HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  occllem Structured version   Visualization version   GIF version

Theorem occllem 29665
Description: Lemma for occl 29666. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
occl.1 (𝜑𝐴 ⊆ ℋ)
occl.2 (𝜑𝐹 ∈ Cauchy)
occl.3 (𝜑𝐹:ℕ⟶(⊥‘𝐴))
occl.4 (𝜑𝐵𝐴)
Assertion
Ref Expression
occllem (𝜑 → (( ⇝𝑣𝐹) ·ih 𝐵) = 0)

Proof of Theorem occllem
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldhaus 23948 . . 3 (TopOpen‘ℂfld) ∈ Haus
32a1i 11 . 2 (𝜑 → (TopOpen‘ℂfld) ∈ Haus)
4 occl.2 . . . . . . 7 (𝜑𝐹 ∈ Cauchy)
5 ax-hcompl 29564 . . . . . . 7 (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
6 hlimf 29599 . . . . . . . . . 10 𝑣 :dom ⇝𝑣 ⟶ ℋ
7 ffn 6600 . . . . . . . . . 10 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → ⇝𝑣 Fn dom ⇝𝑣 )
86, 7ax-mp 5 . . . . . . . . 9 𝑣 Fn dom ⇝𝑣
9 fnbr 6541 . . . . . . . . 9 (( ⇝𝑣 Fn dom ⇝𝑣𝐹𝑣 𝑥) → 𝐹 ∈ dom ⇝𝑣 )
108, 9mpan 687 . . . . . . . 8 (𝐹𝑣 𝑥𝐹 ∈ dom ⇝𝑣 )
1110rexlimivw 3211 . . . . . . 7 (∃𝑥 ∈ ℋ 𝐹𝑣 𝑥𝐹 ∈ dom ⇝𝑣 )
124, 5, 113syl 18 . . . . . 6 (𝜑𝐹 ∈ dom ⇝𝑣 )
13 ffun 6603 . . . . . . 7 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 )
14 funfvbrb 6928 . . . . . . 7 (Fun ⇝𝑣 → (𝐹 ∈ dom ⇝𝑣𝐹𝑣 ( ⇝𝑣𝐹)))
156, 13, 14mp2b 10 . . . . . 6 (𝐹 ∈ dom ⇝𝑣𝐹𝑣 ( ⇝𝑣𝐹))
1612, 15sylib 217 . . . . 5 (𝜑𝐹𝑣 ( ⇝𝑣𝐹))
17 eqid 2738 . . . . . . . 8 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
18 eqid 2738 . . . . . . . . 9 (norm ∘ − ) = (norm ∘ − )
1917, 18hhims 29534 . . . . . . . 8 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
20 eqid 2738 . . . . . . . 8 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
2117, 19, 20hhlm 29561 . . . . . . 7 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))
22 resss 5916 . . . . . . 7 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
2321, 22eqsstri 3955 . . . . . 6 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
2423ssbri 5119 . . . . 5 (𝐹𝑣 ( ⇝𝑣𝐹) → 𝐹(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝐹))
2516, 24syl 17 . . . 4 (𝜑𝐹(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝐹))
2618hilxmet 29557 . . . . . 6 (norm ∘ − ) ∈ (∞Met‘ ℋ)
2720mopntopon 23592 . . . . . 6 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
2826, 27mp1i 13 . . . . 5 (𝜑 → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
2928cnmptid 22812 . . . . 5 (𝜑 → (𝑥 ∈ ℋ ↦ 𝑥) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
30 occl.1 . . . . . . 7 (𝜑𝐴 ⊆ ℋ)
31 occl.4 . . . . . . 7 (𝜑𝐵𝐴)
3230, 31sseldd 3922 . . . . . 6 (𝜑𝐵 ∈ ℋ)
3328, 28, 32cnmptc 22813 . . . . 5 (𝜑 → (𝑥 ∈ ℋ ↦ 𝐵) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
3417hhnv 29527 . . . . . 6 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
3517hhip 29539 . . . . . . 7 ·ih = (·𝑖OLD‘⟨⟨ + , · ⟩, norm⟩)
3635, 19, 20, 1dipcn 29082 . . . . . 6 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → ·ih ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (TopOpen‘ℂfld)))
3734, 36mp1i 13 . . . . 5 (𝜑·ih ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (TopOpen‘ℂfld)))
3828, 29, 33, 37cnmpt12f 22817 . . . 4 (𝜑 → (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∈ ((MetOpen‘(norm ∘ − )) Cn (TopOpen‘ℂfld)))
3925, 38lmcn 22456 . . 3 (𝜑 → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)(⇝𝑡‘(TopOpen‘ℂfld))((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘( ⇝𝑣𝐹)))
40 occl.3 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶(⊥‘𝐴))
4140ffvelrnda 6961 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (⊥‘𝐴))
42 ocel 29643 . . . . . . . . . . . 12 (𝐴 ⊆ ℋ → ((𝐹𝑘) ∈ (⊥‘𝐴) ↔ ((𝐹𝑘) ∈ ℋ ∧ ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0)))
4330, 42syl 17 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑘) ∈ (⊥‘𝐴) ↔ ((𝐹𝑘) ∈ ℋ ∧ ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0)))
4443adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) ∈ (⊥‘𝐴) ↔ ((𝐹𝑘) ∈ ℋ ∧ ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0)))
4541, 44mpbid 231 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) ∈ ℋ ∧ ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0))
4645simpld 495 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℋ)
47 oveq1 7282 . . . . . . . . 9 (𝑥 = (𝐹𝑘) → (𝑥 ·ih 𝐵) = ((𝐹𝑘) ·ih 𝐵))
48 eqid 2738 . . . . . . . . 9 (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))
49 ovex 7308 . . . . . . . . 9 ((𝐹𝑘) ·ih 𝐵) ∈ V
5047, 48, 49fvmpt 6875 . . . . . . . 8 ((𝐹𝑘) ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)) = ((𝐹𝑘) ·ih 𝐵))
5146, 50syl 17 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)) = ((𝐹𝑘) ·ih 𝐵))
52 oveq2 7283 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝐹𝑘) ·ih 𝑥) = ((𝐹𝑘) ·ih 𝐵))
5352eqeq1d 2740 . . . . . . . 8 (𝑥 = 𝐵 → (((𝐹𝑘) ·ih 𝑥) = 0 ↔ ((𝐹𝑘) ·ih 𝐵) = 0))
5445simprd 496 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0)
5531adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐵𝐴)
5653, 54, 55rspcdva 3562 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) ·ih 𝐵) = 0)
5751, 56eqtrd 2778 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)) = 0)
58 ocss 29647 . . . . . . . . 9 (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ)
5930, 58syl 17 . . . . . . . 8 (𝜑 → (⊥‘𝐴) ⊆ ℋ)
6040, 59fssd 6618 . . . . . . 7 (𝜑𝐹:ℕ⟶ ℋ)
61 fvco3 6867 . . . . . . 7 ((𝐹:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)))
6260, 61sylan 580 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)))
63 c0ex 10969 . . . . . . . 8 0 ∈ V
6463fvconst2 7079 . . . . . . 7 (𝑘 ∈ ℕ → ((ℕ × {0})‘𝑘) = 0)
6564adantl 482 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((ℕ × {0})‘𝑘) = 0)
6657, 62, 653eqtr4d 2788 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((ℕ × {0})‘𝑘))
6766ralrimiva 3103 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((ℕ × {0})‘𝑘))
68 ovex 7308 . . . . . . 7 (𝑥 ·ih 𝐵) ∈ V
6968, 48fnmpti 6576 . . . . . 6 (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) Fn ℋ
70 fnfco 6639 . . . . . 6 (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) Fn ℋ ∧ 𝐹:ℕ⟶ ℋ) → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) Fn ℕ)
7169, 60, 70sylancr 587 . . . . 5 (𝜑 → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) Fn ℕ)
7263fconst 6660 . . . . . 6 (ℕ × {0}):ℕ⟶{0}
73 ffn 6600 . . . . . 6 ((ℕ × {0}):ℕ⟶{0} → (ℕ × {0}) Fn ℕ)
7472, 73ax-mp 5 . . . . 5 (ℕ × {0}) Fn ℕ
75 eqfnfv 6909 . . . . 5 ((((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) Fn ℕ ∧ (ℕ × {0}) Fn ℕ) → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) = (ℕ × {0}) ↔ ∀𝑘 ∈ ℕ (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((ℕ × {0})‘𝑘)))
7671, 74, 75sylancl 586 . . . 4 (𝜑 → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) = (ℕ × {0}) ↔ ∀𝑘 ∈ ℕ (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((ℕ × {0})‘𝑘)))
7767, 76mpbird 256 . . 3 (𝜑 → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) = (ℕ × {0}))
78 fvex 6787 . . . . 5 ( ⇝𝑣𝐹) ∈ V
7978hlimveci 29552 . . . 4 (𝐹𝑣 ( ⇝𝑣𝐹) → ( ⇝𝑣𝐹) ∈ ℋ)
80 oveq1 7282 . . . . 5 (𝑥 = ( ⇝𝑣𝐹) → (𝑥 ·ih 𝐵) = (( ⇝𝑣𝐹) ·ih 𝐵))
81 ovex 7308 . . . . 5 (( ⇝𝑣𝐹) ·ih 𝐵) ∈ V
8280, 48, 81fvmpt 6875 . . . 4 (( ⇝𝑣𝐹) ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘( ⇝𝑣𝐹)) = (( ⇝𝑣𝐹) ·ih 𝐵))
8316, 79, 823syl 18 . . 3 (𝜑 → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘( ⇝𝑣𝐹)) = (( ⇝𝑣𝐹) ·ih 𝐵))
8439, 77, 833brtr3d 5105 . 2 (𝜑 → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))(( ⇝𝑣𝐹) ·ih 𝐵))
851cnfldtopon 23946 . . . 4 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
8685a1i 11 . . 3 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
87 0cnd 10968 . . 3 (𝜑 → 0 ∈ ℂ)
88 1zzd 12351 . . 3 (𝜑 → 1 ∈ ℤ)
89 nnuz 12621 . . . 4 ℕ = (ℤ‘1)
9089lmconst 22412 . . 3 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))0)
9186, 87, 88, 90syl3anc 1370 . 2 (𝜑 → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))0)
923, 84, 91lmmo 22531 1 (𝜑 → (( ⇝𝑣𝐹) ·ih 𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887  {csn 4561  cop 4567   class class class wbr 5074  cmpt 5157   × cxp 5587  dom cdm 5589  cres 5591  ccom 5593  Fun wfun 6427   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  cc 10869  0cc0 10871  1c1 10872  cn 11973  cz 12319  TopOpenctopn 17132  ∞Metcxmet 20582  MetOpencmopn 20587  fldccnfld 20597  TopOnctopon 22059   Cn ccn 22375  𝑡clm 22377  Hauscha 22459   ×t ctx 22711  NrmCVeccnv 28946  chba 29281   + cva 29282   · csm 29283   ·ih csp 29284  normcno 29285   cmv 29287  Cauchyccauold 29288  𝑣 chli 29289  cort 29292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951  ax-hilex 29361  ax-hfvadd 29362  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvmulass 29369  ax-hvdistr1 29370  ax-hvdistr2 29371  ax-hvmul0 29372  ax-hfi 29441  ax-his1 29444  ax-his2 29445  ax-his3 29446  ax-his4 29447  ax-hcompl 29564
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-cnp 22379  df-lm 22380  df-haus 22466  df-tx 22713  df-hmeo 22906  df-xms 23473  df-ms 23474  df-tms 23475  df-grpo 28855  df-gid 28856  df-ginv 28857  df-gdiv 28858  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-vs 28961  df-nmcv 28962  df-ims 28963  df-dip 29063  df-hnorm 29330  df-hvsub 29333  df-hlim 29334  df-sh 29569  df-oc 29614
This theorem is referenced by:  occl  29666
  Copyright terms: Public domain W3C validator