HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem2 Structured version   Visualization version   GIF version

Theorem chscllem2 29421
Description: Lemma for chscl 29424. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1 (𝜑𝐴C )
chscl.2 (𝜑𝐵C )
chscl.3 (𝜑𝐵 ⊆ (⊥‘𝐴))
chscl.4 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
chscl.5 (𝜑𝐻𝑣 𝑢)
chscl.6 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
Assertion
Ref Expression
chscllem2 (𝜑𝐹 ∈ dom ⇝𝑣 )
Distinct variable groups:   𝑢,𝑛,𝐴   𝜑,𝑛   𝐵,𝑛,𝑢   𝑛,𝐻,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐹(𝑢,𝑛)

Proof of Theorem chscllem2
Dummy variables 𝑗 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chscl.1 . . . . 5 (𝜑𝐴C )
2 chscl.2 . . . . 5 (𝜑𝐵C )
3 chscl.3 . . . . 5 (𝜑𝐵 ⊆ (⊥‘𝐴))
4 chscl.4 . . . . 5 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
5 chscl.5 . . . . 5 (𝜑𝐻𝑣 𝑢)
6 chscl.6 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
71, 2, 3, 4, 5, 6chscllem1 29420 . . . 4 (𝜑𝐹:ℕ⟶𝐴)
8 chss 29012 . . . . 5 (𝐴C𝐴 ⊆ ℋ)
91, 8syl 17 . . . 4 (𝜑𝐴 ⊆ ℋ)
107, 9fssd 6502 . . 3 (𝜑𝐹:ℕ⟶ ℋ)
11 hlimcaui 29019 . . . . . . 7 (𝐻𝑣 𝑢𝐻 ∈ Cauchy)
125, 11syl 17 . . . . . 6 (𝜑𝐻 ∈ Cauchy)
13 hcaucvg 28969 . . . . . 6 ((𝐻 ∈ Cauchy ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥)
1412, 13sylan 583 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥)
15 eluznn 12306 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
1615adantll 713 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
17 chsh 29007 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴C𝐴S )
181, 17syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴S )
19 chsh 29007 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵C𝐵S )
202, 19syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵S )
21 shscl 29101 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴S𝐵S ) → (𝐴 + 𝐵) ∈ S )
2218, 20, 21syl2anc 587 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 + 𝐵) ∈ S )
23 shss 28993 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 + 𝐵) ∈ S → (𝐴 + 𝐵) ⊆ ℋ)
2422, 23syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴 + 𝐵) ⊆ ℋ)
2524adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐴 + 𝐵) ⊆ ℋ)
264ffvelrnda 6828 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐻𝑗) ∈ (𝐴 + 𝐵))
2725, 26sseldd 3916 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → (𝐻𝑗) ∈ ℋ)
2827adantrr 716 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐻𝑗) ∈ ℋ)
294, 24fssd 6502 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐻:ℕ⟶ ℋ)
3029adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝐻:ℕ⟶ ℋ)
31 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℕ)
3230, 31ffvelrnd 6829 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐻𝑘) ∈ ℋ)
33 hvsubcl 28800 . . . . . . . . . . . . . . . . . 18 (((𝐻𝑗) ∈ ℋ ∧ (𝐻𝑘) ∈ ℋ) → ((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ)
3428, 32, 33syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ)
359adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → 𝐴 ⊆ ℋ)
367ffvelrnda 6828 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ 𝐴)
3735, 36sseldd 3916 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℋ)
3837adantrr 716 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐹𝑗) ∈ ℋ)
399adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝐴 ⊆ ℋ)
407adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝐹:ℕ⟶𝐴)
4140, 31ffvelrnd 6829 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐹𝑘) ∈ 𝐴)
4239, 41sseldd 3916 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐹𝑘) ∈ ℋ)
43 hvsubcl 28800 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑗) ∈ ℋ ∧ (𝐹𝑘) ∈ ℋ) → ((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ)
4438, 42, 43syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ)
45 hvsubcl 28800 . . . . . . . . . . . . . . . . 17 ((((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ ∧ ((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ ℋ)
4634, 44, 45syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ ℋ)
47 normcl 28908 . . . . . . . . . . . . . . . 16 ((((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ ℋ → (norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) ∈ ℝ)
4846, 47syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) ∈ ℝ)
4948sqge0d 13608 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 0 ≤ ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2))
50 normcl 28908 . . . . . . . . . . . . . . . . 17 (((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ → (norm‘((𝐹𝑗) − (𝐹𝑘))) ∈ ℝ)
5144, 50syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐹𝑗) − (𝐹𝑘))) ∈ ℝ)
5251resqcld 13607 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ∈ ℝ)
5348resqcld 13607 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2) ∈ ℝ)
5452, 53addge01d 11217 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (0 ≤ ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2) ↔ ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ≤ (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2))))
5549, 54mpbid 235 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ≤ (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2)))
5618adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝐴S )
5736adantrr 716 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐹𝑗) ∈ 𝐴)
58 shsubcl 29003 . . . . . . . . . . . . . . . . 17 ((𝐴S ∧ (𝐹𝑗) ∈ 𝐴 ∧ (𝐹𝑘) ∈ 𝐴) → ((𝐹𝑗) − (𝐹𝑘)) ∈ 𝐴)
5956, 57, 41, 58syl3anc 1368 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐹𝑗) − (𝐹𝑘)) ∈ 𝐴)
60 hvsubsub4 28843 . . . . . . . . . . . . . . . . . 18 ((((𝐻𝑗) ∈ ℋ ∧ (𝐻𝑘) ∈ ℋ) ∧ ((𝐹𝑗) ∈ ℋ ∧ (𝐹𝑘) ∈ ℋ)) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) = (((𝐻𝑗) − (𝐹𝑗)) − ((𝐻𝑘) − (𝐹𝑘))))
6128, 32, 38, 42, 60syl22anc 837 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) = (((𝐻𝑗) − (𝐹𝑗)) − ((𝐻𝑘) − (𝐹𝑘))))
62 ocsh 29066 . . . . . . . . . . . . . . . . . . 19 (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ S )
6339, 62syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (⊥‘𝐴) ∈ S )
64 2fveq3 6650 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑗 → ((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑗)))
65 fvex 6658 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((proj𝐴)‘(𝐻𝑗)) ∈ V
6664, 6, 65fvmpt 6745 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 ∈ ℕ → (𝐹𝑗) = ((proj𝐴)‘(𝐻𝑗)))
6766eqcomd 2804 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → ((proj𝐴)‘(𝐻𝑗)) = (𝐹𝑗))
6867adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ) → ((proj𝐴)‘(𝐻𝑗)) = (𝐹𝑗))
691adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → 𝐴C )
709, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (⊥‘𝐴) ∈ S )
71 shless 29142 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐵S ∧ (⊥‘𝐴) ∈ S𝐴S ) ∧ 𝐵 ⊆ (⊥‘𝐴)) → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
7220, 70, 18, 3, 71syl31anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
73 shscom 29102 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
7418, 20, 73syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
75 shscom 29102 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴S ∧ (⊥‘𝐴) ∈ S ) → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
7618, 70, 75syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
7772, 74, 763sstr4d 3962 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴 + 𝐵) ⊆ (𝐴 + (⊥‘𝐴)))
7877adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ ℕ) → (𝐴 + 𝐵) ⊆ (𝐴 + (⊥‘𝐴)))
7978, 26sseldd 3916 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → (𝐻𝑗) ∈ (𝐴 + (⊥‘𝐴)))
80 pjpreeq 29181 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴C ∧ (𝐻𝑗) ∈ (𝐴 + (⊥‘𝐴))) → (((proj𝐴)‘(𝐻𝑗)) = (𝐹𝑗) ↔ ((𝐹𝑗) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥))))
8169, 79, 80syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ) → (((proj𝐴)‘(𝐻𝑗)) = (𝐹𝑗) ↔ ((𝐹𝑗) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥))))
8268, 81mpbid 235 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ ℕ) → ((𝐹𝑗) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥)))
8382simprd 499 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ) → ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥))
8427adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → (𝐻𝑗) ∈ ℋ)
8537adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → (𝐹𝑗) ∈ ℋ)
86 shss 28993 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⊥‘𝐴) ∈ S → (⊥‘𝐴) ⊆ ℋ)
8770, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (⊥‘𝐴) ⊆ ℋ)
8887adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ ℕ) → (⊥‘𝐴) ⊆ ℋ)
8988sselda 3915 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → 𝑥 ∈ ℋ)
90 hvsubadd 28860 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐻𝑗) ∈ ℋ ∧ (𝐹𝑗) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐻𝑗) − (𝐹𝑗)) = 𝑥 ↔ ((𝐹𝑗) + 𝑥) = (𝐻𝑗)))
9184, 85, 89, 90syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → (((𝐻𝑗) − (𝐹𝑗)) = 𝑥 ↔ ((𝐹𝑗) + 𝑥) = (𝐻𝑗)))
92 eqcom 2805 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ((𝐻𝑗) − (𝐹𝑗)) ↔ ((𝐻𝑗) − (𝐹𝑗)) = 𝑥)
93 eqcom 2805 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐻𝑗) = ((𝐹𝑗) + 𝑥) ↔ ((𝐹𝑗) + 𝑥) = (𝐻𝑗))
9491, 92, 933bitr4g 317 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → (𝑥 = ((𝐻𝑗) − (𝐹𝑗)) ↔ (𝐻𝑗) = ((𝐹𝑗) + 𝑥)))
9594rexbidva 3255 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ) → (∃𝑥 ∈ (⊥‘𝐴)𝑥 = ((𝐻𝑗) − (𝐹𝑗)) ↔ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥)))
9683, 95mpbird 260 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → ∃𝑥 ∈ (⊥‘𝐴)𝑥 = ((𝐻𝑗) − (𝐹𝑗)))
97 risset 3226 . . . . . . . . . . . . . . . . . . . 20 (((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴) ↔ ∃𝑥 ∈ (⊥‘𝐴)𝑥 = ((𝐻𝑗) − (𝐹𝑗)))
9896, 97sylibr 237 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → ((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴))
9998adantrr 716 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴))
100 eleq1w 2872 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑘 → (𝑗 ∈ ℕ ↔ 𝑘 ∈ ℕ))
101100anbi2d 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑘 → ((𝜑𝑗 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ)))
102 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 𝑘 → (𝐻𝑗) = (𝐻𝑘))
103 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
104102, 103oveq12d 7153 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑘 → ((𝐻𝑗) − (𝐹𝑗)) = ((𝐻𝑘) − (𝐹𝑘)))
105104eleq1d 2874 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑘 → (((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴) ↔ ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴)))
106101, 105imbi12d 348 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑘 → (((𝜑𝑗 ∈ ℕ) → ((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴)) ↔ ((𝜑𝑘 ∈ ℕ) → ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴))))
107106, 98chvarvv 2005 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴))
108107adantrl 715 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴))
109 shsubcl 29003 . . . . . . . . . . . . . . . . . 18 (((⊥‘𝐴) ∈ S ∧ ((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴) ∧ ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴)) → (((𝐻𝑗) − (𝐹𝑗)) − ((𝐻𝑘) − (𝐹𝑘))) ∈ (⊥‘𝐴))
11063, 99, 108, 109syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐻𝑗) − (𝐹𝑗)) − ((𝐻𝑘) − (𝐹𝑘))) ∈ (⊥‘𝐴))
11161, 110eqeltrd 2890 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ (⊥‘𝐴))
112 shocorth 29075 . . . . . . . . . . . . . . . . 17 (𝐴S → ((((𝐹𝑗) − (𝐹𝑘)) ∈ 𝐴 ∧ (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ (⊥‘𝐴)) → (((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0))
11356, 112syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((((𝐹𝑗) − (𝐹𝑘)) ∈ 𝐴 ∧ (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ (⊥‘𝐴)) → (((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0))
11459, 111, 113mp2and 698 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0)
115 normpyth 28928 . . . . . . . . . . . . . . . 16 ((((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ ∧ (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ ℋ) → ((((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0 → ((norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))))↑2) = (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2))))
11644, 46, 115syl2anc 587 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0 → ((norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))))↑2) = (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2))))
117114, 116mpd 15 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))))↑2) = (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2)))
118 hvpncan3 28825 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ ∧ ((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ) → (((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = ((𝐻𝑗) − (𝐻𝑘)))
11944, 34, 118syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = ((𝐻𝑗) − (𝐻𝑘)))
120119fveq2d 6649 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))) = (norm‘((𝐻𝑗) − (𝐻𝑘))))
121120oveq1d 7150 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))))↑2) = ((norm‘((𝐻𝑗) − (𝐻𝑘)))↑2))
122117, 121eqtr3d 2835 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2)) = ((norm‘((𝐻𝑗) − (𝐻𝑘)))↑2))
12355, 122breqtrd 5056 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ≤ ((norm‘((𝐻𝑗) − (𝐻𝑘)))↑2))
124 normcl 28908 . . . . . . . . . . . . . 14 (((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ → (norm‘((𝐻𝑗) − (𝐻𝑘))) ∈ ℝ)
12534, 124syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐻𝑗) − (𝐻𝑘))) ∈ ℝ)
126 normge0 28909 . . . . . . . . . . . . . 14 (((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ → 0 ≤ (norm‘((𝐹𝑗) − (𝐹𝑘))))
12744, 126syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 0 ≤ (norm‘((𝐹𝑗) − (𝐹𝑘))))
128 normge0 28909 . . . . . . . . . . . . . 14 (((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ → 0 ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))))
12934, 128syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 0 ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))))
13051, 125, 127, 129le2sqd 13616 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))) ↔ ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ≤ ((norm‘((𝐻𝑗) − (𝐻𝑘)))↑2)))
131123, 130mpbird 260 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))))
132131adantlr 714 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))))
13351adantlr 714 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐹𝑗) − (𝐹𝑘))) ∈ ℝ)
134125adantlr 714 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐻𝑗) − (𝐻𝑘))) ∈ ℝ)
135 rpre 12385 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
136135ad2antlr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝑥 ∈ ℝ)
137 lelttr 10720 . . . . . . . . . . 11 (((norm‘((𝐹𝑗) − (𝐹𝑘))) ∈ ℝ ∧ (norm‘((𝐻𝑗) − (𝐻𝑘))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))) ∧ (norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥) → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
138133, 134, 136, 137syl3anc 1368 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))) ∧ (norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥) → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
139132, 138mpand 694 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
140139anassrs 471 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
14116, 140syldan 594 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
142141ralimdva 3144 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
143142reximdva 3233 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
14414, 143mpd 15 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥)
145144ralrimiva 3149 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥)
146 hcau 28967 . . 3 (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
14710, 145, 146sylanbrc 586 . 2 (𝜑𝐹 ∈ Cauchy)
148 ax-hcompl 28985 . 2 (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
149 hlimf 29020 . . . . 5 𝑣 :dom ⇝𝑣 ⟶ ℋ
150 ffn 6487 . . . . 5 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → ⇝𝑣 Fn dom ⇝𝑣 )
151149, 150ax-mp 5 . . . 4 𝑣 Fn dom ⇝𝑣
152 fnbr 6430 . . . 4 (( ⇝𝑣 Fn dom ⇝𝑣𝐹𝑣 𝑥) → 𝐹 ∈ dom ⇝𝑣 )
153151, 152mpan 689 . . 3 (𝐹𝑣 𝑥𝐹 ∈ dom ⇝𝑣 )
154153rexlimivw 3241 . 2 (∃𝑥 ∈ ℋ 𝐹𝑣 𝑥𝐹 ∈ dom ⇝𝑣 )
155147, 148, 1543syl 18 1 (𝜑𝐹 ∈ dom ⇝𝑣 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  wss 3881   class class class wbr 5030  cmpt 5110  dom cdm 5519   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526   + caddc 10529   < clt 10664  cle 10665  cn 11625  2c2 11680  cuz 12231  +crp 12377  cexp 13425  chba 28702   + cva 28703   ·ih csp 28705  normcno 28706   cmv 28708  Cauchyccauold 28709  𝑣 chli 28710   S csh 28711   C cch 28712  cort 28713   + cph 28714  projcpjh 28720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606  ax-hilex 28782  ax-hfvadd 28783  ax-hvcom 28784  ax-hvass 28785  ax-hv0cl 28786  ax-hvaddid 28787  ax-hfvmul 28788  ax-hvmulid 28789  ax-hvmulass 28790  ax-hvdistr1 28791  ax-hvdistr2 28792  ax-hvmul0 28793  ax-hfi 28862  ax-his1 28865  ax-his2 28866  ax-his3 28867  ax-his4 28868  ax-hcompl 28985
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-bases 21551  df-lm 21834  df-haus 21920  df-cau 23860  df-grpo 28276  df-gid 28277  df-ginv 28278  df-gdiv 28279  df-ablo 28328  df-vc 28342  df-nv 28375  df-va 28378  df-ba 28379  df-sm 28380  df-0v 28381  df-vs 28382  df-nmcv 28383  df-ims 28384  df-hnorm 28751  df-hvsub 28754  df-hlim 28755  df-hcau 28756  df-sh 28990  df-ch 29004  df-oc 29035  df-ch0 29036  df-shs 29091  df-pjh 29178
This theorem is referenced by:  chscllem4  29423
  Copyright terms: Public domain W3C validator