![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhcms | Structured version Visualization version GIF version |
Description: The Hilbert space induced metric determines a complete metric space. (Contributed by NM, 10-Apr-2008.) (Proof shortened by Mario Carneiro, 14-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhcms.1 | β’ π = β¨β¨ +β , Β·β β©, normββ© |
hhcms.2 | β’ π· = (IndMetβπ) |
Ref | Expression |
---|---|
hhcms | β’ π· β (CMetβ β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . 2 β’ (MetOpenβπ·) = (MetOpenβπ·) | |
2 | hhcms.1 | . . 3 β’ π = β¨β¨ +β , Β·β β©, normββ© | |
3 | hhcms.2 | . . 3 β’ π· = (IndMetβπ) | |
4 | 2, 3 | hhmet 30692 | . 2 β’ π· β (Metβ β) |
5 | 2, 3 | hhcau 30716 | . . . . . 6 β’ Cauchy = ((Cauβπ·) β© ( β βm β)) |
6 | 5 | eleq2i 2823 | . . . . 5 β’ (π β Cauchy β π β ((Cauβπ·) β© ( β βm β))) |
7 | elin 3965 | . . . . . 6 β’ (π β ((Cauβπ·) β© ( β βm β)) β (π β (Cauβπ·) β§ π β ( β βm β))) | |
8 | ax-hilex 30517 | . . . . . . . 8 β’ β β V | |
9 | nnex 12224 | . . . . . . . 8 β’ β β V | |
10 | 8, 9 | elmap 8869 | . . . . . . 7 β’ (π β ( β βm β) β π:ββΆ β) |
11 | 10 | anbi2i 621 | . . . . . 6 β’ ((π β (Cauβπ·) β§ π β ( β βm β)) β (π β (Cauβπ·) β§ π:ββΆ β)) |
12 | 7, 11 | bitri 274 | . . . . 5 β’ (π β ((Cauβπ·) β© ( β βm β)) β (π β (Cauβπ·) β§ π:ββΆ β)) |
13 | 6, 12 | bitri 274 | . . . 4 β’ (π β Cauchy β (π β (Cauβπ·) β§ π:ββΆ β)) |
14 | ax-hcompl 30720 | . . . 4 β’ (π β Cauchy β βπ₯ β β π βπ£ π₯) | |
15 | 13, 14 | sylbir 234 | . . 3 β’ ((π β (Cauβπ·) β§ π:ββΆ β) β βπ₯ β β π βπ£ π₯) |
16 | 2, 3, 1 | hhlm 30717 | . . . . . . 7 β’ βπ£ = ((βπ‘β(MetOpenβπ·)) βΎ ( β βm β)) |
17 | 16 | breqi 5155 | . . . . . 6 β’ (π βπ£ π₯ β π((βπ‘β(MetOpenβπ·)) βΎ ( β βm β))π₯) |
18 | vex 3476 | . . . . . . 7 β’ π₯ β V | |
19 | 18 | brresi 5991 | . . . . . 6 β’ (π((βπ‘β(MetOpenβπ·)) βΎ ( β βm β))π₯ β (π β ( β βm β) β§ π(βπ‘β(MetOpenβπ·))π₯)) |
20 | 17, 19 | bitri 274 | . . . . 5 β’ (π βπ£ π₯ β (π β ( β βm β) β§ π(βπ‘β(MetOpenβπ·))π₯)) |
21 | vex 3476 | . . . . . 6 β’ π β V | |
22 | 21, 18 | breldm 5909 | . . . . 5 β’ (π(βπ‘β(MetOpenβπ·))π₯ β π β dom (βπ‘β(MetOpenβπ·))) |
23 | 20, 22 | simplbiim 503 | . . . 4 β’ (π βπ£ π₯ β π β dom (βπ‘β(MetOpenβπ·))) |
24 | 23 | rexlimivw 3149 | . . 3 β’ (βπ₯ β β π βπ£ π₯ β π β dom (βπ‘β(MetOpenβπ·))) |
25 | 15, 24 | syl 17 | . 2 β’ ((π β (Cauβπ·) β§ π:ββΆ β) β π β dom (βπ‘β(MetOpenβπ·))) |
26 | 1, 4, 25 | iscmet3i 25062 | 1 β’ π· β (CMetβ β) |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 394 = wceq 1539 β wcel 2104 βwrex 3068 β© cin 3948 β¨cop 4635 class class class wbr 5149 dom cdm 5677 βΎ cres 5679 βΆwf 6540 βcfv 6544 (class class class)co 7413 βm cmap 8824 βcn 12218 MetOpencmopn 21136 βπ‘clm 22952 Cauccau 25003 CMetccmet 25004 IndMetcims 30109 βchba 30437 +β cva 30438 Β·β csm 30439 normβcno 30441 Cauchyccauold 30444 βπ£ chli 30445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-inf2 9640 ax-cc 10434 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 ax-addf 11193 ax-mulf 11194 ax-hilex 30517 ax-hfvadd 30518 ax-hvcom 30519 ax-hvass 30520 ax-hv0cl 30521 ax-hvaddid 30522 ax-hfvmul 30523 ax-hvmulid 30524 ax-hvmulass 30525 ax-hvdistr1 30526 ax-hvdistr2 30527 ax-hvmul0 30528 ax-hfi 30597 ax-his1 30600 ax-his2 30601 ax-his3 30602 ax-his4 30603 ax-hcompl 30720 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-oadd 8474 df-omul 8475 df-er 8707 df-map 8826 df-pm 8827 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fi 9410 df-sup 9441 df-inf 9442 df-oi 9509 df-card 9938 df-acn 9941 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-n0 12479 df-z 12565 df-uz 12829 df-q 12939 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-ico 13336 df-fz 13491 df-fl 13763 df-seq 13973 df-exp 14034 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-clim 15438 df-rlim 15439 df-rest 17374 df-topgen 17395 df-psmet 21138 df-xmet 21139 df-met 21140 df-bl 21141 df-mopn 21142 df-fbas 21143 df-fg 21144 df-top 22618 df-topon 22635 df-bases 22671 df-ntr 22746 df-nei 22824 df-lm 22955 df-fil 23572 df-fm 23664 df-flim 23665 df-flf 23666 df-cfil 25005 df-cau 25006 df-cmet 25007 df-grpo 30011 df-gid 30012 df-ginv 30013 df-gdiv 30014 df-ablo 30063 df-vc 30077 df-nv 30110 df-va 30113 df-ba 30114 df-sm 30115 df-0v 30116 df-vs 30117 df-nmcv 30118 df-ims 30119 df-hnorm 30486 df-hvsub 30489 df-hlim 30490 df-hcau 30491 |
This theorem is referenced by: hhhl 30722 hilcms 30723 |
Copyright terms: Public domain | W3C validator |