HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhcms Structured version   Visualization version   GIF version

Theorem hhcms 31189
Description: The Hilbert space induced metric determines a complete metric space. (Contributed by NM, 10-Apr-2008.) (Proof shortened by Mario Carneiro, 14-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhcms.1 𝑈 = ⟨⟨ + , · ⟩, norm
hhcms.2 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
hhcms 𝐷 ∈ (CMet‘ ℋ)

Proof of Theorem hhcms
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . 2 (MetOpen‘𝐷) = (MetOpen‘𝐷)
2 hhcms.1 . . 3 𝑈 = ⟨⟨ + , · ⟩, norm
3 hhcms.2 . . 3 𝐷 = (IndMet‘𝑈)
42, 3hhmet 31160 . 2 𝐷 ∈ (Met‘ ℋ)
52, 3hhcau 31184 . . . . . 6 Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ))
65eleq2i 2827 . . . . 5 (𝑓 ∈ Cauchy ↔ 𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)))
7 elin 3947 . . . . . 6 (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)))
8 ax-hilex 30985 . . . . . . . 8 ℋ ∈ V
9 nnex 12251 . . . . . . . 8 ℕ ∈ V
108, 9elmap 8890 . . . . . . 7 (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ)
1110anbi2i 623 . . . . . 6 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ))
127, 11bitri 275 . . . . 5 (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ))
136, 12bitri 275 . . . 4 (𝑓 ∈ Cauchy ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ))
14 ax-hcompl 31188 . . . 4 (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓𝑣 𝑥)
1513, 14sylbir 235 . . 3 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ) → ∃𝑥 ∈ ℋ 𝑓𝑣 𝑥)
162, 3, 1hhlm 31185 . . . . . . 7 𝑣 = ((⇝𝑡‘(MetOpen‘𝐷)) ↾ ( ℋ ↑m ℕ))
1716breqi 5130 . . . . . 6 (𝑓𝑣 𝑥𝑓((⇝𝑡‘(MetOpen‘𝐷)) ↾ ( ℋ ↑m ℕ))𝑥)
18 vex 3468 . . . . . . 7 𝑥 ∈ V
1918brresi 5980 . . . . . 6 (𝑓((⇝𝑡‘(MetOpen‘𝐷)) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥))
2017, 19bitri 275 . . . . 5 (𝑓𝑣 𝑥 ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥))
21 vex 3468 . . . . . 6 𝑓 ∈ V
2221, 18breldm 5893 . . . . 5 (𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
2320, 22simplbiim 504 . . . 4 (𝑓𝑣 𝑥𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
2423rexlimivw 3138 . . 3 (∃𝑥 ∈ ℋ 𝑓𝑣 𝑥𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
2515, 24syl 17 . 2 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
261, 4, 25iscmet3i 25269 1 𝐷 ∈ (CMet‘ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wrex 3061  cin 3930  cop 4612   class class class wbr 5124  dom cdm 5659  cres 5661  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845  cn 12245  MetOpencmopn 21310  𝑡clm 23169  Cauccau 25210  CMetccmet 25211  IndMetcims 30577  chba 30905   + cva 30906   · csm 30907  normcno 30909  Cauchyccauold 30912  𝑣 chli 30913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cc 10454  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214  ax-hilex 30985  ax-hfvadd 30986  ax-hvcom 30987  ax-hvass 30988  ax-hv0cl 30989  ax-hvaddid 30990  ax-hfvmul 30991  ax-hvmulid 30992  ax-hvmulass 30993  ax-hvdistr1 30994  ax-hvdistr2 30995  ax-hvmul0 30996  ax-hfi 31065  ax-his1 31068  ax-his2 31069  ax-his3 31070  ax-his4 31071  ax-hcompl 31188
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-acn 9961  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ico 13373  df-fz 13530  df-fl 13814  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-rest 17441  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-top 22837  df-topon 22854  df-bases 22889  df-ntr 22963  df-nei 23041  df-lm 23172  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-cfil 25212  df-cau 25213  df-cmet 25214  df-grpo 30479  df-gid 30480  df-ginv 30481  df-gdiv 30482  df-ablo 30531  df-vc 30545  df-nv 30578  df-va 30581  df-ba 30582  df-sm 30583  df-0v 30584  df-vs 30585  df-nmcv 30586  df-ims 30587  df-hnorm 30954  df-hvsub 30957  df-hlim 30958  df-hcau 30959
This theorem is referenced by:  hhhl  31190  hilcms  31191
  Copyright terms: Public domain W3C validator