| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hcompl | Structured version Visualization version GIF version | ||
| Description: Completeness of a Hilbert space. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hcompl | ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cF | . . 3 class 𝐹 | |
| 2 | ccauold 30892 | . . 3 class Cauchy | |
| 3 | 1, 2 | wcel 2107 | . 2 wff 𝐹 ∈ Cauchy |
| 4 | vx | . . . . 5 setvar 𝑥 | |
| 5 | 4 | cv 1538 | . . . 4 class 𝑥 |
| 6 | chli 30893 | . . . 4 class ⇝𝑣 | |
| 7 | 1, 5, 6 | wbr 5125 | . . 3 wff 𝐹 ⇝𝑣 𝑥 |
| 8 | chba 30885 | . . 3 class ℋ | |
| 9 | 7, 4, 8 | wrex 3059 | . 2 wff ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 |
| 10 | 3, 9 | wi 4 | 1 wff (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hhcms 31169 isch3 31207 hhsscms 31244 occllem 31269 occl 31270 chscllem2 31604 |
| Copyright terms: Public domain | W3C validator |