HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem2 Structured version   Visualization version   GIF version

Theorem chscllem2 30580
Description: Lemma for chscl 30583. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1 (𝜑𝐴C )
chscl.2 (𝜑𝐵C )
chscl.3 (𝜑𝐵 ⊆ (⊥‘𝐴))
chscl.4 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
chscl.5 (𝜑𝐻𝑣 𝑢)
chscl.6 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
Assertion
Ref Expression
chscllem2 (𝜑𝐹 ∈ dom ⇝𝑣 )
Distinct variable groups:   𝑢,𝑛,𝐴   𝜑,𝑛   𝐵,𝑛,𝑢   𝑛,𝐻,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐹(𝑢,𝑛)

Proof of Theorem chscllem2
Dummy variables 𝑗 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chscl.1 . . . . 5 (𝜑𝐴C )
2 chscl.2 . . . . 5 (𝜑𝐵C )
3 chscl.3 . . . . 5 (𝜑𝐵 ⊆ (⊥‘𝐴))
4 chscl.4 . . . . 5 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
5 chscl.5 . . . . 5 (𝜑𝐻𝑣 𝑢)
6 chscl.6 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
71, 2, 3, 4, 5, 6chscllem1 30579 . . . 4 (𝜑𝐹:ℕ⟶𝐴)
8 chss 30171 . . . . 5 (𝐴C𝐴 ⊆ ℋ)
91, 8syl 17 . . . 4 (𝜑𝐴 ⊆ ℋ)
107, 9fssd 6686 . . 3 (𝜑𝐹:ℕ⟶ ℋ)
11 hlimcaui 30178 . . . . . . 7 (𝐻𝑣 𝑢𝐻 ∈ Cauchy)
125, 11syl 17 . . . . . 6 (𝜑𝐻 ∈ Cauchy)
13 hcaucvg 30128 . . . . . 6 ((𝐻 ∈ Cauchy ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥)
1412, 13sylan 580 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥)
15 eluznn 12843 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
1615adantll 712 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
17 chsh 30166 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴C𝐴S )
181, 17syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴S )
19 chsh 30166 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵C𝐵S )
202, 19syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵S )
21 shscl 30260 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴S𝐵S ) → (𝐴 + 𝐵) ∈ S )
2218, 20, 21syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 + 𝐵) ∈ S )
23 shss 30152 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 + 𝐵) ∈ S → (𝐴 + 𝐵) ⊆ ℋ)
2422, 23syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴 + 𝐵) ⊆ ℋ)
2524adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐴 + 𝐵) ⊆ ℋ)
264ffvelcdmda 7035 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐻𝑗) ∈ (𝐴 + 𝐵))
2725, 26sseldd 3945 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → (𝐻𝑗) ∈ ℋ)
2827adantrr 715 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐻𝑗) ∈ ℋ)
294, 24fssd 6686 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐻:ℕ⟶ ℋ)
3029adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝐻:ℕ⟶ ℋ)
31 simprr 771 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℕ)
3230, 31ffvelcdmd 7036 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐻𝑘) ∈ ℋ)
33 hvsubcl 29959 . . . . . . . . . . . . . . . . . 18 (((𝐻𝑗) ∈ ℋ ∧ (𝐻𝑘) ∈ ℋ) → ((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ)
3428, 32, 33syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ)
359adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → 𝐴 ⊆ ℋ)
367ffvelcdmda 7035 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ 𝐴)
3735, 36sseldd 3945 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℋ)
3837adantrr 715 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐹𝑗) ∈ ℋ)
399adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝐴 ⊆ ℋ)
407adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝐹:ℕ⟶𝐴)
4140, 31ffvelcdmd 7036 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐹𝑘) ∈ 𝐴)
4239, 41sseldd 3945 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐹𝑘) ∈ ℋ)
43 hvsubcl 29959 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑗) ∈ ℋ ∧ (𝐹𝑘) ∈ ℋ) → ((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ)
4438, 42, 43syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ)
45 hvsubcl 29959 . . . . . . . . . . . . . . . . 17 ((((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ ∧ ((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ ℋ)
4634, 44, 45syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ ℋ)
47 normcl 30067 . . . . . . . . . . . . . . . 16 ((((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ ℋ → (norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) ∈ ℝ)
4846, 47syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) ∈ ℝ)
4948sqge0d 14042 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 0 ≤ ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2))
50 normcl 30067 . . . . . . . . . . . . . . . . 17 (((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ → (norm‘((𝐹𝑗) − (𝐹𝑘))) ∈ ℝ)
5144, 50syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐹𝑗) − (𝐹𝑘))) ∈ ℝ)
5251resqcld 14030 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ∈ ℝ)
5348resqcld 14030 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2) ∈ ℝ)
5452, 53addge01d 11743 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (0 ≤ ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2) ↔ ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ≤ (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2))))
5549, 54mpbid 231 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ≤ (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2)))
5618adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝐴S )
5736adantrr 715 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐹𝑗) ∈ 𝐴)
58 shsubcl 30162 . . . . . . . . . . . . . . . . 17 ((𝐴S ∧ (𝐹𝑗) ∈ 𝐴 ∧ (𝐹𝑘) ∈ 𝐴) → ((𝐹𝑗) − (𝐹𝑘)) ∈ 𝐴)
5956, 57, 41, 58syl3anc 1371 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐹𝑗) − (𝐹𝑘)) ∈ 𝐴)
60 hvsubsub4 30002 . . . . . . . . . . . . . . . . . 18 ((((𝐻𝑗) ∈ ℋ ∧ (𝐻𝑘) ∈ ℋ) ∧ ((𝐹𝑗) ∈ ℋ ∧ (𝐹𝑘) ∈ ℋ)) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) = (((𝐻𝑗) − (𝐹𝑗)) − ((𝐻𝑘) − (𝐹𝑘))))
6128, 32, 38, 42, 60syl22anc 837 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) = (((𝐻𝑗) − (𝐹𝑗)) − ((𝐻𝑘) − (𝐹𝑘))))
62 ocsh 30225 . . . . . . . . . . . . . . . . . . 19 (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ S )
6339, 62syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (⊥‘𝐴) ∈ S )
64 2fveq3 6847 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑗 → ((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑗)))
65 fvex 6855 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((proj𝐴)‘(𝐻𝑗)) ∈ V
6664, 6, 65fvmpt 6948 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 ∈ ℕ → (𝐹𝑗) = ((proj𝐴)‘(𝐻𝑗)))
6766eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → ((proj𝐴)‘(𝐻𝑗)) = (𝐹𝑗))
6867adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ) → ((proj𝐴)‘(𝐻𝑗)) = (𝐹𝑗))
691adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → 𝐴C )
709, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (⊥‘𝐴) ∈ S )
71 shless 30301 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐵S ∧ (⊥‘𝐴) ∈ S𝐴S ) ∧ 𝐵 ⊆ (⊥‘𝐴)) → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
7220, 70, 18, 3, 71syl31anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
73 shscom 30261 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
7418, 20, 73syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
75 shscom 30261 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴S ∧ (⊥‘𝐴) ∈ S ) → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
7618, 70, 75syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
7772, 74, 763sstr4d 3991 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴 + 𝐵) ⊆ (𝐴 + (⊥‘𝐴)))
7877adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ ℕ) → (𝐴 + 𝐵) ⊆ (𝐴 + (⊥‘𝐴)))
7978, 26sseldd 3945 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → (𝐻𝑗) ∈ (𝐴 + (⊥‘𝐴)))
80 pjpreeq 30340 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴C ∧ (𝐻𝑗) ∈ (𝐴 + (⊥‘𝐴))) → (((proj𝐴)‘(𝐻𝑗)) = (𝐹𝑗) ↔ ((𝐹𝑗) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥))))
8169, 79, 80syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ) → (((proj𝐴)‘(𝐻𝑗)) = (𝐹𝑗) ↔ ((𝐹𝑗) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥))))
8268, 81mpbid 231 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ ℕ) → ((𝐹𝑗) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥)))
8382simprd 496 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ) → ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥))
8427adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → (𝐻𝑗) ∈ ℋ)
8537adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → (𝐹𝑗) ∈ ℋ)
86 shss 30152 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⊥‘𝐴) ∈ S → (⊥‘𝐴) ⊆ ℋ)
8770, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (⊥‘𝐴) ⊆ ℋ)
8887adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ ℕ) → (⊥‘𝐴) ⊆ ℋ)
8988sselda 3944 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → 𝑥 ∈ ℋ)
90 hvsubadd 30019 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐻𝑗) ∈ ℋ ∧ (𝐹𝑗) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐻𝑗) − (𝐹𝑗)) = 𝑥 ↔ ((𝐹𝑗) + 𝑥) = (𝐻𝑗)))
9184, 85, 89, 90syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → (((𝐻𝑗) − (𝐹𝑗)) = 𝑥 ↔ ((𝐹𝑗) + 𝑥) = (𝐻𝑗)))
92 eqcom 2743 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ((𝐻𝑗) − (𝐹𝑗)) ↔ ((𝐻𝑗) − (𝐹𝑗)) = 𝑥)
93 eqcom 2743 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐻𝑗) = ((𝐹𝑗) + 𝑥) ↔ ((𝐹𝑗) + 𝑥) = (𝐻𝑗))
9491, 92, 933bitr4g 313 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → (𝑥 = ((𝐻𝑗) − (𝐹𝑗)) ↔ (𝐻𝑗) = ((𝐹𝑗) + 𝑥)))
9594rexbidva 3173 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ) → (∃𝑥 ∈ (⊥‘𝐴)𝑥 = ((𝐻𝑗) − (𝐹𝑗)) ↔ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥)))
9683, 95mpbird 256 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → ∃𝑥 ∈ (⊥‘𝐴)𝑥 = ((𝐻𝑗) − (𝐹𝑗)))
97 risset 3221 . . . . . . . . . . . . . . . . . . . 20 (((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴) ↔ ∃𝑥 ∈ (⊥‘𝐴)𝑥 = ((𝐻𝑗) − (𝐹𝑗)))
9896, 97sylibr 233 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → ((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴))
9998adantrr 715 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴))
100 eleq1w 2820 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑘 → (𝑗 ∈ ℕ ↔ 𝑘 ∈ ℕ))
101100anbi2d 629 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑘 → ((𝜑𝑗 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ)))
102 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 𝑘 → (𝐻𝑗) = (𝐻𝑘))
103 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
104102, 103oveq12d 7375 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑘 → ((𝐻𝑗) − (𝐹𝑗)) = ((𝐻𝑘) − (𝐹𝑘)))
105104eleq1d 2822 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑘 → (((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴) ↔ ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴)))
106101, 105imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑘 → (((𝜑𝑗 ∈ ℕ) → ((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴)) ↔ ((𝜑𝑘 ∈ ℕ) → ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴))))
107106, 98chvarvv 2002 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴))
108107adantrl 714 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴))
109 shsubcl 30162 . . . . . . . . . . . . . . . . . 18 (((⊥‘𝐴) ∈ S ∧ ((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴) ∧ ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴)) → (((𝐻𝑗) − (𝐹𝑗)) − ((𝐻𝑘) − (𝐹𝑘))) ∈ (⊥‘𝐴))
11063, 99, 108, 109syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐻𝑗) − (𝐹𝑗)) − ((𝐻𝑘) − (𝐹𝑘))) ∈ (⊥‘𝐴))
11161, 110eqeltrd 2838 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ (⊥‘𝐴))
112 shocorth 30234 . . . . . . . . . . . . . . . . 17 (𝐴S → ((((𝐹𝑗) − (𝐹𝑘)) ∈ 𝐴 ∧ (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ (⊥‘𝐴)) → (((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0))
11356, 112syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((((𝐹𝑗) − (𝐹𝑘)) ∈ 𝐴 ∧ (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ (⊥‘𝐴)) → (((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0))
11459, 111, 113mp2and 697 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0)
115 normpyth 30087 . . . . . . . . . . . . . . . 16 ((((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ ∧ (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ ℋ) → ((((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0 → ((norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))))↑2) = (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2))))
11644, 46, 115syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0 → ((norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))))↑2) = (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2))))
117114, 116mpd 15 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))))↑2) = (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2)))
118 hvpncan3 29984 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ ∧ ((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ) → (((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = ((𝐻𝑗) − (𝐻𝑘)))
11944, 34, 118syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = ((𝐻𝑗) − (𝐻𝑘)))
120119fveq2d 6846 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))) = (norm‘((𝐻𝑗) − (𝐻𝑘))))
121120oveq1d 7372 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))))↑2) = ((norm‘((𝐻𝑗) − (𝐻𝑘)))↑2))
122117, 121eqtr3d 2778 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2)) = ((norm‘((𝐻𝑗) − (𝐻𝑘)))↑2))
12355, 122breqtrd 5131 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ≤ ((norm‘((𝐻𝑗) − (𝐻𝑘)))↑2))
124 normcl 30067 . . . . . . . . . . . . . 14 (((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ → (norm‘((𝐻𝑗) − (𝐻𝑘))) ∈ ℝ)
12534, 124syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐻𝑗) − (𝐻𝑘))) ∈ ℝ)
126 normge0 30068 . . . . . . . . . . . . . 14 (((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ → 0 ≤ (norm‘((𝐹𝑗) − (𝐹𝑘))))
12744, 126syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 0 ≤ (norm‘((𝐹𝑗) − (𝐹𝑘))))
128 normge0 30068 . . . . . . . . . . . . . 14 (((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ → 0 ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))))
12934, 128syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 0 ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))))
13051, 125, 127, 129le2sqd 14160 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))) ↔ ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ≤ ((norm‘((𝐻𝑗) − (𝐻𝑘)))↑2)))
131123, 130mpbird 256 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))))
132131adantlr 713 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))))
13351adantlr 713 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐹𝑗) − (𝐹𝑘))) ∈ ℝ)
134125adantlr 713 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐻𝑗) − (𝐻𝑘))) ∈ ℝ)
135 rpre 12923 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
136135ad2antlr 725 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝑥 ∈ ℝ)
137 lelttr 11245 . . . . . . . . . . 11 (((norm‘((𝐹𝑗) − (𝐹𝑘))) ∈ ℝ ∧ (norm‘((𝐻𝑗) − (𝐻𝑘))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))) ∧ (norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥) → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
138133, 134, 136, 137syl3anc 1371 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))) ∧ (norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥) → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
139132, 138mpand 693 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
140139anassrs 468 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
14116, 140syldan 591 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
142141ralimdva 3164 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
143142reximdva 3165 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
14414, 143mpd 15 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥)
145144ralrimiva 3143 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥)
146 hcau 30126 . . 3 (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
14710, 145, 146sylanbrc 583 . 2 (𝜑𝐹 ∈ Cauchy)
148 ax-hcompl 30144 . 2 (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
149 hlimf 30179 . . . . 5 𝑣 :dom ⇝𝑣 ⟶ ℋ
150 ffn 6668 . . . . 5 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → ⇝𝑣 Fn dom ⇝𝑣 )
151149, 150ax-mp 5 . . . 4 𝑣 Fn dom ⇝𝑣
152 fnbr 6610 . . . 4 (( ⇝𝑣 Fn dom ⇝𝑣𝐹𝑣 𝑥) → 𝐹 ∈ dom ⇝𝑣 )
153151, 152mpan 688 . . 3 (𝐹𝑣 𝑥𝐹 ∈ dom ⇝𝑣 )
154153rexlimivw 3148 . 2 (∃𝑥 ∈ ℋ 𝐹𝑣 𝑥𝐹 ∈ dom ⇝𝑣 )
155147, 148, 1543syl 18 1 (𝜑𝐹 ∈ dom ⇝𝑣 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  wss 3910   class class class wbr 5105  cmpt 5188  dom cdm 5633   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051   + caddc 11054   < clt 11189  cle 11190  cn 12153  2c2 12208  cuz 12763  +crp 12915  cexp 13967  chba 29861   + cva 29862   ·ih csp 29864  normcno 29865   cmv 29867  Cauchyccauold 29868  𝑣 chli 29869   S csh 29870   C cch 29871  cort 29872   + cph 29873  projcpjh 29879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131  ax-hilex 29941  ax-hfvadd 29942  ax-hvcom 29943  ax-hvass 29944  ax-hv0cl 29945  ax-hvaddid 29946  ax-hfvmul 29947  ax-hvmulid 29948  ax-hvmulass 29949  ax-hvdistr1 29950  ax-hvdistr2 29951  ax-hvmul0 29952  ax-hfi 30021  ax-his1 30024  ax-his2 30025  ax-his3 30026  ax-his4 30027  ax-hcompl 30144
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13271  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-lm 22580  df-haus 22666  df-cau 24620  df-grpo 29435  df-gid 29436  df-ginv 29437  df-gdiv 29438  df-ablo 29487  df-vc 29501  df-nv 29534  df-va 29537  df-ba 29538  df-sm 29539  df-0v 29540  df-vs 29541  df-nmcv 29542  df-ims 29543  df-hnorm 29910  df-hvsub 29913  df-hlim 29914  df-hcau 29915  df-sh 30149  df-ch 30163  df-oc 30194  df-ch0 30195  df-shs 30250  df-pjh 30337
This theorem is referenced by:  chscllem4  30582
  Copyright terms: Public domain W3C validator