HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem2 Structured version   Visualization version   GIF version

Theorem chscllem2 31639
Description: Lemma for chscl 31642. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1 (𝜑𝐴C )
chscl.2 (𝜑𝐵C )
chscl.3 (𝜑𝐵 ⊆ (⊥‘𝐴))
chscl.4 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
chscl.5 (𝜑𝐻𝑣 𝑢)
chscl.6 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
Assertion
Ref Expression
chscllem2 (𝜑𝐹 ∈ dom ⇝𝑣 )
Distinct variable groups:   𝑢,𝑛,𝐴   𝜑,𝑛   𝐵,𝑛,𝑢   𝑛,𝐻,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐹(𝑢,𝑛)

Proof of Theorem chscllem2
Dummy variables 𝑗 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chscl.1 . . . . 5 (𝜑𝐴C )
2 chscl.2 . . . . 5 (𝜑𝐵C )
3 chscl.3 . . . . 5 (𝜑𝐵 ⊆ (⊥‘𝐴))
4 chscl.4 . . . . 5 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
5 chscl.5 . . . . 5 (𝜑𝐻𝑣 𝑢)
6 chscl.6 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
71, 2, 3, 4, 5, 6chscllem1 31638 . . . 4 (𝜑𝐹:ℕ⟶𝐴)
8 chss 31230 . . . . 5 (𝐴C𝐴 ⊆ ℋ)
91, 8syl 17 . . . 4 (𝜑𝐴 ⊆ ℋ)
107, 9fssd 6676 . . 3 (𝜑𝐹:ℕ⟶ ℋ)
11 hlimcaui 31237 . . . . . . 7 (𝐻𝑣 𝑢𝐻 ∈ Cauchy)
125, 11syl 17 . . . . . 6 (𝜑𝐻 ∈ Cauchy)
13 hcaucvg 31187 . . . . . 6 ((𝐻 ∈ Cauchy ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥)
1412, 13sylan 580 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥)
15 eluznn 12822 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
1615adantll 714 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
17 chsh 31225 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴C𝐴S )
181, 17syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴S )
19 chsh 31225 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵C𝐵S )
202, 19syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵S )
21 shscl 31319 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴S𝐵S ) → (𝐴 + 𝐵) ∈ S )
2218, 20, 21syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 + 𝐵) ∈ S )
23 shss 31211 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 + 𝐵) ∈ S → (𝐴 + 𝐵) ⊆ ℋ)
2422, 23syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴 + 𝐵) ⊆ ℋ)
2524adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐴 + 𝐵) ⊆ ℋ)
264ffvelcdmda 7026 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐻𝑗) ∈ (𝐴 + 𝐵))
2725, 26sseldd 3931 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → (𝐻𝑗) ∈ ℋ)
2827adantrr 717 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐻𝑗) ∈ ℋ)
294, 24fssd 6676 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐻:ℕ⟶ ℋ)
3029adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝐻:ℕ⟶ ℋ)
31 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℕ)
3230, 31ffvelcdmd 7027 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐻𝑘) ∈ ℋ)
33 hvsubcl 31018 . . . . . . . . . . . . . . . . . 18 (((𝐻𝑗) ∈ ℋ ∧ (𝐻𝑘) ∈ ℋ) → ((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ)
3428, 32, 33syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ)
359adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → 𝐴 ⊆ ℋ)
367ffvelcdmda 7026 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ 𝐴)
3735, 36sseldd 3931 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℋ)
3837adantrr 717 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐹𝑗) ∈ ℋ)
399adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝐴 ⊆ ℋ)
407adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝐹:ℕ⟶𝐴)
4140, 31ffvelcdmd 7027 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐹𝑘) ∈ 𝐴)
4239, 41sseldd 3931 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐹𝑘) ∈ ℋ)
43 hvsubcl 31018 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑗) ∈ ℋ ∧ (𝐹𝑘) ∈ ℋ) → ((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ)
4438, 42, 43syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ)
45 hvsubcl 31018 . . . . . . . . . . . . . . . . 17 ((((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ ∧ ((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ ℋ)
4634, 44, 45syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ ℋ)
47 normcl 31126 . . . . . . . . . . . . . . . 16 ((((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ ℋ → (norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) ∈ ℝ)
4846, 47syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) ∈ ℝ)
4948sqge0d 14051 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 0 ≤ ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2))
50 normcl 31126 . . . . . . . . . . . . . . . . 17 (((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ → (norm‘((𝐹𝑗) − (𝐹𝑘))) ∈ ℝ)
5144, 50syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐹𝑗) − (𝐹𝑘))) ∈ ℝ)
5251resqcld 14039 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ∈ ℝ)
5348resqcld 14039 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2) ∈ ℝ)
5452, 53addge01d 11716 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (0 ≤ ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2) ↔ ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ≤ (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2))))
5549, 54mpbid 232 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ≤ (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2)))
5618adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝐴S )
5736adantrr 717 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐹𝑗) ∈ 𝐴)
58 shsubcl 31221 . . . . . . . . . . . . . . . . 17 ((𝐴S ∧ (𝐹𝑗) ∈ 𝐴 ∧ (𝐹𝑘) ∈ 𝐴) → ((𝐹𝑗) − (𝐹𝑘)) ∈ 𝐴)
5956, 57, 41, 58syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐹𝑗) − (𝐹𝑘)) ∈ 𝐴)
60 hvsubsub4 31061 . . . . . . . . . . . . . . . . . 18 ((((𝐻𝑗) ∈ ℋ ∧ (𝐻𝑘) ∈ ℋ) ∧ ((𝐹𝑗) ∈ ℋ ∧ (𝐹𝑘) ∈ ℋ)) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) = (((𝐻𝑗) − (𝐹𝑗)) − ((𝐻𝑘) − (𝐹𝑘))))
6128, 32, 38, 42, 60syl22anc 838 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) = (((𝐻𝑗) − (𝐹𝑗)) − ((𝐻𝑘) − (𝐹𝑘))))
62 ocsh 31284 . . . . . . . . . . . . . . . . . . 19 (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ S )
6339, 62syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (⊥‘𝐴) ∈ S )
64 2fveq3 6836 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑗 → ((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑗)))
65 fvex 6844 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((proj𝐴)‘(𝐻𝑗)) ∈ V
6664, 6, 65fvmpt 6938 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 ∈ ℕ → (𝐹𝑗) = ((proj𝐴)‘(𝐻𝑗)))
6766eqcomd 2739 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → ((proj𝐴)‘(𝐻𝑗)) = (𝐹𝑗))
6867adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ) → ((proj𝐴)‘(𝐻𝑗)) = (𝐹𝑗))
691adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → 𝐴C )
709, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (⊥‘𝐴) ∈ S )
71 shless 31360 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐵S ∧ (⊥‘𝐴) ∈ S𝐴S ) ∧ 𝐵 ⊆ (⊥‘𝐴)) → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
7220, 70, 18, 3, 71syl31anc 1375 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
73 shscom 31320 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
7418, 20, 73syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
75 shscom 31320 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴S ∧ (⊥‘𝐴) ∈ S ) → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
7618, 70, 75syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
7772, 74, 763sstr4d 3986 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴 + 𝐵) ⊆ (𝐴 + (⊥‘𝐴)))
7877adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ ℕ) → (𝐴 + 𝐵) ⊆ (𝐴 + (⊥‘𝐴)))
7978, 26sseldd 3931 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → (𝐻𝑗) ∈ (𝐴 + (⊥‘𝐴)))
80 pjpreeq 31399 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴C ∧ (𝐻𝑗) ∈ (𝐴 + (⊥‘𝐴))) → (((proj𝐴)‘(𝐻𝑗)) = (𝐹𝑗) ↔ ((𝐹𝑗) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥))))
8169, 79, 80syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ) → (((proj𝐴)‘(𝐻𝑗)) = (𝐹𝑗) ↔ ((𝐹𝑗) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥))))
8268, 81mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ ℕ) → ((𝐹𝑗) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥)))
8382simprd 495 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ) → ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥))
8427adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → (𝐻𝑗) ∈ ℋ)
8537adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → (𝐹𝑗) ∈ ℋ)
86 shss 31211 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⊥‘𝐴) ∈ S → (⊥‘𝐴) ⊆ ℋ)
8770, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (⊥‘𝐴) ⊆ ℋ)
8887adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ ℕ) → (⊥‘𝐴) ⊆ ℋ)
8988sselda 3930 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → 𝑥 ∈ ℋ)
90 hvsubadd 31078 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐻𝑗) ∈ ℋ ∧ (𝐹𝑗) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐻𝑗) − (𝐹𝑗)) = 𝑥 ↔ ((𝐹𝑗) + 𝑥) = (𝐻𝑗)))
9184, 85, 89, 90syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → (((𝐻𝑗) − (𝐹𝑗)) = 𝑥 ↔ ((𝐹𝑗) + 𝑥) = (𝐻𝑗)))
92 eqcom 2740 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ((𝐻𝑗) − (𝐹𝑗)) ↔ ((𝐻𝑗) − (𝐹𝑗)) = 𝑥)
93 eqcom 2740 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐻𝑗) = ((𝐹𝑗) + 𝑥) ↔ ((𝐹𝑗) + 𝑥) = (𝐻𝑗))
9491, 92, 933bitr4g 314 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → (𝑥 = ((𝐻𝑗) − (𝐹𝑗)) ↔ (𝐻𝑗) = ((𝐹𝑗) + 𝑥)))
9594rexbidva 3155 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ) → (∃𝑥 ∈ (⊥‘𝐴)𝑥 = ((𝐻𝑗) − (𝐹𝑗)) ↔ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥)))
9683, 95mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → ∃𝑥 ∈ (⊥‘𝐴)𝑥 = ((𝐻𝑗) − (𝐹𝑗)))
97 risset 3208 . . . . . . . . . . . . . . . . . . . 20 (((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴) ↔ ∃𝑥 ∈ (⊥‘𝐴)𝑥 = ((𝐻𝑗) − (𝐹𝑗)))
9896, 97sylibr 234 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → ((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴))
9998adantrr 717 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴))
100 eleq1w 2816 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑘 → (𝑗 ∈ ℕ ↔ 𝑘 ∈ ℕ))
101100anbi2d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑘 → ((𝜑𝑗 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ)))
102 fveq2 6831 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 𝑘 → (𝐻𝑗) = (𝐻𝑘))
103 fveq2 6831 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
104102, 103oveq12d 7373 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑘 → ((𝐻𝑗) − (𝐹𝑗)) = ((𝐻𝑘) − (𝐹𝑘)))
105104eleq1d 2818 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑘 → (((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴) ↔ ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴)))
106101, 105imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑘 → (((𝜑𝑗 ∈ ℕ) → ((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴)) ↔ ((𝜑𝑘 ∈ ℕ) → ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴))))
107106, 98chvarvv 1990 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴))
108107adantrl 716 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴))
109 shsubcl 31221 . . . . . . . . . . . . . . . . . 18 (((⊥‘𝐴) ∈ S ∧ ((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴) ∧ ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴)) → (((𝐻𝑗) − (𝐹𝑗)) − ((𝐻𝑘) − (𝐹𝑘))) ∈ (⊥‘𝐴))
11063, 99, 108, 109syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐻𝑗) − (𝐹𝑗)) − ((𝐻𝑘) − (𝐹𝑘))) ∈ (⊥‘𝐴))
11161, 110eqeltrd 2833 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ (⊥‘𝐴))
112 shocorth 31293 . . . . . . . . . . . . . . . . 17 (𝐴S → ((((𝐹𝑗) − (𝐹𝑘)) ∈ 𝐴 ∧ (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ (⊥‘𝐴)) → (((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0))
11356, 112syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((((𝐹𝑗) − (𝐹𝑘)) ∈ 𝐴 ∧ (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ (⊥‘𝐴)) → (((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0))
11459, 111, 113mp2and 699 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0)
115 normpyth 31146 . . . . . . . . . . . . . . . 16 ((((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ ∧ (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ ℋ) → ((((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0 → ((norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))))↑2) = (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2))))
11644, 46, 115syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0 → ((norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))))↑2) = (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2))))
117114, 116mpd 15 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))))↑2) = (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2)))
118 hvpncan3 31043 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ ∧ ((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ) → (((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = ((𝐻𝑗) − (𝐻𝑘)))
11944, 34, 118syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = ((𝐻𝑗) − (𝐻𝑘)))
120119fveq2d 6835 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))) = (norm‘((𝐻𝑗) − (𝐻𝑘))))
121120oveq1d 7370 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))))↑2) = ((norm‘((𝐻𝑗) − (𝐻𝑘)))↑2))
122117, 121eqtr3d 2770 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2)) = ((norm‘((𝐻𝑗) − (𝐻𝑘)))↑2))
12355, 122breqtrd 5121 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ≤ ((norm‘((𝐻𝑗) − (𝐻𝑘)))↑2))
124 normcl 31126 . . . . . . . . . . . . . 14 (((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ → (norm‘((𝐻𝑗) − (𝐻𝑘))) ∈ ℝ)
12534, 124syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐻𝑗) − (𝐻𝑘))) ∈ ℝ)
126 normge0 31127 . . . . . . . . . . . . . 14 (((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ → 0 ≤ (norm‘((𝐹𝑗) − (𝐹𝑘))))
12744, 126syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 0 ≤ (norm‘((𝐹𝑗) − (𝐹𝑘))))
128 normge0 31127 . . . . . . . . . . . . . 14 (((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ → 0 ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))))
12934, 128syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 0 ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))))
13051, 125, 127, 129le2sqd 14171 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))) ↔ ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ≤ ((norm‘((𝐻𝑗) − (𝐻𝑘)))↑2)))
131123, 130mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))))
132131adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))))
13351adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐹𝑗) − (𝐹𝑘))) ∈ ℝ)
134125adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐻𝑗) − (𝐻𝑘))) ∈ ℝ)
135 rpre 12905 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
136135ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝑥 ∈ ℝ)
137 lelttr 11214 . . . . . . . . . . 11 (((norm‘((𝐹𝑗) − (𝐹𝑘))) ∈ ℝ ∧ (norm‘((𝐻𝑗) − (𝐻𝑘))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))) ∧ (norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥) → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
138133, 134, 136, 137syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))) ∧ (norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥) → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
139132, 138mpand 695 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
140139anassrs 467 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
14116, 140syldan 591 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
142141ralimdva 3145 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
143142reximdva 3146 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
14414, 143mpd 15 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥)
145144ralrimiva 3125 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥)
146 hcau 31185 . . 3 (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
14710, 145, 146sylanbrc 583 . 2 (𝜑𝐹 ∈ Cauchy)
148 ax-hcompl 31203 . 2 (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
149 hlimf 31238 . . . . 5 𝑣 :dom ⇝𝑣 ⟶ ℋ
150 ffn 6659 . . . . 5 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → ⇝𝑣 Fn dom ⇝𝑣 )
151149, 150ax-mp 5 . . . 4 𝑣 Fn dom ⇝𝑣
152 fnbr 6597 . . . 4 (( ⇝𝑣 Fn dom ⇝𝑣𝐹𝑣 𝑥) → 𝐹 ∈ dom ⇝𝑣 )
153151, 152mpan 690 . . 3 (𝐹𝑣 𝑥𝐹 ∈ dom ⇝𝑣 )
154153rexlimivw 3130 . 2 (∃𝑥 ∈ ℋ 𝐹𝑣 𝑥𝐹 ∈ dom ⇝𝑣 )
155147, 148, 1543syl 18 1 (𝜑𝐹 ∈ dom ⇝𝑣 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  wss 3898   class class class wbr 5095  cmpt 5176  dom cdm 5621   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  cr 11016  0cc0 11017   + caddc 11020   < clt 11157  cle 11158  cn 12136  2c2 12191  cuz 12742  +crp 12896  cexp 13975  chba 30920   + cva 30921   ·ih csp 30923  normcno 30924   cmv 30926  Cauchyccauold 30927  𝑣 chli 30928   S csh 30929   C cch 30930  cort 30931   + cph 30932  projcpjh 30938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096  ax-mulf 11097  ax-hilex 31000  ax-hfvadd 31001  ax-hvcom 31002  ax-hvass 31003  ax-hv0cl 31004  ax-hvaddid 31005  ax-hfvmul 31006  ax-hvmulid 31007  ax-hvmulass 31008  ax-hvdistr1 31009  ax-hvdistr2 31010  ax-hvmul0 31011  ax-hfi 31080  ax-his1 31083  ax-his2 31084  ax-his3 31085  ax-his4 31086  ax-hcompl 31203
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-map 8761  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9337  df-inf 9338  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-n0 12393  df-z 12480  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-icc 13259  df-seq 13916  df-exp 13976  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-topgen 17354  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-top 22829  df-topon 22846  df-bases 22881  df-lm 23164  df-haus 23250  df-cau 25203  df-grpo 30494  df-gid 30495  df-ginv 30496  df-gdiv 30497  df-ablo 30546  df-vc 30560  df-nv 30593  df-va 30596  df-ba 30597  df-sm 30598  df-0v 30599  df-vs 30600  df-nmcv 30601  df-ims 30602  df-hnorm 30969  df-hvsub 30972  df-hlim 30973  df-hcau 30974  df-sh 31208  df-ch 31222  df-oc 31253  df-ch0 31254  df-shs 31309  df-pjh 31396
This theorem is referenced by:  chscllem4  31641
  Copyright terms: Public domain W3C validator