| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hhcms | Structured version Visualization version GIF version | ||
| Description: The Hilbert space induced metric determines a complete metric space. (Contributed by NM, 10-Apr-2008.) (Proof shortened by Mario Carneiro, 14-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hhcms.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| hhcms.2 | ⊢ 𝐷 = (IndMet‘𝑈) |
| Ref | Expression |
|---|---|
| hhcms | ⊢ 𝐷 ∈ (CMet‘ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 2 | hhcms.1 | . . 3 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 3 | hhcms.2 | . . 3 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 4 | 2, 3 | hhmet 31144 | . 2 ⊢ 𝐷 ∈ (Met‘ ℋ) |
| 5 | 2, 3 | hhcau 31168 | . . . . . 6 ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) |
| 6 | 5 | eleq2i 2821 | . . . . 5 ⊢ (𝑓 ∈ Cauchy ↔ 𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ))) |
| 7 | elin 3916 | . . . . . 6 ⊢ (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ))) | |
| 8 | ax-hilex 30969 | . . . . . . . 8 ⊢ ℋ ∈ V | |
| 9 | nnex 12123 | . . . . . . . 8 ⊢ ℕ ∈ V | |
| 10 | 8, 9 | elmap 8790 | . . . . . . 7 ⊢ (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ) |
| 11 | 10 | anbi2i 623 | . . . . . 6 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ)) |
| 12 | 7, 11 | bitri 275 | . . . . 5 ⊢ (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ)) |
| 13 | 6, 12 | bitri 275 | . . . 4 ⊢ (𝑓 ∈ Cauchy ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ)) |
| 14 | ax-hcompl 31172 | . . . 4 ⊢ (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥) | |
| 15 | 13, 14 | sylbir 235 | . . 3 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ) → ∃𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥) |
| 16 | 2, 3, 1 | hhlm 31169 | . . . . . . 7 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘𝐷)) ↾ ( ℋ ↑m ℕ)) |
| 17 | 16 | breqi 5095 | . . . . . 6 ⊢ (𝑓 ⇝𝑣 𝑥 ↔ 𝑓((⇝𝑡‘(MetOpen‘𝐷)) ↾ ( ℋ ↑m ℕ))𝑥) |
| 18 | vex 3438 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 19 | 18 | brresi 5934 | . . . . . 6 ⊢ (𝑓((⇝𝑡‘(MetOpen‘𝐷)) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥)) |
| 20 | 17, 19 | bitri 275 | . . . . 5 ⊢ (𝑓 ⇝𝑣 𝑥 ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥)) |
| 21 | vex 3438 | . . . . . 6 ⊢ 𝑓 ∈ V | |
| 22 | 21, 18 | breldm 5846 | . . . . 5 ⊢ (𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥 → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷))) |
| 23 | 20, 22 | simplbiim 504 | . . . 4 ⊢ (𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷))) |
| 24 | 23 | rexlimivw 3127 | . . 3 ⊢ (∃𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷))) |
| 25 | 15, 24 | syl 17 | . 2 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷))) |
| 26 | 1, 4, 25 | iscmet3i 25232 | 1 ⊢ 𝐷 ∈ (CMet‘ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∃wrex 3054 ∩ cin 3899 〈cop 4580 class class class wbr 5089 dom cdm 5614 ↾ cres 5616 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 ↑m cmap 8745 ℕcn 12117 MetOpencmopn 21274 ⇝𝑡clm 23134 Cauccau 25173 CMetccmet 25174 IndMetcims 30561 ℋchba 30889 +ℎ cva 30890 ·ℎ csm 30891 normℎcno 30893 Cauchyccauold 30896 ⇝𝑣 chli 30897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cc 10318 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 ax-addf 11077 ax-mulf 11078 ax-hilex 30969 ax-hfvadd 30970 ax-hvcom 30971 ax-hvass 30972 ax-hv0cl 30973 ax-hvaddid 30974 ax-hfvmul 30975 ax-hvmulid 30976 ax-hvmulass 30977 ax-hvdistr1 30978 ax-hvdistr2 30979 ax-hvmul0 30980 ax-hfi 31049 ax-his1 31052 ax-his2 31053 ax-his3 31054 ax-his4 31055 ax-hcompl 31172 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9824 df-acn 9827 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-n0 12374 df-z 12461 df-uz 12725 df-q 12839 df-rp 12883 df-xneg 13003 df-xadd 13004 df-xmul 13005 df-ico 13243 df-fz 13400 df-fl 13688 df-seq 13901 df-exp 13961 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-clim 15387 df-rlim 15388 df-rest 17318 df-topgen 17339 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-fbas 21281 df-fg 21282 df-top 22802 df-topon 22819 df-bases 22854 df-ntr 22928 df-nei 23006 df-lm 23137 df-fil 23754 df-fm 23846 df-flim 23847 df-flf 23848 df-cfil 25175 df-cau 25176 df-cmet 25177 df-grpo 30463 df-gid 30464 df-ginv 30465 df-gdiv 30466 df-ablo 30515 df-vc 30529 df-nv 30562 df-va 30565 df-ba 30566 df-sm 30567 df-0v 30568 df-vs 30569 df-nmcv 30570 df-ims 30571 df-hnorm 30938 df-hvsub 30941 df-hlim 30942 df-hcau 30943 |
| This theorem is referenced by: hhhl 31174 hilcms 31175 |
| Copyright terms: Public domain | W3C validator |