Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindsimp1 Structured version   Visualization version   GIF version

Theorem lindslinindsimp1 48450
Description: Implication 1 for lindslininds 48457. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) (Proof shortened by II, 16-Feb-2023.)
Hypotheses
Ref Expression
lindslinind.r 𝑅 = (Scalar‘𝑀)
lindslinind.b 𝐵 = (Base‘𝑅)
lindslinind.0 0 = (0g𝑅)
lindslinind.z 𝑍 = (0g𝑀)
Assertion
Ref Expression
lindslinindsimp1 ((𝑆𝑉𝑀 ∈ LMod) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))))
Distinct variable groups:   𝐵,𝑓,𝑠,𝑦   𝑓,𝑀,𝑠,𝑦   𝑅,𝑓,𝑥   𝑆,𝑓,𝑠,𝑥,𝑦   𝑉,𝑠,𝑦   𝑓,𝑍,𝑠,𝑦   0 ,𝑓,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑦,𝑠)   𝑀(𝑥)   𝑉(𝑥,𝑓)   𝑍(𝑥)

Proof of Theorem lindslinindsimp1
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 4573 . . . 4 (𝑆 ∈ 𝒫 (Base‘𝑀) → 𝑆 ⊆ (Base‘𝑀))
21ad2antrl 728 . . 3 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → 𝑆 ⊆ (Base‘𝑀))
3 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆𝑉𝑀 ∈ LMod) → 𝑀 ∈ LMod)
43anim2i 617 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod))
54ancomd 461 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)))
65ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)))
7 eldifi 4097 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦𝐵)
87adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → 𝑦𝐵)
98adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦𝐵)
109adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑦𝐵)
11 simprl 770 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑠𝑆)
1211adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑠𝑆)
13 simprl 770 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})))
1410, 12, 133jca 1128 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑦𝐵𝑠𝑆𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))))
15 simprrl 780 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → 𝑔 finSupp 0 )
16 eqid 2730 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝑀) = (Base‘𝑀)
17 lindslinind.r . . . . . . . . . . . . . . . . . . . . . 22 𝑅 = (Scalar‘𝑀)
18 lindslinind.b . . . . . . . . . . . . . . . . . . . . . 22 𝐵 = (Base‘𝑅)
19 lindslinind.0 . . . . . . . . . . . . . . . . . . . . . 22 0 = (0g𝑅)
20 lindslinind.z . . . . . . . . . . . . . . . . . . . . . 22 𝑍 = (0g𝑀)
21 eqid 2730 . . . . . . . . . . . . . . . . . . . . . 22 (invg𝑅) = (invg𝑅)
22 eqid 2730 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))
2316, 17, 18, 19, 20, 21, 22lincext2 48448 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦𝐵𝑠𝑆𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))) ∧ 𝑔 finSupp 0 ) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 )
246, 14, 15, 23syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 )
254adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑀 ∈ LMod))
2625ancomd 461 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)))
2726adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)))
2816, 17, 18, 19, 20, 21, 22lincext1 48447 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦𝐵𝑠𝑆𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})))) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) ∈ (𝐵m 𝑆))
2927, 14, 28syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) ∈ (𝐵m 𝑆))
30 breq1 5113 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → (𝑓 finSupp 0 ↔ (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 ))
31 oveq1 7397 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → (𝑓( linC ‘𝑀)𝑆) = ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆))
3231eqeq1d 2732 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍))
3330, 32anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍)))
34 fveq1 6860 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → (𝑓𝑥) = ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥))
3534eqeq1d 2732 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → ((𝑓𝑥) = 0 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 ))
3635ralbidv 3157 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → (∀𝑥𝑆 (𝑓𝑥) = 0 ↔ ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 ))
3733, 36imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 )))
3837rspcv 3587 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) ∈ (𝐵m 𝑆) → (∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 )))
3929, 38syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 )))
4039exp4a 431 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) finSupp 0 → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 ))))
4124, 40mpid 44 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 )))
42 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
4316, 17, 18, 19, 20, 21, 22lincext3 48449 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦𝐵𝑠𝑆𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍)
446, 14, 42, 43syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍)
45 fveqeq2 6870 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑠 → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = 0 ))
4645rspcv 3587 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠𝑆 → (∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = 0 ))
4712, 46syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = 0 ))
48 eqidd 2731 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))) = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧))))
49 iftrue 4497 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑠 → if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)) = ((invg𝑅)‘𝑦))
5049adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑧 = 𝑠) → if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)) = ((invg𝑅)‘𝑦))
51 fvexd 6876 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((invg𝑅)‘𝑦) ∈ V)
5248, 50, 11, 51fvmptd 6978 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = ((invg𝑅)‘𝑦))
5352adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = ((invg𝑅)‘𝑦))
5453eqeq1d 2732 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = 0 ↔ ((invg𝑅)‘𝑦) = 0 ))
5517lmodfgrp 20782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
5618, 19, 21grpinvnzcl 18950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑅 ∈ Grp ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → ((invg𝑅)‘𝑦) ∈ (𝐵 ∖ { 0 }))
57 eldif 3927 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((invg𝑅)‘𝑦) ∈ (𝐵 ∖ { 0 }) ↔ (((invg𝑅)‘𝑦) ∈ 𝐵 ∧ ¬ ((invg𝑅)‘𝑦) ∈ { 0 }))
58 fvex 6874 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((invg𝑅)‘𝑦) ∈ V
5958elsn 4607 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((invg𝑅)‘𝑦) ∈ { 0 } ↔ ((invg𝑅)‘𝑦) = 0 )
60 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (¬ ((invg𝑅)‘𝑦) = 0 → (((invg𝑅)‘𝑦) = 0 → (𝑆𝑉 → (𝑠𝑆 → (𝑆 ∈ 𝒫 (Base‘𝑀) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6160com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (¬ ((invg𝑅)‘𝑦) = 0 → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6259, 61sylnbi 330 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (¬ ((invg𝑅)‘𝑦) ∈ { 0 } → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6357, 62simplbiim 504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((invg𝑅)‘𝑦) ∈ (𝐵 ∖ { 0 }) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6456, 63syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ Grp ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6564ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑅 ∈ Grp → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))))
6655, 65syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑀 ∈ LMod → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆𝑉 → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))))
6766com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀 ∈ LMod → (𝑆𝑉 → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))))
6867impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆𝑉𝑀 ∈ LMod) → (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
6968impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) → (𝑦 ∈ (𝐵 ∖ { 0 }) → (𝑠𝑆 → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
7069com13 88 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠𝑆 → (𝑦 ∈ (𝐵 ∖ { 0 }) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
7170imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
7271impcom 407 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7372adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (((invg𝑅)‘𝑦) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7454, 73sylbid 240 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑠) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7547, 74syld 47 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → (∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7644, 75embantd 59 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ((((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥𝑆 ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘𝑦), (𝑔𝑧)))‘𝑥) = 0 ) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7741, 76syldc 48 . . . . . . . . . . . . . . . . . 18 (∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → ((((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (𝑆𝑉𝑀 ∈ LMod)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ (𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
7877exp5j 445 . . . . . . . . . . . . . . . . 17 (∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → (𝑆 ∈ 𝒫 (Base‘𝑀) → ((𝑆𝑉𝑀 ∈ LMod) → ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))))
7978impcom 407 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )) → ((𝑆𝑉𝑀 ∈ LMod) → ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
8079impcom 407 . . . . . . . . . . . . . . 15 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → ((𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
8180imp 406 . . . . . . . . . . . . . 14 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ∧ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
8281expdimp 452 . . . . . . . . . . . . 13 (((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))) → ((𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
8382expd 415 . . . . . . . . . . . 12 (((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))) → (𝑔 finSupp 0 → ((𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
8483impcom 407 . . . . . . . . . . 11 ((𝑔 finSupp 0 ∧ ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})))) → ((𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
8584pm2.01d 190 . . . . . . . . . 10 ((𝑔 finSupp 0 ∧ ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})))) → ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))
8685olcd 874 . . . . . . . . 9 ((𝑔 finSupp 0 ∧ ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})))) → (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
87 animorl 979 . . . . . . . . 9 ((¬ 𝑔 finSupp 0 ∧ ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})))) → (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
8886, 87pm2.61ian 811 . . . . . . . 8 (((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) ∧ 𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))) → (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
8988ralrimiva 3126 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
90 ralnex 3056 . . . . . . . 8 (∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ¬ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
91 ianor 983 . . . . . . . . 9 (¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
9291ralbii 3076 . . . . . . . 8 (∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
9390, 92bitr3i 277 . . . . . . 7 (¬ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
9489, 93sylibr 234 . . . . . 6 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
9594intnand 488 . . . . 5 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
963ad2antrr 726 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑀 ∈ LMod)
97 difexg 5287 . . . . . . . . . 10 (𝑆𝑉 → (𝑆 ∖ {𝑠}) ∈ V)
9897ad2antrr 726 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ∈ V)
991ssdifssd 4113 . . . . . . . . . 10 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀))
10099ad2antrl 728 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀))
10198, 100elpwd 4572 . . . . . . . 8 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))
102101adantr 480 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))
10316lspeqlco 48432 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo (𝑆 ∖ {𝑠})) = ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))
104103eleq2d 2815 . . . . . . . 8 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))))
105104bicomd 223 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠}))))
10696, 102, 105syl2anc 584 . . . . . 6 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠}))))
1073adantr 480 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → 𝑀 ∈ LMod)
108 difexg 5287 . . . . . . . . . . 11 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑠}) ∈ V)
109108, 99elpwd 4572 . . . . . . . . . 10 (𝑆 ∈ 𝒫 (Base‘𝑀) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))
110109ad2antrl 728 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))
111107, 110jca 511 . . . . . . . 8 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)))
112111adantr 480 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)))
11316, 17, 18lcoval 48405 . . . . . . . 8 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
11419eqcomi 2739 . . . . . . . . . . . 12 (0g𝑅) = 0
115114breq2i 5118 . . . . . . . . . . 11 (𝑔 finSupp (0g𝑅) ↔ 𝑔 finSupp 0 )
116115anbi1i 624 . . . . . . . . . 10 ((𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
117116rexbii 3077 . . . . . . . . 9 (∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
118117anbi2i 623 . . . . . . . 8 (((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
119113, 118bitrdi 287 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
120112, 119syl 17 . . . . . 6 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
121106, 120bitrd 279 . . . . 5 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
12295, 121mtbird 325 . . . 4 ((((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))
123122ralrimivva 3181 . . 3 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))
1242, 123jca 511 . 2 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))))
125124ex 412 1 ((𝑆𝑉𝑀 ∈ LMod) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  cdif 3914  wss 3917  ifcif 4491  𝒫 cpw 4566  {csn 4592   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  m cmap 8802   finSupp cfsupp 9319  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  Grpcgrp 18872  invgcminusg 18873  LModclmod 20773  LSpanclspn 20884   linC clinc 48397   LinCo clinco 48398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-gsum 17412  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-lmod 20775  df-lss 20845  df-lsp 20885  df-linc 48399  df-lco 48400
This theorem is referenced by:  lindslininds  48457
  Copyright terms: Public domain W3C validator