| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hhcms | Structured version Visualization version GIF version | ||
| Description: The Hilbert space induced metric determines a complete metric space. (Contributed by NM, 10-Apr-2008.) (Proof shortened by Mario Carneiro, 14-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hhcms.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| hhcms.2 | ⊢ 𝐷 = (IndMet‘𝑈) |
| Ref | Expression |
|---|---|
| hhcms | ⊢ 𝐷 ∈ (CMet‘ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 2 | hhcms.1 | . . 3 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 3 | hhcms.2 | . . 3 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 4 | 2, 3 | hhmet 31161 | . 2 ⊢ 𝐷 ∈ (Met‘ ℋ) |
| 5 | 2, 3 | hhcau 31185 | . . . . . 6 ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) |
| 6 | 5 | eleq2i 2823 | . . . . 5 ⊢ (𝑓 ∈ Cauchy ↔ 𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ))) |
| 7 | elin 3913 | . . . . . 6 ⊢ (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ))) | |
| 8 | ax-hilex 30986 | . . . . . . . 8 ⊢ ℋ ∈ V | |
| 9 | nnex 12137 | . . . . . . . 8 ⊢ ℕ ∈ V | |
| 10 | 8, 9 | elmap 8801 | . . . . . . 7 ⊢ (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ) |
| 11 | 10 | anbi2i 623 | . . . . . 6 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ)) |
| 12 | 7, 11 | bitri 275 | . . . . 5 ⊢ (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ)) |
| 13 | 6, 12 | bitri 275 | . . . 4 ⊢ (𝑓 ∈ Cauchy ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ)) |
| 14 | ax-hcompl 31189 | . . . 4 ⊢ (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥) | |
| 15 | 13, 14 | sylbir 235 | . . 3 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ) → ∃𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥) |
| 16 | 2, 3, 1 | hhlm 31186 | . . . . . . 7 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘𝐷)) ↾ ( ℋ ↑m ℕ)) |
| 17 | 16 | breqi 5099 | . . . . . 6 ⊢ (𝑓 ⇝𝑣 𝑥 ↔ 𝑓((⇝𝑡‘(MetOpen‘𝐷)) ↾ ( ℋ ↑m ℕ))𝑥) |
| 18 | vex 3440 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 19 | 18 | brresi 5942 | . . . . . 6 ⊢ (𝑓((⇝𝑡‘(MetOpen‘𝐷)) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥)) |
| 20 | 17, 19 | bitri 275 | . . . . 5 ⊢ (𝑓 ⇝𝑣 𝑥 ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥)) |
| 21 | vex 3440 | . . . . . 6 ⊢ 𝑓 ∈ V | |
| 22 | 21, 18 | breldm 5853 | . . . . 5 ⊢ (𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥 → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷))) |
| 23 | 20, 22 | simplbiim 504 | . . . 4 ⊢ (𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷))) |
| 24 | 23 | rexlimivw 3129 | . . 3 ⊢ (∃𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷))) |
| 25 | 15, 24 | syl 17 | . 2 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷))) |
| 26 | 1, 4, 25 | iscmet3i 25245 | 1 ⊢ 𝐷 ∈ (CMet‘ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∩ cin 3896 〈cop 4581 class class class wbr 5093 dom cdm 5619 ↾ cres 5621 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 ↑m cmap 8756 ℕcn 12131 MetOpencmopn 21287 ⇝𝑡clm 23147 Cauccau 25186 CMetccmet 25187 IndMetcims 30578 ℋchba 30906 +ℎ cva 30907 ·ℎ csm 30908 normℎcno 30910 Cauchyccauold 30913 ⇝𝑣 chli 30914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 ax-cc 10332 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 ax-addf 11091 ax-mulf 11092 ax-hilex 30986 ax-hfvadd 30987 ax-hvcom 30988 ax-hvass 30989 ax-hv0cl 30990 ax-hvaddid 30991 ax-hfvmul 30992 ax-hvmulid 30993 ax-hvmulass 30994 ax-hvdistr1 30995 ax-hvdistr2 30996 ax-hvmul0 30997 ax-hfi 31066 ax-his1 31069 ax-his2 31070 ax-his3 31071 ax-his4 31072 ax-hcompl 31189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-omul 8396 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9838 df-acn 9841 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-n0 12388 df-z 12475 df-uz 12739 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-ico 13257 df-fz 13414 df-fl 13702 df-seq 13915 df-exp 13975 df-cj 15012 df-re 15013 df-im 15014 df-sqrt 15148 df-abs 15149 df-clim 15401 df-rlim 15402 df-rest 17332 df-topgen 17353 df-psmet 21289 df-xmet 21290 df-met 21291 df-bl 21292 df-mopn 21293 df-fbas 21294 df-fg 21295 df-top 22815 df-topon 22832 df-bases 22867 df-ntr 22941 df-nei 23019 df-lm 23150 df-fil 23767 df-fm 23859 df-flim 23860 df-flf 23861 df-cfil 25188 df-cau 25189 df-cmet 25190 df-grpo 30480 df-gid 30481 df-ginv 30482 df-gdiv 30483 df-ablo 30532 df-vc 30546 df-nv 30579 df-va 30582 df-ba 30583 df-sm 30584 df-0v 30585 df-vs 30586 df-nmcv 30587 df-ims 30588 df-hnorm 30955 df-hvsub 30958 df-hlim 30959 df-hcau 30960 |
| This theorem is referenced by: hhhl 31191 hilcms 31192 |
| Copyright terms: Public domain | W3C validator |