HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  occllem Structured version   Visualization version   GIF version

Theorem occllem 29384
Description: Lemma for occl 29385. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
occl.1 (𝜑𝐴 ⊆ ℋ)
occl.2 (𝜑𝐹 ∈ Cauchy)
occl.3 (𝜑𝐹:ℕ⟶(⊥‘𝐴))
occl.4 (𝜑𝐵𝐴)
Assertion
Ref Expression
occllem (𝜑 → (( ⇝𝑣𝐹) ·ih 𝐵) = 0)

Proof of Theorem occllem
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldhaus 23682 . . 3 (TopOpen‘ℂfld) ∈ Haus
32a1i 11 . 2 (𝜑 → (TopOpen‘ℂfld) ∈ Haus)
4 occl.2 . . . . . . 7 (𝜑𝐹 ∈ Cauchy)
5 ax-hcompl 29283 . . . . . . 7 (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
6 hlimf 29318 . . . . . . . . . 10 𝑣 :dom ⇝𝑣 ⟶ ℋ
7 ffn 6545 . . . . . . . . . 10 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → ⇝𝑣 Fn dom ⇝𝑣 )
86, 7ax-mp 5 . . . . . . . . 9 𝑣 Fn dom ⇝𝑣
9 fnbr 6486 . . . . . . . . 9 (( ⇝𝑣 Fn dom ⇝𝑣𝐹𝑣 𝑥) → 𝐹 ∈ dom ⇝𝑣 )
108, 9mpan 690 . . . . . . . 8 (𝐹𝑣 𝑥𝐹 ∈ dom ⇝𝑣 )
1110rexlimivw 3201 . . . . . . 7 (∃𝑥 ∈ ℋ 𝐹𝑣 𝑥𝐹 ∈ dom ⇝𝑣 )
124, 5, 113syl 18 . . . . . 6 (𝜑𝐹 ∈ dom ⇝𝑣 )
13 ffun 6548 . . . . . . 7 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 )
14 funfvbrb 6871 . . . . . . 7 (Fun ⇝𝑣 → (𝐹 ∈ dom ⇝𝑣𝐹𝑣 ( ⇝𝑣𝐹)))
156, 13, 14mp2b 10 . . . . . 6 (𝐹 ∈ dom ⇝𝑣𝐹𝑣 ( ⇝𝑣𝐹))
1612, 15sylib 221 . . . . 5 (𝜑𝐹𝑣 ( ⇝𝑣𝐹))
17 eqid 2737 . . . . . . . 8 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
18 eqid 2737 . . . . . . . . 9 (norm ∘ − ) = (norm ∘ − )
1917, 18hhims 29253 . . . . . . . 8 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
20 eqid 2737 . . . . . . . 8 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
2117, 19, 20hhlm 29280 . . . . . . 7 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))
22 resss 5876 . . . . . . 7 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
2321, 22eqsstri 3935 . . . . . 6 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
2423ssbri 5098 . . . . 5 (𝐹𝑣 ( ⇝𝑣𝐹) → 𝐹(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝐹))
2516, 24syl 17 . . . 4 (𝜑𝐹(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝐹))
2618hilxmet 29276 . . . . . 6 (norm ∘ − ) ∈ (∞Met‘ ℋ)
2720mopntopon 23337 . . . . . 6 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
2826, 27mp1i 13 . . . . 5 (𝜑 → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
2928cnmptid 22558 . . . . 5 (𝜑 → (𝑥 ∈ ℋ ↦ 𝑥) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
30 occl.1 . . . . . . 7 (𝜑𝐴 ⊆ ℋ)
31 occl.4 . . . . . . 7 (𝜑𝐵𝐴)
3230, 31sseldd 3902 . . . . . 6 (𝜑𝐵 ∈ ℋ)
3328, 28, 32cnmptc 22559 . . . . 5 (𝜑 → (𝑥 ∈ ℋ ↦ 𝐵) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
3417hhnv 29246 . . . . . 6 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
3517hhip 29258 . . . . . . 7 ·ih = (·𝑖OLD‘⟨⟨ + , · ⟩, norm⟩)
3635, 19, 20, 1dipcn 28801 . . . . . 6 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → ·ih ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (TopOpen‘ℂfld)))
3734, 36mp1i 13 . . . . 5 (𝜑·ih ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (TopOpen‘ℂfld)))
3828, 29, 33, 37cnmpt12f 22563 . . . 4 (𝜑 → (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∈ ((MetOpen‘(norm ∘ − )) Cn (TopOpen‘ℂfld)))
3925, 38lmcn 22202 . . 3 (𝜑 → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)(⇝𝑡‘(TopOpen‘ℂfld))((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘( ⇝𝑣𝐹)))
40 occl.3 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶(⊥‘𝐴))
4140ffvelrnda 6904 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (⊥‘𝐴))
42 ocel 29362 . . . . . . . . . . . 12 (𝐴 ⊆ ℋ → ((𝐹𝑘) ∈ (⊥‘𝐴) ↔ ((𝐹𝑘) ∈ ℋ ∧ ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0)))
4330, 42syl 17 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑘) ∈ (⊥‘𝐴) ↔ ((𝐹𝑘) ∈ ℋ ∧ ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0)))
4443adantr 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) ∈ (⊥‘𝐴) ↔ ((𝐹𝑘) ∈ ℋ ∧ ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0)))
4541, 44mpbid 235 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) ∈ ℋ ∧ ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0))
4645simpld 498 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℋ)
47 oveq1 7220 . . . . . . . . 9 (𝑥 = (𝐹𝑘) → (𝑥 ·ih 𝐵) = ((𝐹𝑘) ·ih 𝐵))
48 eqid 2737 . . . . . . . . 9 (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))
49 ovex 7246 . . . . . . . . 9 ((𝐹𝑘) ·ih 𝐵) ∈ V
5047, 48, 49fvmpt 6818 . . . . . . . 8 ((𝐹𝑘) ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)) = ((𝐹𝑘) ·ih 𝐵))
5146, 50syl 17 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)) = ((𝐹𝑘) ·ih 𝐵))
52 oveq2 7221 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝐹𝑘) ·ih 𝑥) = ((𝐹𝑘) ·ih 𝐵))
5352eqeq1d 2739 . . . . . . . 8 (𝑥 = 𝐵 → (((𝐹𝑘) ·ih 𝑥) = 0 ↔ ((𝐹𝑘) ·ih 𝐵) = 0))
5445simprd 499 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0)
5531adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐵𝐴)
5653, 54, 55rspcdva 3539 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) ·ih 𝐵) = 0)
5751, 56eqtrd 2777 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)) = 0)
58 ocss 29366 . . . . . . . . 9 (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ)
5930, 58syl 17 . . . . . . . 8 (𝜑 → (⊥‘𝐴) ⊆ ℋ)
6040, 59fssd 6563 . . . . . . 7 (𝜑𝐹:ℕ⟶ ℋ)
61 fvco3 6810 . . . . . . 7 ((𝐹:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)))
6260, 61sylan 583 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)))
63 c0ex 10827 . . . . . . . 8 0 ∈ V
6463fvconst2 7019 . . . . . . 7 (𝑘 ∈ ℕ → ((ℕ × {0})‘𝑘) = 0)
6564adantl 485 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((ℕ × {0})‘𝑘) = 0)
6657, 62, 653eqtr4d 2787 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((ℕ × {0})‘𝑘))
6766ralrimiva 3105 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((ℕ × {0})‘𝑘))
68 ovex 7246 . . . . . . 7 (𝑥 ·ih 𝐵) ∈ V
6968, 48fnmpti 6521 . . . . . 6 (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) Fn ℋ
70 fnfco 6584 . . . . . 6 (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) Fn ℋ ∧ 𝐹:ℕ⟶ ℋ) → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) Fn ℕ)
7169, 60, 70sylancr 590 . . . . 5 (𝜑 → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) Fn ℕ)
7263fconst 6605 . . . . . 6 (ℕ × {0}):ℕ⟶{0}
73 ffn 6545 . . . . . 6 ((ℕ × {0}):ℕ⟶{0} → (ℕ × {0}) Fn ℕ)
7472, 73ax-mp 5 . . . . 5 (ℕ × {0}) Fn ℕ
75 eqfnfv 6852 . . . . 5 ((((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) Fn ℕ ∧ (ℕ × {0}) Fn ℕ) → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) = (ℕ × {0}) ↔ ∀𝑘 ∈ ℕ (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((ℕ × {0})‘𝑘)))
7671, 74, 75sylancl 589 . . . 4 (𝜑 → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) = (ℕ × {0}) ↔ ∀𝑘 ∈ ℕ (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((ℕ × {0})‘𝑘)))
7767, 76mpbird 260 . . 3 (𝜑 → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) = (ℕ × {0}))
78 fvex 6730 . . . . 5 ( ⇝𝑣𝐹) ∈ V
7978hlimveci 29271 . . . 4 (𝐹𝑣 ( ⇝𝑣𝐹) → ( ⇝𝑣𝐹) ∈ ℋ)
80 oveq1 7220 . . . . 5 (𝑥 = ( ⇝𝑣𝐹) → (𝑥 ·ih 𝐵) = (( ⇝𝑣𝐹) ·ih 𝐵))
81 ovex 7246 . . . . 5 (( ⇝𝑣𝐹) ·ih 𝐵) ∈ V
8280, 48, 81fvmpt 6818 . . . 4 (( ⇝𝑣𝐹) ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘( ⇝𝑣𝐹)) = (( ⇝𝑣𝐹) ·ih 𝐵))
8316, 79, 823syl 18 . . 3 (𝜑 → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘( ⇝𝑣𝐹)) = (( ⇝𝑣𝐹) ·ih 𝐵))
8439, 77, 833brtr3d 5084 . 2 (𝜑 → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))(( ⇝𝑣𝐹) ·ih 𝐵))
851cnfldtopon 23680 . . . 4 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
8685a1i 11 . . 3 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
87 0cnd 10826 . . 3 (𝜑 → 0 ∈ ℂ)
88 1zzd 12208 . . 3 (𝜑 → 1 ∈ ℤ)
89 nnuz 12477 . . . 4 ℕ = (ℤ‘1)
9089lmconst 22158 . . 3 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))0)
9186, 87, 88, 90syl3anc 1373 . 2 (𝜑 → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))0)
923, 84, 91lmmo 22277 1 (𝜑 → (( ⇝𝑣𝐹) ·ih 𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  wrex 3062  wss 3866  {csn 4541  cop 4547   class class class wbr 5053  cmpt 5135   × cxp 5549  dom cdm 5551  cres 5553  ccom 5555  Fun wfun 6374   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213  m cmap 8508  cc 10727  0cc0 10729  1c1 10730  cn 11830  cz 12176  TopOpenctopn 16926  ∞Metcxmet 20348  MetOpencmopn 20353  fldccnfld 20363  TopOnctopon 21807   Cn ccn 22121  𝑡clm 22123  Hauscha 22205   ×t ctx 22457  NrmCVeccnv 28665  chba 29000   + cva 29001   · csm 29002   ·ih csp 29003  normcno 29004   cmv 29006  Cauchyccauold 29007  𝑣 chli 29008  cort 29011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809  ax-hilex 29080  ax-hfvadd 29081  ax-hvcom 29082  ax-hvass 29083  ax-hv0cl 29084  ax-hvaddid 29085  ax-hfvmul 29086  ax-hvmulid 29087  ax-hvmulass 29088  ax-hvdistr1 29089  ax-hvdistr2 29090  ax-hvmul0 29091  ax-hfi 29160  ax-his1 29163  ax-his2 29164  ax-his3 29165  ax-his4 29166  ax-hcompl 29283
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-icc 12942  df-fz 13096  df-fzo 13239  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-sum 15250  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cn 22124  df-cnp 22125  df-lm 22126  df-haus 22212  df-tx 22459  df-hmeo 22652  df-xms 23218  df-ms 23219  df-tms 23220  df-grpo 28574  df-gid 28575  df-ginv 28576  df-gdiv 28577  df-ablo 28626  df-vc 28640  df-nv 28673  df-va 28676  df-ba 28677  df-sm 28678  df-0v 28679  df-vs 28680  df-nmcv 28681  df-ims 28682  df-dip 28782  df-hnorm 29049  df-hvsub 29052  df-hlim 29053  df-sh 29288  df-oc 29333
This theorem is referenced by:  occl  29385
  Copyright terms: Public domain W3C validator