HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem2 Structured version   Visualization version   GIF version

Theorem chscllem2 29573
Description: Lemma for chscl 29576. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1 (𝜑𝐴C )
chscl.2 (𝜑𝐵C )
chscl.3 (𝜑𝐵 ⊆ (⊥‘𝐴))
chscl.4 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
chscl.5 (𝜑𝐻𝑣 𝑢)
chscl.6 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
Assertion
Ref Expression
chscllem2 (𝜑𝐹 ∈ dom ⇝𝑣 )
Distinct variable groups:   𝑢,𝑛,𝐴   𝜑,𝑛   𝐵,𝑛,𝑢   𝑛,𝐻,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐹(𝑢,𝑛)

Proof of Theorem chscllem2
Dummy variables 𝑗 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chscl.1 . . . . 5 (𝜑𝐴C )
2 chscl.2 . . . . 5 (𝜑𝐵C )
3 chscl.3 . . . . 5 (𝜑𝐵 ⊆ (⊥‘𝐴))
4 chscl.4 . . . . 5 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
5 chscl.5 . . . . 5 (𝜑𝐻𝑣 𝑢)
6 chscl.6 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
71, 2, 3, 4, 5, 6chscllem1 29572 . . . 4 (𝜑𝐹:ℕ⟶𝐴)
8 chss 29164 . . . . 5 (𝐴C𝐴 ⊆ ℋ)
91, 8syl 17 . . . 4 (𝜑𝐴 ⊆ ℋ)
107, 9fssd 6522 . . 3 (𝜑𝐹:ℕ⟶ ℋ)
11 hlimcaui 29171 . . . . . . 7 (𝐻𝑣 𝑢𝐻 ∈ Cauchy)
125, 11syl 17 . . . . . 6 (𝜑𝐻 ∈ Cauchy)
13 hcaucvg 29121 . . . . . 6 ((𝐻 ∈ Cauchy ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥)
1412, 13sylan 583 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥)
15 eluznn 12400 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
1615adantll 714 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
17 chsh 29159 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴C𝐴S )
181, 17syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴S )
19 chsh 29159 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵C𝐵S )
202, 19syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵S )
21 shscl 29253 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴S𝐵S ) → (𝐴 + 𝐵) ∈ S )
2218, 20, 21syl2anc 587 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 + 𝐵) ∈ S )
23 shss 29145 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 + 𝐵) ∈ S → (𝐴 + 𝐵) ⊆ ℋ)
2422, 23syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴 + 𝐵) ⊆ ℋ)
2524adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐴 + 𝐵) ⊆ ℋ)
264ffvelrnda 6861 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐻𝑗) ∈ (𝐴 + 𝐵))
2725, 26sseldd 3878 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → (𝐻𝑗) ∈ ℋ)
2827adantrr 717 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐻𝑗) ∈ ℋ)
294, 24fssd 6522 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐻:ℕ⟶ ℋ)
3029adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝐻:ℕ⟶ ℋ)
31 simprr 773 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℕ)
3230, 31ffvelrnd 6862 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐻𝑘) ∈ ℋ)
33 hvsubcl 28952 . . . . . . . . . . . . . . . . . 18 (((𝐻𝑗) ∈ ℋ ∧ (𝐻𝑘) ∈ ℋ) → ((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ)
3428, 32, 33syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ)
359adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → 𝐴 ⊆ ℋ)
367ffvelrnda 6861 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ 𝐴)
3735, 36sseldd 3878 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℋ)
3837adantrr 717 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐹𝑗) ∈ ℋ)
399adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝐴 ⊆ ℋ)
407adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝐹:ℕ⟶𝐴)
4140, 31ffvelrnd 6862 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐹𝑘) ∈ 𝐴)
4239, 41sseldd 3878 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐹𝑘) ∈ ℋ)
43 hvsubcl 28952 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑗) ∈ ℋ ∧ (𝐹𝑘) ∈ ℋ) → ((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ)
4438, 42, 43syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ)
45 hvsubcl 28952 . . . . . . . . . . . . . . . . 17 ((((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ ∧ ((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ ℋ)
4634, 44, 45syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ ℋ)
47 normcl 29060 . . . . . . . . . . . . . . . 16 ((((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ ℋ → (norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) ∈ ℝ)
4846, 47syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) ∈ ℝ)
4948sqge0d 13704 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 0 ≤ ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2))
50 normcl 29060 . . . . . . . . . . . . . . . . 17 (((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ → (norm‘((𝐹𝑗) − (𝐹𝑘))) ∈ ℝ)
5144, 50syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐹𝑗) − (𝐹𝑘))) ∈ ℝ)
5251resqcld 13703 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ∈ ℝ)
5348resqcld 13703 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2) ∈ ℝ)
5452, 53addge01d 11306 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (0 ≤ ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2) ↔ ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ≤ (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2))))
5549, 54mpbid 235 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ≤ (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2)))
5618adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝐴S )
5736adantrr 717 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐹𝑗) ∈ 𝐴)
58 shsubcl 29155 . . . . . . . . . . . . . . . . 17 ((𝐴S ∧ (𝐹𝑗) ∈ 𝐴 ∧ (𝐹𝑘) ∈ 𝐴) → ((𝐹𝑗) − (𝐹𝑘)) ∈ 𝐴)
5956, 57, 41, 58syl3anc 1372 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐹𝑗) − (𝐹𝑘)) ∈ 𝐴)
60 hvsubsub4 28995 . . . . . . . . . . . . . . . . . 18 ((((𝐻𝑗) ∈ ℋ ∧ (𝐻𝑘) ∈ ℋ) ∧ ((𝐹𝑗) ∈ ℋ ∧ (𝐹𝑘) ∈ ℋ)) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) = (((𝐻𝑗) − (𝐹𝑗)) − ((𝐻𝑘) − (𝐹𝑘))))
6128, 32, 38, 42, 60syl22anc 838 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) = (((𝐻𝑗) − (𝐹𝑗)) − ((𝐻𝑘) − (𝐹𝑘))))
62 ocsh 29218 . . . . . . . . . . . . . . . . . . 19 (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ S )
6339, 62syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (⊥‘𝐴) ∈ S )
64 2fveq3 6679 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑗 → ((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑗)))
65 fvex 6687 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((proj𝐴)‘(𝐻𝑗)) ∈ V
6664, 6, 65fvmpt 6775 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 ∈ ℕ → (𝐹𝑗) = ((proj𝐴)‘(𝐻𝑗)))
6766eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → ((proj𝐴)‘(𝐻𝑗)) = (𝐹𝑗))
6867adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ) → ((proj𝐴)‘(𝐻𝑗)) = (𝐹𝑗))
691adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → 𝐴C )
709, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (⊥‘𝐴) ∈ S )
71 shless 29294 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐵S ∧ (⊥‘𝐴) ∈ S𝐴S ) ∧ 𝐵 ⊆ (⊥‘𝐴)) → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
7220, 70, 18, 3, 71syl31anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
73 shscom 29254 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
7418, 20, 73syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
75 shscom 29254 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴S ∧ (⊥‘𝐴) ∈ S ) → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
7618, 70, 75syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
7772, 74, 763sstr4d 3924 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴 + 𝐵) ⊆ (𝐴 + (⊥‘𝐴)))
7877adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ ℕ) → (𝐴 + 𝐵) ⊆ (𝐴 + (⊥‘𝐴)))
7978, 26sseldd 3878 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → (𝐻𝑗) ∈ (𝐴 + (⊥‘𝐴)))
80 pjpreeq 29333 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴C ∧ (𝐻𝑗) ∈ (𝐴 + (⊥‘𝐴))) → (((proj𝐴)‘(𝐻𝑗)) = (𝐹𝑗) ↔ ((𝐹𝑗) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥))))
8169, 79, 80syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ) → (((proj𝐴)‘(𝐻𝑗)) = (𝐹𝑗) ↔ ((𝐹𝑗) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥))))
8268, 81mpbid 235 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ ℕ) → ((𝐹𝑗) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥)))
8382simprd 499 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ) → ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥))
8427adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → (𝐻𝑗) ∈ ℋ)
8537adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → (𝐹𝑗) ∈ ℋ)
86 shss 29145 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⊥‘𝐴) ∈ S → (⊥‘𝐴) ⊆ ℋ)
8770, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (⊥‘𝐴) ⊆ ℋ)
8887adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ ℕ) → (⊥‘𝐴) ⊆ ℋ)
8988sselda 3877 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → 𝑥 ∈ ℋ)
90 hvsubadd 29012 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐻𝑗) ∈ ℋ ∧ (𝐹𝑗) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐻𝑗) − (𝐹𝑗)) = 𝑥 ↔ ((𝐹𝑗) + 𝑥) = (𝐻𝑗)))
9184, 85, 89, 90syl3anc 1372 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → (((𝐻𝑗) − (𝐹𝑗)) = 𝑥 ↔ ((𝐹𝑗) + 𝑥) = (𝐻𝑗)))
92 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ((𝐻𝑗) − (𝐹𝑗)) ↔ ((𝐻𝑗) − (𝐹𝑗)) = 𝑥)
93 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐻𝑗) = ((𝐹𝑗) + 𝑥) ↔ ((𝐹𝑗) + 𝑥) = (𝐻𝑗))
9491, 92, 933bitr4g 317 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → (𝑥 = ((𝐻𝑗) − (𝐹𝑗)) ↔ (𝐻𝑗) = ((𝐹𝑗) + 𝑥)))
9594rexbidva 3206 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ) → (∃𝑥 ∈ (⊥‘𝐴)𝑥 = ((𝐻𝑗) − (𝐹𝑗)) ↔ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥)))
9683, 95mpbird 260 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → ∃𝑥 ∈ (⊥‘𝐴)𝑥 = ((𝐻𝑗) − (𝐹𝑗)))
97 risset 3177 . . . . . . . . . . . . . . . . . . . 20 (((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴) ↔ ∃𝑥 ∈ (⊥‘𝐴)𝑥 = ((𝐻𝑗) − (𝐹𝑗)))
9896, 97sylibr 237 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → ((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴))
9998adantrr 717 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴))
100 eleq1w 2815 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑘 → (𝑗 ∈ ℕ ↔ 𝑘 ∈ ℕ))
101100anbi2d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑘 → ((𝜑𝑗 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ)))
102 fveq2 6674 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 𝑘 → (𝐻𝑗) = (𝐻𝑘))
103 fveq2 6674 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
104102, 103oveq12d 7188 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑘 → ((𝐻𝑗) − (𝐹𝑗)) = ((𝐻𝑘) − (𝐹𝑘)))
105104eleq1d 2817 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑘 → (((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴) ↔ ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴)))
106101, 105imbi12d 348 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑘 → (((𝜑𝑗 ∈ ℕ) → ((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴)) ↔ ((𝜑𝑘 ∈ ℕ) → ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴))))
107106, 98chvarvv 2010 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴))
108107adantrl 716 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴))
109 shsubcl 29155 . . . . . . . . . . . . . . . . . 18 (((⊥‘𝐴) ∈ S ∧ ((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴) ∧ ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴)) → (((𝐻𝑗) − (𝐹𝑗)) − ((𝐻𝑘) − (𝐹𝑘))) ∈ (⊥‘𝐴))
11063, 99, 108, 109syl3anc 1372 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐻𝑗) − (𝐹𝑗)) − ((𝐻𝑘) − (𝐹𝑘))) ∈ (⊥‘𝐴))
11161, 110eqeltrd 2833 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ (⊥‘𝐴))
112 shocorth 29227 . . . . . . . . . . . . . . . . 17 (𝐴S → ((((𝐹𝑗) − (𝐹𝑘)) ∈ 𝐴 ∧ (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ (⊥‘𝐴)) → (((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0))
11356, 112syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((((𝐹𝑗) − (𝐹𝑘)) ∈ 𝐴 ∧ (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ (⊥‘𝐴)) → (((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0))
11459, 111, 113mp2and 699 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0)
115 normpyth 29080 . . . . . . . . . . . . . . . 16 ((((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ ∧ (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ ℋ) → ((((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0 → ((norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))))↑2) = (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2))))
11644, 46, 115syl2anc 587 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0 → ((norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))))↑2) = (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2))))
117114, 116mpd 15 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))))↑2) = (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2)))
118 hvpncan3 28977 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ ∧ ((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ) → (((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = ((𝐻𝑗) − (𝐻𝑘)))
11944, 34, 118syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = ((𝐻𝑗) − (𝐻𝑘)))
120119fveq2d 6678 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))) = (norm‘((𝐻𝑗) − (𝐻𝑘))))
121120oveq1d 7185 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))))↑2) = ((norm‘((𝐻𝑗) − (𝐻𝑘)))↑2))
122117, 121eqtr3d 2775 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2)) = ((norm‘((𝐻𝑗) − (𝐻𝑘)))↑2))
12355, 122breqtrd 5056 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ≤ ((norm‘((𝐻𝑗) − (𝐻𝑘)))↑2))
124 normcl 29060 . . . . . . . . . . . . . 14 (((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ → (norm‘((𝐻𝑗) − (𝐻𝑘))) ∈ ℝ)
12534, 124syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐻𝑗) − (𝐻𝑘))) ∈ ℝ)
126 normge0 29061 . . . . . . . . . . . . . 14 (((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ → 0 ≤ (norm‘((𝐹𝑗) − (𝐹𝑘))))
12744, 126syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 0 ≤ (norm‘((𝐹𝑗) − (𝐹𝑘))))
128 normge0 29061 . . . . . . . . . . . . . 14 (((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ → 0 ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))))
12934, 128syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 0 ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))))
13051, 125, 127, 129le2sqd 13712 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))) ↔ ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ≤ ((norm‘((𝐻𝑗) − (𝐻𝑘)))↑2)))
131123, 130mpbird 260 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))))
132131adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))))
13351adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐹𝑗) − (𝐹𝑘))) ∈ ℝ)
134125adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐻𝑗) − (𝐻𝑘))) ∈ ℝ)
135 rpre 12480 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
136135ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝑥 ∈ ℝ)
137 lelttr 10809 . . . . . . . . . . 11 (((norm‘((𝐹𝑗) − (𝐹𝑘))) ∈ ℝ ∧ (norm‘((𝐻𝑗) − (𝐻𝑘))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))) ∧ (norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥) → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
138133, 134, 136, 137syl3anc 1372 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))) ∧ (norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥) → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
139132, 138mpand 695 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
140139anassrs 471 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
14116, 140syldan 594 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
142141ralimdva 3091 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
143142reximdva 3184 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
14414, 143mpd 15 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥)
145144ralrimiva 3096 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥)
146 hcau 29119 . . 3 (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
14710, 145, 146sylanbrc 586 . 2 (𝜑𝐹 ∈ Cauchy)
148 ax-hcompl 29137 . 2 (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
149 hlimf 29172 . . . . 5 𝑣 :dom ⇝𝑣 ⟶ ℋ
150 ffn 6504 . . . . 5 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → ⇝𝑣 Fn dom ⇝𝑣 )
151149, 150ax-mp 5 . . . 4 𝑣 Fn dom ⇝𝑣
152 fnbr 6445 . . . 4 (( ⇝𝑣 Fn dom ⇝𝑣𝐹𝑣 𝑥) → 𝐹 ∈ dom ⇝𝑣 )
153151, 152mpan 690 . . 3 (𝐹𝑣 𝑥𝐹 ∈ dom ⇝𝑣 )
154153rexlimivw 3192 . 2 (∃𝑥 ∈ ℋ 𝐹𝑣 𝑥𝐹 ∈ dom ⇝𝑣 )
155147, 148, 1543syl 18 1 (𝜑𝐹 ∈ dom ⇝𝑣 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wral 3053  wrex 3054  wss 3843   class class class wbr 5030  cmpt 5110  dom cdm 5525   Fn wfn 6334  wf 6335  cfv 6339  (class class class)co 7170  cr 10614  0cc0 10615   + caddc 10618   < clt 10753  cle 10754  cn 11716  2c2 11771  cuz 12324  +crp 12472  cexp 13521  chba 28854   + cva 28855   ·ih csp 28857  normcno 28858   cmv 28860  Cauchyccauold 28861  𝑣 chli 28862   S csh 28863   C cch 28864  cort 28865   + cph 28866  projcpjh 28872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693  ax-addf 10694  ax-mulf 10695  ax-hilex 28934  ax-hfvadd 28935  ax-hvcom 28936  ax-hvass 28937  ax-hv0cl 28938  ax-hvaddid 28939  ax-hfvmul 28940  ax-hvmulid 28941  ax-hvmulass 28942  ax-hvdistr1 28943  ax-hvdistr2 28944  ax-hvmul0 28945  ax-hfi 29014  ax-his1 29017  ax-his2 29018  ax-his3 29019  ax-his4 29020  ax-hcompl 29137
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-map 8439  df-pm 8440  df-en 8556  df-dom 8557  df-sdom 8558  df-sup 8979  df-inf 8980  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-n0 11977  df-z 12063  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-icc 12828  df-seq 13461  df-exp 13522  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-topgen 16820  df-psmet 20209  df-xmet 20210  df-met 20211  df-bl 20212  df-mopn 20213  df-top 21645  df-topon 21662  df-bases 21697  df-lm 21980  df-haus 22066  df-cau 24008  df-grpo 28428  df-gid 28429  df-ginv 28430  df-gdiv 28431  df-ablo 28480  df-vc 28494  df-nv 28527  df-va 28530  df-ba 28531  df-sm 28532  df-0v 28533  df-vs 28534  df-nmcv 28535  df-ims 28536  df-hnorm 28903  df-hvsub 28906  df-hlim 28907  df-hcau 28908  df-sh 29142  df-ch 29156  df-oc 29187  df-ch0 29188  df-shs 29243  df-pjh 29330
This theorem is referenced by:  chscllem4  29575
  Copyright terms: Public domain W3C validator