HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhcms Structured version   Visualization version   GIF version

Theorem hhcms 31173
Description: The Hilbert space induced metric determines a complete metric space. (Contributed by NM, 10-Apr-2008.) (Proof shortened by Mario Carneiro, 14-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhcms.1 𝑈 = ⟨⟨ + , · ⟩, norm
hhcms.2 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
hhcms 𝐷 ∈ (CMet‘ ℋ)

Proof of Theorem hhcms
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . 2 (MetOpen‘𝐷) = (MetOpen‘𝐷)
2 hhcms.1 . . 3 𝑈 = ⟨⟨ + , · ⟩, norm
3 hhcms.2 . . 3 𝐷 = (IndMet‘𝑈)
42, 3hhmet 31144 . 2 𝐷 ∈ (Met‘ ℋ)
52, 3hhcau 31168 . . . . . 6 Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ))
65eleq2i 2821 . . . . 5 (𝑓 ∈ Cauchy ↔ 𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)))
7 elin 3916 . . . . . 6 (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)))
8 ax-hilex 30969 . . . . . . . 8 ℋ ∈ V
9 nnex 12123 . . . . . . . 8 ℕ ∈ V
108, 9elmap 8790 . . . . . . 7 (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ)
1110anbi2i 623 . . . . . 6 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ))
127, 11bitri 275 . . . . 5 (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ))
136, 12bitri 275 . . . 4 (𝑓 ∈ Cauchy ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ))
14 ax-hcompl 31172 . . . 4 (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓𝑣 𝑥)
1513, 14sylbir 235 . . 3 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ) → ∃𝑥 ∈ ℋ 𝑓𝑣 𝑥)
162, 3, 1hhlm 31169 . . . . . . 7 𝑣 = ((⇝𝑡‘(MetOpen‘𝐷)) ↾ ( ℋ ↑m ℕ))
1716breqi 5095 . . . . . 6 (𝑓𝑣 𝑥𝑓((⇝𝑡‘(MetOpen‘𝐷)) ↾ ( ℋ ↑m ℕ))𝑥)
18 vex 3438 . . . . . . 7 𝑥 ∈ V
1918brresi 5934 . . . . . 6 (𝑓((⇝𝑡‘(MetOpen‘𝐷)) ↾ ( ℋ ↑m ℕ))𝑥 ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥))
2017, 19bitri 275 . . . . 5 (𝑓𝑣 𝑥 ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ 𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥))
21 vex 3438 . . . . . 6 𝑓 ∈ V
2221, 18breldm 5846 . . . . 5 (𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
2320, 22simplbiim 504 . . . 4 (𝑓𝑣 𝑥𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
2423rexlimivw 3127 . . 3 (∃𝑥 ∈ ℋ 𝑓𝑣 𝑥𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
2515, 24syl 17 . 2 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
261, 4, 25iscmet3i 25232 1 𝐷 ∈ (CMet‘ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2110  wrex 3054  cin 3899  cop 4580   class class class wbr 5089  dom cdm 5614  cres 5616  wf 6473  cfv 6477  (class class class)co 7341  m cmap 8745  cn 12117  MetOpencmopn 21274  𝑡clm 23134  Cauccau 25173  CMetccmet 25174  IndMetcims 30561  chba 30889   + cva 30890   · csm 30891  normcno 30893  Cauchyccauold 30896  𝑣 chli 30897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cc 10318  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077  ax-mulf 11078  ax-hilex 30969  ax-hfvadd 30970  ax-hvcom 30971  ax-hvass 30972  ax-hv0cl 30973  ax-hvaddid 30974  ax-hfvmul 30975  ax-hvmulid 30976  ax-hvmulass 30977  ax-hvdistr1 30978  ax-hvdistr2 30979  ax-hvmul0 30980  ax-hfi 31049  ax-his1 31052  ax-his2 31053  ax-his3 31054  ax-his4 31055  ax-hcompl 31172
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-acn 9827  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-n0 12374  df-z 12461  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ico 13243  df-fz 13400  df-fl 13688  df-seq 13901  df-exp 13961  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-rlim 15388  df-rest 17318  df-topgen 17339  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-top 22802  df-topon 22819  df-bases 22854  df-ntr 22928  df-nei 23006  df-lm 23137  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-cfil 25175  df-cau 25176  df-cmet 25177  df-grpo 30463  df-gid 30464  df-ginv 30465  df-gdiv 30466  df-ablo 30515  df-vc 30529  df-nv 30562  df-va 30565  df-ba 30566  df-sm 30567  df-0v 30568  df-vs 30569  df-nmcv 30570  df-ims 30571  df-hnorm 30938  df-hvsub 30941  df-hlim 30942  df-hcau 30943
This theorem is referenced by:  hhhl  31174  hilcms  31175
  Copyright terms: Public domain W3C validator