HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem2 Structured version   Visualization version   GIF version

Theorem chscllem2 31363
Description: Lemma for chscl 31366. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1 (𝜑𝐴C )
chscl.2 (𝜑𝐵C )
chscl.3 (𝜑𝐵 ⊆ (⊥‘𝐴))
chscl.4 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
chscl.5 (𝜑𝐻𝑣 𝑢)
chscl.6 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
Assertion
Ref Expression
chscllem2 (𝜑𝐹 ∈ dom ⇝𝑣 )
Distinct variable groups:   𝑢,𝑛,𝐴   𝜑,𝑛   𝐵,𝑛,𝑢   𝑛,𝐻,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐹(𝑢,𝑛)

Proof of Theorem chscllem2
Dummy variables 𝑗 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chscl.1 . . . . 5 (𝜑𝐴C )
2 chscl.2 . . . . 5 (𝜑𝐵C )
3 chscl.3 . . . . 5 (𝜑𝐵 ⊆ (⊥‘𝐴))
4 chscl.4 . . . . 5 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
5 chscl.5 . . . . 5 (𝜑𝐻𝑣 𝑢)
6 chscl.6 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
71, 2, 3, 4, 5, 6chscllem1 31362 . . . 4 (𝜑𝐹:ℕ⟶𝐴)
8 chss 30954 . . . . 5 (𝐴C𝐴 ⊆ ℋ)
91, 8syl 17 . . . 4 (𝜑𝐴 ⊆ ℋ)
107, 9fssd 6726 . . 3 (𝜑𝐹:ℕ⟶ ℋ)
11 hlimcaui 30961 . . . . . . 7 (𝐻𝑣 𝑢𝐻 ∈ Cauchy)
125, 11syl 17 . . . . . 6 (𝜑𝐻 ∈ Cauchy)
13 hcaucvg 30911 . . . . . 6 ((𝐻 ∈ Cauchy ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥)
1412, 13sylan 579 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥)
15 eluznn 12900 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
1615adantll 711 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
17 chsh 30949 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴C𝐴S )
181, 17syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴S )
19 chsh 30949 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵C𝐵S )
202, 19syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵S )
21 shscl 31043 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴S𝐵S ) → (𝐴 + 𝐵) ∈ S )
2218, 20, 21syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 + 𝐵) ∈ S )
23 shss 30935 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 + 𝐵) ∈ S → (𝐴 + 𝐵) ⊆ ℋ)
2422, 23syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴 + 𝐵) ⊆ ℋ)
2524adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐴 + 𝐵) ⊆ ℋ)
264ffvelcdmda 7077 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐻𝑗) ∈ (𝐴 + 𝐵))
2725, 26sseldd 3976 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → (𝐻𝑗) ∈ ℋ)
2827adantrr 714 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐻𝑗) ∈ ℋ)
294, 24fssd 6726 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐻:ℕ⟶ ℋ)
3029adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝐻:ℕ⟶ ℋ)
31 simprr 770 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℕ)
3230, 31ffvelcdmd 7078 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐻𝑘) ∈ ℋ)
33 hvsubcl 30742 . . . . . . . . . . . . . . . . . 18 (((𝐻𝑗) ∈ ℋ ∧ (𝐻𝑘) ∈ ℋ) → ((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ)
3428, 32, 33syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ)
359adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → 𝐴 ⊆ ℋ)
367ffvelcdmda 7077 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ 𝐴)
3735, 36sseldd 3976 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℋ)
3837adantrr 714 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐹𝑗) ∈ ℋ)
399adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝐴 ⊆ ℋ)
407adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝐹:ℕ⟶𝐴)
4140, 31ffvelcdmd 7078 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐹𝑘) ∈ 𝐴)
4239, 41sseldd 3976 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐹𝑘) ∈ ℋ)
43 hvsubcl 30742 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑗) ∈ ℋ ∧ (𝐹𝑘) ∈ ℋ) → ((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ)
4438, 42, 43syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ)
45 hvsubcl 30742 . . . . . . . . . . . . . . . . 17 ((((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ ∧ ((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ ℋ)
4634, 44, 45syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ ℋ)
47 normcl 30850 . . . . . . . . . . . . . . . 16 ((((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ ℋ → (norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) ∈ ℝ)
4846, 47syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) ∈ ℝ)
4948sqge0d 14100 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 0 ≤ ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2))
50 normcl 30850 . . . . . . . . . . . . . . . . 17 (((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ → (norm‘((𝐹𝑗) − (𝐹𝑘))) ∈ ℝ)
5144, 50syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐹𝑗) − (𝐹𝑘))) ∈ ℝ)
5251resqcld 14088 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ∈ ℝ)
5348resqcld 14088 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2) ∈ ℝ)
5452, 53addge01d 11800 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (0 ≤ ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2) ↔ ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ≤ (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2))))
5549, 54mpbid 231 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ≤ (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2)))
5618adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝐴S )
5736adantrr 714 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝐹𝑗) ∈ 𝐴)
58 shsubcl 30945 . . . . . . . . . . . . . . . . 17 ((𝐴S ∧ (𝐹𝑗) ∈ 𝐴 ∧ (𝐹𝑘) ∈ 𝐴) → ((𝐹𝑗) − (𝐹𝑘)) ∈ 𝐴)
5956, 57, 41, 58syl3anc 1368 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐹𝑗) − (𝐹𝑘)) ∈ 𝐴)
60 hvsubsub4 30785 . . . . . . . . . . . . . . . . . 18 ((((𝐻𝑗) ∈ ℋ ∧ (𝐻𝑘) ∈ ℋ) ∧ ((𝐹𝑗) ∈ ℋ ∧ (𝐹𝑘) ∈ ℋ)) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) = (((𝐻𝑗) − (𝐹𝑗)) − ((𝐻𝑘) − (𝐹𝑘))))
6128, 32, 38, 42, 60syl22anc 836 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) = (((𝐻𝑗) − (𝐹𝑗)) − ((𝐻𝑘) − (𝐹𝑘))))
62 ocsh 31008 . . . . . . . . . . . . . . . . . . 19 (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ S )
6339, 62syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (⊥‘𝐴) ∈ S )
64 2fveq3 6887 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑗 → ((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑗)))
65 fvex 6895 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((proj𝐴)‘(𝐻𝑗)) ∈ V
6664, 6, 65fvmpt 6989 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 ∈ ℕ → (𝐹𝑗) = ((proj𝐴)‘(𝐻𝑗)))
6766eqcomd 2730 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → ((proj𝐴)‘(𝐻𝑗)) = (𝐹𝑗))
6867adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ) → ((proj𝐴)‘(𝐻𝑗)) = (𝐹𝑗))
691adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → 𝐴C )
709, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (⊥‘𝐴) ∈ S )
71 shless 31084 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐵S ∧ (⊥‘𝐴) ∈ S𝐴S ) ∧ 𝐵 ⊆ (⊥‘𝐴)) → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
7220, 70, 18, 3, 71syl31anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
73 shscom 31044 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
7418, 20, 73syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
75 shscom 31044 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴S ∧ (⊥‘𝐴) ∈ S ) → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
7618, 70, 75syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
7772, 74, 763sstr4d 4022 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴 + 𝐵) ⊆ (𝐴 + (⊥‘𝐴)))
7877adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ ℕ) → (𝐴 + 𝐵) ⊆ (𝐴 + (⊥‘𝐴)))
7978, 26sseldd 3976 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ) → (𝐻𝑗) ∈ (𝐴 + (⊥‘𝐴)))
80 pjpreeq 31123 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴C ∧ (𝐻𝑗) ∈ (𝐴 + (⊥‘𝐴))) → (((proj𝐴)‘(𝐻𝑗)) = (𝐹𝑗) ↔ ((𝐹𝑗) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥))))
8169, 79, 80syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ) → (((proj𝐴)‘(𝐻𝑗)) = (𝐹𝑗) ↔ ((𝐹𝑗) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥))))
8268, 81mpbid 231 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ ℕ) → ((𝐹𝑗) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥)))
8382simprd 495 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ) → ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥))
8427adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → (𝐻𝑗) ∈ ℋ)
8537adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → (𝐹𝑗) ∈ ℋ)
86 shss 30935 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⊥‘𝐴) ∈ S → (⊥‘𝐴) ⊆ ℋ)
8770, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (⊥‘𝐴) ⊆ ℋ)
8887adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ ℕ) → (⊥‘𝐴) ⊆ ℋ)
8988sselda 3975 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → 𝑥 ∈ ℋ)
90 hvsubadd 30802 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐻𝑗) ∈ ℋ ∧ (𝐹𝑗) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐻𝑗) − (𝐹𝑗)) = 𝑥 ↔ ((𝐹𝑗) + 𝑥) = (𝐻𝑗)))
9184, 85, 89, 90syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → (((𝐻𝑗) − (𝐹𝑗)) = 𝑥 ↔ ((𝐹𝑗) + 𝑥) = (𝐻𝑗)))
92 eqcom 2731 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ((𝐻𝑗) − (𝐹𝑗)) ↔ ((𝐻𝑗) − (𝐹𝑗)) = 𝑥)
93 eqcom 2731 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐻𝑗) = ((𝐹𝑗) + 𝑥) ↔ ((𝐹𝑗) + 𝑥) = (𝐻𝑗))
9491, 92, 933bitr4g 314 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ (⊥‘𝐴)) → (𝑥 = ((𝐻𝑗) − (𝐹𝑗)) ↔ (𝐻𝑗) = ((𝐹𝑗) + 𝑥)))
9594rexbidva 3168 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ) → (∃𝑥 ∈ (⊥‘𝐴)𝑥 = ((𝐻𝑗) − (𝐹𝑗)) ↔ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑗) = ((𝐹𝑗) + 𝑥)))
9683, 95mpbird 257 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ) → ∃𝑥 ∈ (⊥‘𝐴)𝑥 = ((𝐻𝑗) − (𝐹𝑗)))
97 risset 3222 . . . . . . . . . . . . . . . . . . . 20 (((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴) ↔ ∃𝑥 ∈ (⊥‘𝐴)𝑥 = ((𝐻𝑗) − (𝐹𝑗)))
9896, 97sylibr 233 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → ((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴))
9998adantrr 714 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴))
100 eleq1w 2808 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑘 → (𝑗 ∈ ℕ ↔ 𝑘 ∈ ℕ))
101100anbi2d 628 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑘 → ((𝜑𝑗 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ)))
102 fveq2 6882 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 𝑘 → (𝐻𝑗) = (𝐻𝑘))
103 fveq2 6882 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
104102, 103oveq12d 7420 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑘 → ((𝐻𝑗) − (𝐹𝑗)) = ((𝐻𝑘) − (𝐹𝑘)))
105104eleq1d 2810 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑘 → (((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴) ↔ ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴)))
106101, 105imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑘 → (((𝜑𝑗 ∈ ℕ) → ((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴)) ↔ ((𝜑𝑘 ∈ ℕ) → ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴))))
107106, 98chvarvv 1994 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴))
108107adantrl 713 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴))
109 shsubcl 30945 . . . . . . . . . . . . . . . . . 18 (((⊥‘𝐴) ∈ S ∧ ((𝐻𝑗) − (𝐹𝑗)) ∈ (⊥‘𝐴) ∧ ((𝐻𝑘) − (𝐹𝑘)) ∈ (⊥‘𝐴)) → (((𝐻𝑗) − (𝐹𝑗)) − ((𝐻𝑘) − (𝐹𝑘))) ∈ (⊥‘𝐴))
11063, 99, 108, 109syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐻𝑗) − (𝐹𝑗)) − ((𝐻𝑘) − (𝐹𝑘))) ∈ (⊥‘𝐴))
11161, 110eqeltrd 2825 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ (⊥‘𝐴))
112 shocorth 31017 . . . . . . . . . . . . . . . . 17 (𝐴S → ((((𝐹𝑗) − (𝐹𝑘)) ∈ 𝐴 ∧ (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ (⊥‘𝐴)) → (((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0))
11356, 112syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((((𝐹𝑗) − (𝐹𝑘)) ∈ 𝐴 ∧ (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ (⊥‘𝐴)) → (((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0))
11459, 111, 113mp2and 696 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0)
115 normpyth 30870 . . . . . . . . . . . . . . . 16 ((((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ ∧ (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))) ∈ ℋ) → ((((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0 → ((norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))))↑2) = (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2))))
11644, 46, 115syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((((𝐹𝑗) − (𝐹𝑘)) ·ih (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = 0 → ((norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))))↑2) = (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2))))
117114, 116mpd 15 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))))↑2) = (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2)))
118 hvpncan3 30767 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ ∧ ((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ) → (((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = ((𝐻𝑗) − (𝐻𝑘)))
11944, 34, 118syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))) = ((𝐻𝑗) − (𝐻𝑘)))
120119fveq2d 6886 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))) = (norm‘((𝐻𝑗) − (𝐻𝑘))))
121120oveq1d 7417 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘(((𝐹𝑗) − (𝐹𝑘)) + (((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘)))))↑2) = ((norm‘((𝐻𝑗) − (𝐻𝑘)))↑2))
122117, 121eqtr3d 2766 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) + ((norm‘(((𝐻𝑗) − (𝐻𝑘)) − ((𝐹𝑗) − (𝐹𝑘))))↑2)) = ((norm‘((𝐻𝑗) − (𝐻𝑘)))↑2))
12355, 122breqtrd 5165 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ≤ ((norm‘((𝐻𝑗) − (𝐻𝑘)))↑2))
124 normcl 30850 . . . . . . . . . . . . . 14 (((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ → (norm‘((𝐻𝑗) − (𝐻𝑘))) ∈ ℝ)
12534, 124syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐻𝑗) − (𝐻𝑘))) ∈ ℝ)
126 normge0 30851 . . . . . . . . . . . . . 14 (((𝐹𝑗) − (𝐹𝑘)) ∈ ℋ → 0 ≤ (norm‘((𝐹𝑗) − (𝐹𝑘))))
12744, 126syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 0 ≤ (norm‘((𝐹𝑗) − (𝐹𝑘))))
128 normge0 30851 . . . . . . . . . . . . . 14 (((𝐻𝑗) − (𝐻𝑘)) ∈ ℋ → 0 ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))))
12934, 128syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 0 ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))))
13051, 125, 127, 129le2sqd 14218 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))) ↔ ((norm‘((𝐹𝑗) − (𝐹𝑘)))↑2) ≤ ((norm‘((𝐻𝑗) − (𝐻𝑘)))↑2)))
131123, 130mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))))
132131adantlr 712 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))))
13351adantlr 712 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐹𝑗) − (𝐹𝑘))) ∈ ℝ)
134125adantlr 712 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (norm‘((𝐻𝑗) − (𝐻𝑘))) ∈ ℝ)
135 rpre 12980 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
136135ad2antlr 724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → 𝑥 ∈ ℝ)
137 lelttr 11302 . . . . . . . . . . 11 (((norm‘((𝐹𝑗) − (𝐹𝑘))) ∈ ℝ ∧ (norm‘((𝐻𝑗) − (𝐻𝑘))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))) ∧ (norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥) → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
138133, 134, 136, 137syl3anc 1368 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (((norm‘((𝐹𝑗) − (𝐹𝑘))) ≤ (norm‘((𝐻𝑗) − (𝐻𝑘))) ∧ (norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥) → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
139132, 138mpand 692 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
140139anassrs 467 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
14116, 140syldan 590 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → (norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
142141ralimdva 3159 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
143142reximdva 3160 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐻𝑗) − (𝐻𝑘))) < 𝑥 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
14414, 143mpd 15 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥)
145144ralrimiva 3138 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥)
146 hcau 30909 . . 3 (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝐹𝑗) − (𝐹𝑘))) < 𝑥))
14710, 145, 146sylanbrc 582 . 2 (𝜑𝐹 ∈ Cauchy)
148 ax-hcompl 30927 . 2 (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
149 hlimf 30962 . . . . 5 𝑣 :dom ⇝𝑣 ⟶ ℋ
150 ffn 6708 . . . . 5 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → ⇝𝑣 Fn dom ⇝𝑣 )
151149, 150ax-mp 5 . . . 4 𝑣 Fn dom ⇝𝑣
152 fnbr 6648 . . . 4 (( ⇝𝑣 Fn dom ⇝𝑣𝐹𝑣 𝑥) → 𝐹 ∈ dom ⇝𝑣 )
153151, 152mpan 687 . . 3 (𝐹𝑣 𝑥𝐹 ∈ dom ⇝𝑣 )
154153rexlimivw 3143 . 2 (∃𝑥 ∈ ℋ 𝐹𝑣 𝑥𝐹 ∈ dom ⇝𝑣 )
155147, 148, 1543syl 18 1 (𝜑𝐹 ∈ dom ⇝𝑣 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wral 3053  wrex 3062  wss 3941   class class class wbr 5139  cmpt 5222  dom cdm 5667   Fn wfn 6529  wf 6530  cfv 6534  (class class class)co 7402  cr 11106  0cc0 11107   + caddc 11110   < clt 11246  cle 11247  cn 12210  2c2 12265  cuz 12820  +crp 12972  cexp 14025  chba 30644   + cva 30645   ·ih csp 30647  normcno 30648   cmv 30650  Cauchyccauold 30651  𝑣 chli 30652   S csh 30653   C cch 30654  cort 30655   + cph 30656  projcpjh 30662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185  ax-addf 11186  ax-mulf 11187  ax-hilex 30724  ax-hfvadd 30725  ax-hvcom 30726  ax-hvass 30727  ax-hv0cl 30728  ax-hvaddid 30729  ax-hfvmul 30730  ax-hvmulid 30731  ax-hvmulass 30732  ax-hvdistr1 30733  ax-hvdistr2 30734  ax-hvmul0 30735  ax-hfi 30804  ax-his1 30807  ax-his2 30808  ax-his3 30809  ax-his4 30810  ax-hcompl 30927
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-map 8819  df-pm 8820  df-en 8937  df-dom 8938  df-sdom 8939  df-sup 9434  df-inf 9435  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-n0 12471  df-z 12557  df-uz 12821  df-q 12931  df-rp 12973  df-xneg 13090  df-xadd 13091  df-xmul 13092  df-icc 13329  df-seq 13965  df-exp 14026  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-topgen 17390  df-psmet 21222  df-xmet 21223  df-met 21224  df-bl 21225  df-mopn 21226  df-top 22720  df-topon 22737  df-bases 22773  df-lm 23057  df-haus 23143  df-cau 25108  df-grpo 30218  df-gid 30219  df-ginv 30220  df-gdiv 30221  df-ablo 30270  df-vc 30284  df-nv 30317  df-va 30320  df-ba 30321  df-sm 30322  df-0v 30323  df-vs 30324  df-nmcv 30325  df-ims 30326  df-hnorm 30693  df-hvsub 30696  df-hlim 30697  df-hcau 30698  df-sh 30932  df-ch 30946  df-oc 30977  df-ch0 30978  df-shs 31033  df-pjh 31120
This theorem is referenced by:  chscllem4  31365
  Copyright terms: Public domain W3C validator