∈ 𝑆 → (∀𝑥 ∈ 𝑆 ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑠) = 0 )) |
47 | 12, 46 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑥 ∈ 𝑆 ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑠) = 0 )) |
48 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))) |
49 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 = 𝑠 → if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)) = ((invg‘𝑅)‘𝑦)) |
50 | 49 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑧 = 𝑠) → if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)) = ((invg‘𝑅)‘𝑦)) |
51 | | fvexd 6789 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) →
((invg‘𝑅)‘𝑦) ∈ V) |
52 | 48, 50, 11, 51 | fvmptd 6882 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑠) = ((invg‘𝑅)‘𝑦)) |
53 | 52 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑠) = ((invg‘𝑅)‘𝑦)) |
54 | 53 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑠) = 0 ↔
((invg‘𝑅)‘𝑦) = 0 )) |
55 | 17 | lmodfgrp 20132 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑀 ∈ LMod → 𝑅 ∈ Grp) |
56 | 18, 19, 21 | grpinvnzcl 18647 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑅 ∈ Grp ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) →
((invg‘𝑅)‘𝑦) ∈ (𝐵 ∖ { 0 })) |
57 | | eldif 3897 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((invg‘𝑅)‘𝑦) ∈ (𝐵 ∖ { 0 }) ↔
(((invg‘𝑅)‘𝑦) ∈ 𝐵 ∧ ¬ ((invg‘𝑅)‘𝑦) ∈ { 0 })) |
58 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((invg‘𝑅)‘𝑦) ∈ V |
59 | 58 | elsn 4576 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((invg‘𝑅)‘𝑦) ∈ { 0 } ↔
((invg‘𝑅)‘𝑦) = 0 ) |
60 | | pm2.21 123 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (¬
((invg‘𝑅)‘𝑦) = 0 →
(((invg‘𝑅)‘𝑦) = 0 → (𝑆 ∈ 𝑉 → (𝑠 ∈ 𝑆 → (𝑆 ∈ 𝒫 (Base‘𝑀) → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))) |
61 | 60 | com25 99 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (¬
((invg‘𝑅)‘𝑦) = 0 → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∈ 𝑉 → (𝑠 ∈ 𝑆 → (((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))) |
62 | 59, 61 | sylnbi 330 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (¬
((invg‘𝑅)‘𝑦) ∈ { 0 } → (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑆 ∈ 𝑉 → (𝑠 ∈ 𝑆 → (((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))) |
63 | 57, 62 | simplbiim 505 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((invg‘𝑅)‘𝑦) ∈ (𝐵 ∖ { 0 }) → (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑆 ∈ 𝑉 → (𝑠 ∈ 𝑆 → (((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))) |
64 | 56, 63 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑅 ∈ Grp ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑆 ∈ 𝑉 → (𝑠 ∈ 𝑆 → (((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))) |
65 | 64 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑅 ∈ Grp → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑆 ∈ 𝑉 → (𝑠 ∈ 𝑆 → (((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))) |
66 | 55, 65 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑀 ∈ LMod → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑆 ∈ 𝑉 → (𝑠 ∈ 𝑆 → (((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))) |
67 | 66 | com24 95 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑀 ∈ LMod → (𝑆 ∈ 𝑉 → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑠 ∈ 𝑆 → (((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))) |
68 | 67 | impcom 408 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑠 ∈ 𝑆 → (((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))) |
69 | 68 | impcom 408 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑠 ∈ 𝑆 → (((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
70 | 69 | com13 88 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑠 ∈ 𝑆 → (𝑦 ∈ (𝐵 ∖ { 0 }) → ((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) →
(((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
71 | 70 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) →
(((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) |
72 | 71 | impcom 408 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) →
(((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
73 | 72 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
74 | 54, 73 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑠) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
75 | 47, 74 | syld 47 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑥 ∈ 𝑆 ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
76 | 44, 75 | embantd 59 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ((((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 ) → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
77 | 41, 76 | syldc 48 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑓 ∈
(𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ¬ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
78 | 77 | exp5j 446 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑓 ∈
(𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → (𝑆 ∈ 𝒫
(Base‘𝑀) →
((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → ((𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))) |
79 | 78 | impcom 408 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ∈ 𝒫
(Base‘𝑀) ∧
∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) → ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → ((𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
80 | 79 | impcom 408 |
. . . . . . . . . . . . . . 15
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) → ((𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) |
81 | 80 | imp 407 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
82 | 81 | expdimp 453 |
. . . . . . . . . . . . 13
⊢
(((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))) → ((𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → ¬ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
83 | 82 | expd 416 |
. . . . . . . . . . . 12
⊢
(((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))) → (𝑔 finSupp 0 → ((𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) → ¬ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) |
84 | 83 | impcom 408 |
. . . . . . . . . . 11
⊢ ((𝑔 finSupp 0 ∧ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})))) → ((𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) → ¬ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
85 | 84 | pm2.01d 189 |
. . . . . . . . . 10
⊢ ((𝑔 finSupp 0 ∧ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) |
86 | 85 | olcd 871 |
. . . . . . . . 9
⊢ ((𝑔 finSupp 0 ∧ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})))) → (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
87 | | animorl 975 |
. . . . . . . . 9
⊢ ((¬
𝑔 finSupp 0 ∧
((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})))) → (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
88 | 86, 87 | pm2.61ian 809 |
. . . . . . . 8
⊢
(((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))) → (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
89 | 88 | ralrimiva 3103 |
. . . . . . 7
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
90 | | ralnex 3167 |
. . . . . . . 8
⊢
(∀𝑔 ∈
(𝐵 ↑m
(𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ¬ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
91 | | ianor 979 |
. . . . . . . . 9
⊢ (¬
(𝑔 finSupp 0 ∧ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
92 | 91 | ralbii 3092 |
. . . . . . . 8
⊢
(∀𝑔 ∈
(𝐵 ↑m
(𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
93 | 90, 92 | bitr3i 276 |
. . . . . . 7
⊢ (¬
∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
94 | 89, 93 | sylibr 233 |
. . . . . 6
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬
∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
95 | 94 | intnand 489 |
. . . . 5
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬ ((𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) |
96 | 3 | ad2antrr 723 |
. . . . . . 7
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑀 ∈ LMod) |
97 | | difexg 5251 |
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝑉 → (𝑆 ∖ {𝑠}) ∈ V) |
98 | 97 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ∈ V) |
99 | 1 | ssdifssd 4077 |
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀)) |
100 | 99 | ad2antrl 725 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀)) |
101 | 98, 100 | elpwd 4541 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) |
102 | 101 | adantr 481 |
. . . . . . 7
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) |
103 | 16 | lspeqlco 45780 |
. . . . . . . . 9
⊢ ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo (𝑆 ∖ {𝑠})) = ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) |
104 | 103 | eleq2d 2824 |
. . . . . . . 8
⊢ ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) |
105 | 104 | bicomd 222 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})))) |
106 | 96, 102, 105 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})))) |
107 | 3 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) → 𝑀 ∈ LMod) |
108 | | difexg 5251 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑆 ∖ {𝑠}) ∈ V) |
109 | 108, 99 | elpwd 4541 |
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑆 ∖ {𝑠}) ∈ 𝒫
(Base‘𝑀)) |
110 | 109 | ad2antrl 725 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) |
111 | 107, 110 | jca 512 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))) |
112 | 111 | adantr 481 |
. . . . . . 7
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))) |
113 | 16, 17, 18 | lcoval 45753 |
. . . . . . . 8
⊢ ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g‘𝑅) ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
114 | 19 | eqcomi 2747 |
. . . . . . . . . . . 12
⊢
(0g‘𝑅) = 0 |
115 | 114 | breq2i 5082 |
. . . . . . . . . . 11
⊢ (𝑔 finSupp
(0g‘𝑅)
↔ 𝑔 finSupp 0
) |
116 | 115 | anbi1i 624 |
. . . . . . . . . 10
⊢ ((𝑔 finSupp
(0g‘𝑅)
∧ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
117 | 116 | rexbii 3181 |
. . . . . . . . 9
⊢
(∃𝑔 ∈
(𝐵 ↑m
(𝑆 ∖ {𝑠}))(𝑔 finSupp (0g‘𝑅) ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
118 | 117 | anbi2i 623 |
. . . . . . . 8
⊢ (((𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g‘𝑅) ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) |
119 | 113, 118 | bitrdi 287 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
120 | 112, 119 | syl 17 |
. . . . . 6
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
121 | 106, 120 | bitrd 278 |
. . . . 5
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
122 | 95, 121 | mtbird 325 |
. . . 4
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) |
123 | 122 | ralrimivva 3123 |
. . 3
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) → ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) |
124 | 2, 123 | jca 512 |
. 2
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) |
125 | 124 | ex 413 |
1
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))))) |