HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhcms Structured version   Visualization version   GIF version

Theorem hhcms 31190
Description: The Hilbert space induced metric determines a complete metric space. (Contributed by NM, 10-Apr-2008.) (Proof shortened by Mario Carneiro, 14-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhcms.1 𝑈 = ⟨⟨ + , · ⟩, norm
hhcms.2 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
hhcms 𝐷 ∈ (CMet‘ ℋ)

Proof of Theorem hhcms
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . 2 (MetOpen‘𝐷) = (MetOpen‘𝐷)
2 hhcms.1 . . 3 𝑈 = ⟨⟨ + , · ⟩, norm
3 hhcms.2 . . 3 𝐷 = (IndMet‘𝑈)
42, 3hhmet 31161 . 2 𝐷 ∈ (Met‘ ℋ)
52, 3hhcau 31185 . . . . . 6 Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ))
65eleq2i 2823 . . . . 5 (𝑓 ∈ Cauchy ↔ 𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)))
7 elin 3913 . . . . . 6 (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)))
8 ax-hilex 30986 . . . . . . . 8 ℋ ∈ V
9 nnex 12137 . . . . . . . 8 ℕ ∈ V
108, 9elmap 8801 . . . . . . 7 (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ)
1110anbi2i 623 . . . . . 6 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ))
127, 11bitri 275 . . . . 5 (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ))
136, 12bitri 275 . . . 4 (𝑓 ∈ Cauchy ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ))
14 ax-hcompl 31189 . . . 4 (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓𝑣 𝑥)
1513, 14sylbir 235 . . 3 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ) → ∃𝑥 ∈ ℋ 𝑓𝑣 𝑥)
162, 3, 1hhlm 31186 . . . . . . 7 𝑣 = ((⇝𝑡‘(MetOpen‘𝐷)) ↾ ( ℋ ↑m ℕ))
1716breqi 5099 . . . . . 6 (𝑓𝑣 𝑥𝑓((⇝𝑡‘(MetOpen‘𝐷)) ↾ ( ℋ ↑m ℕ))𝑥)
18 vex 3440 . . . . . . 7 𝑥 ∈ V
1918brresi 5942 . . . . . 6 (𝑓((⇝𝑡‘(MetOpen‘𝐷)) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥))
2017, 19bitri 275 . . . . 5 (𝑓𝑣 𝑥 ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥))
21 vex 3440 . . . . . 6 𝑓 ∈ V
2221, 18breldm 5853 . . . . 5 (𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
2320, 22simplbiim 504 . . . 4 (𝑓𝑣 𝑥𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
2423rexlimivw 3129 . . 3 (∃𝑥 ∈ ℋ 𝑓𝑣 𝑥𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
2515, 24syl 17 . 2 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
261, 4, 25iscmet3i 25245 1 𝐷 ∈ (CMet‘ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  wrex 3056  cin 3896  cop 4581   class class class wbr 5093  dom cdm 5619  cres 5621  wf 6483  cfv 6487  (class class class)co 7352  m cmap 8756  cn 12131  MetOpencmopn 21287  𝑡clm 23147  Cauccau 25186  CMetccmet 25187  IndMetcims 30578  chba 30906   + cva 30907   · csm 30908  normcno 30910  Cauchyccauold 30913  𝑣 chli 30914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9537  ax-cc 10332  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090  ax-addf 11091  ax-mulf 11092  ax-hilex 30986  ax-hfvadd 30987  ax-hvcom 30988  ax-hvass 30989  ax-hv0cl 30990  ax-hvaddid 30991  ax-hfvmul 30992  ax-hvmulid 30993  ax-hvmulass 30994  ax-hvdistr1 30995  ax-hvdistr2 30996  ax-hvmul0 30997  ax-hfi 31066  ax-his1 31069  ax-his2 31070  ax-his3 31071  ax-his4 31072  ax-hcompl 31189
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-omul 8396  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9838  df-acn 9841  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-n0 12388  df-z 12475  df-uz 12739  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ico 13257  df-fz 13414  df-fl 13702  df-seq 13915  df-exp 13975  df-cj 15012  df-re 15013  df-im 15014  df-sqrt 15148  df-abs 15149  df-clim 15401  df-rlim 15402  df-rest 17332  df-topgen 17353  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-fbas 21294  df-fg 21295  df-top 22815  df-topon 22832  df-bases 22867  df-ntr 22941  df-nei 23019  df-lm 23150  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-cfil 25188  df-cau 25189  df-cmet 25190  df-grpo 30480  df-gid 30481  df-ginv 30482  df-gdiv 30483  df-ablo 30532  df-vc 30546  df-nv 30579  df-va 30582  df-ba 30583  df-sm 30584  df-0v 30585  df-vs 30586  df-nmcv 30587  df-ims 30588  df-hnorm 30955  df-hvsub 30958  df-hlim 30959  df-hcau 30960
This theorem is referenced by:  hhhl  31191  hilcms  31192
  Copyright terms: Public domain W3C validator