HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hcompl Structured version   Visualization version   GIF version

Axiom ax-hcompl 31168
Description: Completeness of a Hilbert space. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hcompl (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
Distinct variable group:   𝑥,𝐹

Detailed syntax breakdown of Axiom ax-hcompl
StepHypRef Expression
1 cF . . 3 class 𝐹
2 ccauold 30892 . . 3 class Cauchy
31, 2wcel 2107 . 2 wff 𝐹 ∈ Cauchy
4 vx . . . . 5 setvar 𝑥
54cv 1538 . . . 4 class 𝑥
6 chli 30893 . . . 4 class 𝑣
71, 5, 6wbr 5125 . . 3 wff 𝐹𝑣 𝑥
8 chba 30885 . . 3 class
97, 4, 8wrex 3059 . 2 wff 𝑥 ∈ ℋ 𝐹𝑣 𝑥
103, 9wi 4 1 wff (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
Colors of variables: wff setvar class
This axiom is referenced by:  hhcms  31169  isch3  31207  hhsscms  31244  occllem  31269  occl  31270  chscllem2  31604
  Copyright terms: Public domain W3C validator