Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindsimp1 Structured version   Visualization version   GIF version

Theorem lindslinindsimp1 44925
 Description: Implication 1 for lindslininds 44932. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) (Proof shortened by II, 16-Feb-2023.)
Hypotheses
Ref Expression
lindslinind.r 𝑅 = (Scalar‘𝑀)
lindslinind.b 𝐵 = (Base‘𝑅)
lindslinind.0 0 = (0g𝑅)
lindslinind.z 𝑍 = (0g𝑀)
Assertion
Ref Expression
lindslinindsimp1 ((𝑆𝑉𝑀 ∈ LMod) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))))
Distinct variable groups:   𝐵,𝑓,𝑠,𝑦   𝑓,𝑀,𝑠,𝑦   𝑅,𝑓,𝑥   𝑆,𝑓,𝑠,𝑥,𝑦   𝑉,𝑠,𝑦   𝑓,𝑍,𝑠,𝑦   0 ,𝑓,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑦,𝑠)   𝑀(𝑥)   𝑉(𝑥,𝑓)   𝑍(𝑥)

Proof of Theorem lindslinindsimp1
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 4506 . . . 4 (𝑆 ∈ 𝒫 (Base‘𝑀) → 𝑆 ⊆ (Base‘𝑀))
21ad2antrl 727 . . 3 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → 𝑆 ⊆ (Base‘𝑀))
3 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆𝑉𝑀 ∈ LMod) → 𝑀 ∈ LMod)
43anim2i 619 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod))
54ancomd 465 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)))
65ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)))
7 eldifi 4054 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦𝐵)
87adantl 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → 𝑦𝐵)
98adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦𝐵)
109adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑦𝐵)
11 simprl 770 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑠𝑆)
1211adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑠𝑆)
13 simprl 770 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})))
1410, 12, 133jca 1125 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑦𝐵𝑠𝑆𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))))
15 simprrl 780 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑔 finSupp 0 )
16 eqid 2798 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝑀) = (Base‘𝑀)
17 lindslinind.r . . . . . . . . . . . . . . . . . . . . . 22 𝑅 = (Scalar‘𝑀)
18 lindslinind.b . . . . . . . . . . . . . . . . . . . . . 22 𝐵 = (Base‘𝑅)
19 lindslinind.0 . . . . . . . . . . . . . . . . . . . . . 22 0 = (0g𝑅)
20 lindslinind.z . . . . . . . . . . . . . . . . . . . . . 22 𝑍 = (0g𝑀)
21 eqid 2798 . . . . . . . . . . . . . . . . . . . . . 22 (invg𝑅) = (invg𝑅)
22 eqid 2798 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))
2316, 17, 18, 19, 20, 21, 22lincext2 44923 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦𝐵𝑠𝑆𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))) ∧ 𝑔 finSupp 0 ) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 )
246, 14, 15, 23syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 )
254adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod))
2625ancomd 465 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)))
2726adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)))
2816, 17, 18, 19, 20, 21, 22lincext1 44922 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦𝐵𝑠𝑆𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})))) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) ∈ (𝐵m 𝑆))
2927, 14, 28syl2anc 587 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) ∈ (𝐵m 𝑆))
30 breq1 5034 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → (𝑓 finSupp 0 ↔ (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 ))
31 oveq1 7147 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → (𝑓( linC ‘𝑀)𝑆) = ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆))
3231eqeq1d 2800 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍))
3330, 32anbi12d 633 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍)))
34 fveq1 6649 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → (𝑓𝑥) = ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥))
3534eqeq1d 2800 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → ((𝑓𝑥) = 0 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 ))
3635ralbidv 3162 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → (∀𝑥𝑆 (𝑓𝑥) = 0 ↔ ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 ))
3733, 36imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 )))
3837rspcv 3566 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) ∈ (𝐵m 𝑆) → (∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 )))
3929, 38syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 )))
4039exp4a 435 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 ))))
4124, 40mpid 44 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 )))
42 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
4316, 17, 18, 19, 20, 21, 22lincext3 44924 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦𝐵𝑠𝑆𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍)
446, 14, 42, 43syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍)
45 fveqeq2 6659 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑠 → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = 0 ))
4645rspcv 3566 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠𝑆 → (∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = 0 ))
4712, 46syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = 0 ))
48 eqidd 2799 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))))
49 iftrue 4431 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑠 → if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)) = ((invg𝑅)‘𝑦))
5049adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑧 = 𝑠) → if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)) = ((invg𝑅)‘𝑦))
51 fvexd 6665 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((invg𝑅)‘𝑦) ∈ V)
5248, 50, 11, 51fvmptd 6757 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = ((invg𝑅)‘𝑦))
5352adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = ((invg𝑅)‘𝑦))
5453eqeq1d 2800 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = 0 ↔ ((invg𝑅)‘𝑦) = 0 ))
5517lmodfgrp 19644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
5618, 19, 21grpinvnzcl 18171 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑅 ∈ Grp ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → ((invg𝑅)‘𝑦) ∈ (𝐵 ∖ { 0 }))
57 eldif 3891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((invg𝑅)‘𝑦) ∈ (𝐵 ∖ { 0 }) ↔ (((invg𝑅)‘𝑦) ∈ 𝐵 ∧ ¬ ((invg𝑅)‘𝑦) ∈ { 0 }))
58 fvex 6663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((invg𝑅)‘𝑦) ∈ V
5958elsn 4540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((invg𝑅)‘𝑦) ∈ { 0 } ↔ ((invg𝑅)‘𝑦) = 0 )
60 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (¬ ((invg𝑅)‘𝑦) = 0 → (((invg𝑅)‘𝑦) = 0 → (𝑆𝑉 → (𝑠𝑆 → (𝑆 ∈ 𝒫 (Base‘𝑀) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6160com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (¬ ((invg𝑅)‘𝑦) = 0 → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6259, 61sylnbi 333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (¬ ((invg𝑅)‘𝑦) ∈ { 0 } → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6357, 62simplbiim 508 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((invg𝑅)‘𝑦) ∈ (𝐵 ∖ { 0 }) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6456, 63syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ Grp ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6564ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑅 ∈ Grp → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))))
6655, 65syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑀 ∈ LMod → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))))
6766com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀 ∈ LMod → (𝑆𝑉 → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))))
6867impcom 411 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆𝑉𝑀 ∈ LMod) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6968impcom 411 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
7069com13 88 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠𝑆 → (𝑦 ∈ (𝐵 ∖ { 0 }) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
7170imp 410 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
7271impcom 411 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7372adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7454, 73sylbid 243 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7547, 74syld 47 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7644, 75embantd 59 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ((((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 ) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7741, 76syldc 48 . . . . . . . . . . . . . . . . . 18 (∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7877exp5j 449 . . . . . . . . . . . . . . . . 17 (∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (𝑆 ∈ 𝒫 (Base‘𝑀) → ((𝑆𝑉𝑀 ∈ LMod) → ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
7978impcom 411 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )) → ((𝑆𝑉𝑀 ∈ LMod) → ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
8079impcom 411 . . . . . . . . . . . . . . 15 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
8180imp 410 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
8281expdimp 456 . . . . . . . . . . . . 13 (((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))) → ((𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
8382expd 419 . . . . . . . . . . . 12 (((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))) → (𝑔 finSupp 0 → ((𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
8483impcom 411 . . . . . . . . . . 11 ((𝑔 finSupp 0 ∧ ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})))) → ((𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
8584pm2.01d 193 . . . . . . . . . 10 ((𝑔 finSupp 0 ∧ ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))
8685olcd 871 . . . . . . . . 9 ((𝑔 finSupp 0 ∧ ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})))) → (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
87 animorl 975 . . . . . . . . 9 ((¬ 𝑔 finSupp 0 ∧ ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})))) → (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
8886, 87pm2.61ian 811 . . . . . . . 8 (((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))) → (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
8988ralrimiva 3149 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
90 ralnex 3199 . . . . . . . 8 (∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ¬ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
91 ianor 979 . . . . . . . . 9 (¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
9291ralbii 3133 . . . . . . . 8 (∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
9390, 92bitr3i 280 . . . . . . 7 (¬ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
9489, 93sylibr 237 . . . . . 6 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
9594intnand 492 . . . . 5 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
963ad2antrr 725 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑀 ∈ LMod)
97 difexg 5196 . . . . . . . . . 10 (𝑆𝑉 → (𝑆 ∖ {𝑠}) ∈ V)
9897ad2antrr 725 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ∈ V)
991ssdifssd 4070 . . . . . . . . . 10 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀))
10099ad2antrl 727 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀))
10198, 100elpwd 4505 . . . . . . . 8 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))
102101adantr 484 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))
10316lspeqlco 44907 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo (𝑆 ∖ {𝑠})) = ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))
104103eleq2d 2875 . . . . . . . 8 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))))
105104bicomd 226 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠}))))
10696, 102, 105syl2anc 587 . . . . . 6 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠}))))
1073adantr 484 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → 𝑀 ∈ LMod)
108 difexg 5196 . . . . . . . . . . 11 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑠}) ∈ V)
109108, 99elpwd 4505 . . . . . . . . . 10 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))
110109ad2antrl 727 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))
111107, 110jca 515 . . . . . . . 8 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)))
112111adantr 484 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)))
11316, 17, 18lcoval 44880 . . . . . . . 8 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
11419eqcomi 2807 . . . . . . . . . . . 12 (0g𝑅) = 0
115114breq2i 5039 . . . . . . . . . . 11 (𝑔 finSupp (0g𝑅) ↔ 𝑔 finSupp 0 )
116115anbi1i 626 . . . . . . . . . 10 ((𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
117116rexbii 3210 . . . . . . . . 9 (∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
118117anbi2i 625 . . . . . . . 8 (((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
119113, 118syl6bb 290 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
120112, 119syl 17 . . . . . 6 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
121106, 120bitrd 282 . . . . 5 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
12295, 121mtbird 328 . . . 4 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))
123122ralrimivva 3156 . . 3 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))
1242, 123jca 515 . 2 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))))
125124ex 416 1 ((𝑆𝑉𝑀 ∈ LMod) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  Vcvv 3441   ∖ cdif 3878   ⊆ wss 3881  ifcif 4425  𝒫 cpw 4497  {csn 4525   class class class wbr 5031   ↦ cmpt 5111  ‘cfv 6327  (class class class)co 7140   ↑m cmap 8396   finSupp cfsupp 8824  Basecbs 16482  Scalarcsca 16567   ·𝑠 cvsca 16568  0gc0g 16712  Grpcgrp 18102  invgcminusg 18103  LModclmod 19635  LSpanclspn 19744   linC clinc 44872   LinCo clinco 44873 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-isom 6336  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7395  df-om 7568  df-1st 7678  df-2nd 7679  df-supp 7821  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-map 8398  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-fsupp 8825  df-oi 8965  df-card 9359  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-nn 11633  df-2 11695  df-n0 11893  df-z 11977  df-uz 12239  df-fz 12893  df-fzo 13036  df-seq 13372  df-hash 13694  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-0g 16714  df-gsum 16715  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19241  df-ur 19253  df-ring 19300  df-lmod 19637  df-lss 19705  df-lsp 19745  df-linc 44874  df-lco 44875 This theorem is referenced by:  lindslininds  44932
 Copyright terms: Public domain W3C validator