| Step | Hyp | Ref
| Expression |
| 1 | | elpwi 4587 |
. . . 4
⊢ (𝑆 ∈ 𝒫
(Base‘𝑀) → 𝑆 ⊆ (Base‘𝑀)) |
| 2 | 1 | ad2antrl 728 |
. . 3
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) → 𝑆 ⊆ (Base‘𝑀)) |
| 3 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → 𝑀 ∈ LMod) |
| 4 | 3 | anim2i 617 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod)) |
| 5 | 4 | ancomd 461 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀))) |
| 6 | 5 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀))) |
| 7 | | eldifi 4111 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦 ∈ 𝐵) |
| 8 | 7 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → 𝑦 ∈ 𝐵) |
| 9 | 8 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦 ∈ 𝐵) |
| 10 | 9 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑦 ∈ 𝐵) |
| 11 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑠 ∈ 𝑆) |
| 12 | 11 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑠 ∈ 𝑆) |
| 13 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))) |
| 14 | 10, 12, 13 | 3jca 1128 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑦 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆 ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})))) |
| 15 | | simprrl 780 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑔 finSupp 0 ) |
| 16 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(Base‘𝑀) =
(Base‘𝑀) |
| 17 | | lindslinind.r |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑅 = (Scalar‘𝑀) |
| 18 | | lindslinind.b |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐵 = (Base‘𝑅) |
| 19 | | lindslinind.0 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 =
(0g‘𝑅) |
| 20 | | lindslinind.z |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑍 = (0g‘𝑀) |
| 21 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(invg‘𝑅) = (invg‘𝑅) |
| 22 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) |
| 23 | 16, 17, 18, 19, 20, 21, 22 | lincext2 48398 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫
(Base‘𝑀)) ∧
(𝑦 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆 ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))) ∧ 𝑔 finSupp 0 ) → (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) finSupp 0 ) |
| 24 | 6, 14, 15, 23 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) finSupp 0 ) |
| 25 | 4 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑆 ∈ 𝒫
(Base‘𝑀) ∧ 𝑀 ∈ LMod)) |
| 26 | 25 | ancomd 461 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫
(Base‘𝑀))) |
| 27 | 26 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀))) |
| 28 | 16, 17, 18, 19, 20, 21, 22 | lincext1 48397 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫
(Base‘𝑀)) ∧
(𝑦 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆 ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})))) → (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) ∈ (𝐵 ↑m 𝑆)) |
| 29 | 27, 14, 28 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) ∈ (𝐵 ↑m 𝑆)) |
| 30 | | breq1 5127 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑓 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) → (𝑓 finSupp 0 ↔ (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) finSupp 0 )) |
| 31 | | oveq1 7417 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) → (𝑓( linC ‘𝑀)𝑆) = ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆)) |
| 32 | 31 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑓 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍)) |
| 33 | 30, 32 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ↔ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) finSupp 0 ∧ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍))) |
| 34 | | fveq1 6880 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) → (𝑓‘𝑥) = ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥)) |
| 35 | 34 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑓 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) → ((𝑓‘𝑥) = 0 ↔ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 )) |
| 36 | 35 | ralbidv 3164 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) → (∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ↔ ∀𝑥 ∈ 𝑆 ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 )) |
| 37 | 33, 36 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ↔ (((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) finSupp 0 ∧ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 ))) |
| 38 | 37 | rspcv 3602 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) ∈ (𝐵 ↑m 𝑆) → (∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → (((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) finSupp 0 ∧ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 ))) |
| 39 | 29, 38 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → (((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) finSupp 0 ∧ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 ))) |
| 40 | 39 | exp4a 431 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) finSupp 0 → (((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 )))) |
| 41 | 24, 40 | mpid 44 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → (((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 ))) |
| 42 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
| 43 | 16, 17, 18, 19, 20, 21, 22 | lincext3 48399 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫
(Base‘𝑀)) ∧
(𝑦 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆 ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍) |
| 44 | 6, 14, 42, 43 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍) |
| 45 | | fveqeq2 6890 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑠 → (((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 ↔ ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑠) = 0 )) |
| 46 | 45 | rspcv 3602 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 ∈ 𝑆 → (∀𝑥 ∈ 𝑆 ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑠) = 0 )) |
| 47 | 12, 46 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑥 ∈ 𝑆 ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑠) = 0 )) |
| 48 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧))) = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))) |
| 49 | | iftrue 4511 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 = 𝑠 → if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)) = ((invg‘𝑅)‘𝑦)) |
| 50 | 49 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑧 = 𝑠) → if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)) = ((invg‘𝑅)‘𝑦)) |
| 51 | | fvexd 6896 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) →
((invg‘𝑅)‘𝑦) ∈ V) |
| 52 | 48, 50, 11, 51 | fvmptd 6998 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑠) = ((invg‘𝑅)‘𝑦)) |
| 53 | 52 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑠) = ((invg‘𝑅)‘𝑦)) |
| 54 | 53 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑠) = 0 ↔
((invg‘𝑅)‘𝑦) = 0 )) |
| 55 | 17 | lmodfgrp 20831 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑀 ∈ LMod → 𝑅 ∈ Grp) |
| 56 | 18, 19, 21 | grpinvnzcl 18999 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑅 ∈ Grp ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) →
((invg‘𝑅)‘𝑦) ∈ (𝐵 ∖ { 0 })) |
| 57 | | eldif 3941 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((invg‘𝑅)‘𝑦) ∈ (𝐵 ∖ { 0 }) ↔
(((invg‘𝑅)‘𝑦) ∈ 𝐵 ∧ ¬ ((invg‘𝑅)‘𝑦) ∈ { 0 })) |
| 58 | | fvex 6894 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((invg‘𝑅)‘𝑦) ∈ V |
| 59 | 58 | elsn 4621 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((invg‘𝑅)‘𝑦) ∈ { 0 } ↔
((invg‘𝑅)‘𝑦) = 0 ) |
| 60 | | pm2.21 123 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (¬
((invg‘𝑅)‘𝑦) = 0 →
(((invg‘𝑅)‘𝑦) = 0 → (𝑆 ∈ 𝑉 → (𝑠 ∈ 𝑆 → (𝑆 ∈ 𝒫 (Base‘𝑀) → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))) |
| 61 | 60 | com25 99 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (¬
((invg‘𝑅)‘𝑦) = 0 → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∈ 𝑉 → (𝑠 ∈ 𝑆 → (((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))) |
| 62 | 59, 61 | sylnbi 330 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (¬
((invg‘𝑅)‘𝑦) ∈ { 0 } → (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑆 ∈ 𝑉 → (𝑠 ∈ 𝑆 → (((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))) |
| 63 | 57, 62 | simplbiim 504 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((invg‘𝑅)‘𝑦) ∈ (𝐵 ∖ { 0 }) → (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑆 ∈ 𝑉 → (𝑠 ∈ 𝑆 → (((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))) |
| 64 | 56, 63 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑅 ∈ Grp ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑆 ∈ 𝑉 → (𝑠 ∈ 𝑆 → (((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))) |
| 65 | 64 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑅 ∈ Grp → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑆 ∈ 𝑉 → (𝑠 ∈ 𝑆 → (((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))) |
| 66 | 55, 65 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑀 ∈ LMod → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑆 ∈ 𝑉 → (𝑠 ∈ 𝑆 → (((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))) |
| 67 | 66 | com24 95 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑀 ∈ LMod → (𝑆 ∈ 𝑉 → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑠 ∈ 𝑆 → (((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))) |
| 68 | 67 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑠 ∈ 𝑆 → (((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))) |
| 69 | 68 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑠 ∈ 𝑆 → (((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
| 70 | 69 | com13 88 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑠 ∈ 𝑆 → (𝑦 ∈ (𝐵 ∖ { 0 }) → ((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) →
(((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
| 71 | 70 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) →
(((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) |
| 72 | 71 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) →
(((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
| 73 | 72 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (((invg‘𝑅)‘𝑦) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
| 74 | 54, 73 | sylbid 240 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑠) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
| 75 | 47, 74 | syld 47 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑥 ∈ 𝑆 ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
| 76 | 44, 75 | embantd 59 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ((((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 ((𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑠, ((invg‘𝑅)‘𝑦), (𝑔‘𝑧)))‘𝑥) = 0 ) → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
| 77 | 41, 76 | syldc 48 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑓 ∈
(𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → ((((𝑆 ∈ 𝒫
(Base‘𝑀) ∧ (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ¬ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
| 78 | 77 | exp5j 445 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑓 ∈
(𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → (𝑆 ∈ 𝒫
(Base‘𝑀) →
((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → ((𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))) |
| 79 | 78 | impcom 407 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ∈ 𝒫
(Base‘𝑀) ∧
∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) → ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → ((𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
| 80 | 79 | impcom 407 |
. . . . . . . . . . . . . . 15
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) → ((𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) |
| 81 | 80 | imp 406 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
| 82 | 81 | expdimp 452 |
. . . . . . . . . . . . 13
⊢
(((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))) → ((𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → ¬ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
| 83 | 82 | expd 415 |
. . . . . . . . . . . 12
⊢
(((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))) → (𝑔 finSupp 0 → ((𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) → ¬ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) |
| 84 | 83 | impcom 407 |
. . . . . . . . . . 11
⊢ ((𝑔 finSupp 0 ∧ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})))) → ((𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) → ¬ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
| 85 | 84 | pm2.01d 190 |
. . . . . . . . . 10
⊢ ((𝑔 finSupp 0 ∧ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) |
| 86 | 85 | olcd 874 |
. . . . . . . . 9
⊢ ((𝑔 finSupp 0 ∧ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})))) → (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
| 87 | | animorl 979 |
. . . . . . . . 9
⊢ ((¬
𝑔 finSupp 0 ∧
((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠})))) → (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
| 88 | 86, 87 | pm2.61ian 811 |
. . . . . . . 8
⊢
(((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))) → (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
| 89 | 88 | ralrimiva 3133 |
. . . . . . 7
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
| 90 | | ralnex 3063 |
. . . . . . . 8
⊢
(∀𝑔 ∈
(𝐵 ↑m
(𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ¬ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
| 91 | | ianor 983 |
. . . . . . . . 9
⊢ (¬
(𝑔 finSupp 0 ∧ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
| 92 | 91 | ralbii 3083 |
. . . . . . . 8
⊢
(∀𝑔 ∈
(𝐵 ↑m
(𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
| 93 | 90, 92 | bitr3i 277 |
. . . . . . 7
⊢ (¬
∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
| 94 | 89, 93 | sylibr 234 |
. . . . . 6
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬
∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
| 95 | 94 | intnand 488 |
. . . . 5
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬ ((𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) |
| 96 | 3 | ad2antrr 726 |
. . . . . . 7
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑀 ∈ LMod) |
| 97 | | difexg 5304 |
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝑉 → (𝑆 ∖ {𝑠}) ∈ V) |
| 98 | 97 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ∈ V) |
| 99 | 1 | ssdifssd 4127 |
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀)) |
| 100 | 99 | ad2antrl 728 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀)) |
| 101 | 98, 100 | elpwd 4586 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) |
| 102 | 101 | adantr 480 |
. . . . . . 7
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) |
| 103 | 16 | lspeqlco 48382 |
. . . . . . . . 9
⊢ ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo (𝑆 ∖ {𝑠})) = ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) |
| 104 | 103 | eleq2d 2821 |
. . . . . . . 8
⊢ ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) |
| 105 | 104 | bicomd 223 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})))) |
| 106 | 96, 102, 105 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})))) |
| 107 | 3 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) → 𝑀 ∈ LMod) |
| 108 | | difexg 5304 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑆 ∖ {𝑠}) ∈ V) |
| 109 | 108, 99 | elpwd 4586 |
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝒫
(Base‘𝑀) →
(𝑆 ∖ {𝑠}) ∈ 𝒫
(Base‘𝑀)) |
| 110 | 109 | ad2antrl 728 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) |
| 111 | 107, 110 | jca 511 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))) |
| 112 | 111 | adantr 480 |
. . . . . . 7
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))) |
| 113 | 16, 17, 18 | lcoval 48355 |
. . . . . . . 8
⊢ ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g‘𝑅) ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
| 114 | 19 | eqcomi 2745 |
. . . . . . . . . . . 12
⊢
(0g‘𝑅) = 0 |
| 115 | 114 | breq2i 5132 |
. . . . . . . . . . 11
⊢ (𝑔 finSupp
(0g‘𝑅)
↔ 𝑔 finSupp 0
) |
| 116 | 115 | anbi1i 624 |
. . . . . . . . . 10
⊢ ((𝑔 finSupp
(0g‘𝑅)
∧ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
| 117 | 116 | rexbii 3084 |
. . . . . . . . 9
⊢
(∃𝑔 ∈
(𝐵 ↑m
(𝑆 ∖ {𝑠}))(𝑔 finSupp (0g‘𝑅) ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
| 118 | 117 | anbi2i 623 |
. . . . . . . 8
⊢ (((𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g‘𝑅) ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) |
| 119 | 113, 118 | bitrdi 287 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
| 120 | 112, 119 | syl 17 |
. . . . . 6
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
| 121 | 106, 120 | bitrd 279 |
. . . . 5
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
| 122 | 95, 121 | mtbird 325 |
. . . 4
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) |
| 123 | 122 | ralrimivva 3188 |
. . 3
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) → ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) |
| 124 | 2, 123 | jca 511 |
. 2
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) |
| 125 | 124 | ex 412 |
1
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))))) |