![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hilcompl | Structured version Visualization version GIF version |
Description: Lemma used for derivation of the completeness axiom ax-hcompl 31104 from ZFC Hilbert space theory. The first five hypotheses would be satisfied by the definitions described in ax-hilex 30901; the 6th would be satisfied by eqid 2725; the 7th by a given fixed Hilbert space; and the last by Theorem hlcompl 30817. (Contributed by NM, 13-Sep-2007.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hilcompl.1 | ⊢ ℋ = (BaseSet‘𝑈) |
hilcompl.2 | ⊢ +ℎ = ( +𝑣 ‘𝑈) |
hilcompl.3 | ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
hilcompl.4 | ⊢ ·ih = (·𝑖OLD‘𝑈) |
hilcompl.5 | ⊢ 𝐷 = (IndMet‘𝑈) |
hilcompl.6 | ⊢ 𝐽 = (MetOpen‘𝐷) |
hilcompl.7 | ⊢ 𝑈 ∈ CHilOLD |
hilcompl.8 | ⊢ (𝐹 ∈ (Cau‘𝐷) → ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥) |
Ref | Expression |
---|---|
hilcompl | ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hilcompl.1 | . . 3 ⊢ ℋ = (BaseSet‘𝑈) | |
2 | hilcompl.2 | . . 3 ⊢ +ℎ = ( +𝑣 ‘𝑈) | |
3 | hilcompl.3 | . . 3 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) | |
4 | hilcompl.4 | . . 3 ⊢ ·ih = (·𝑖OLD‘𝑈) | |
5 | hilcompl.7 | . . . 4 ⊢ 𝑈 ∈ CHilOLD | |
6 | 5 | hlnvi 30794 | . . 3 ⊢ 𝑈 ∈ NrmCVec |
7 | 1, 2, 3, 4, 6 | hilhhi 31066 | . 2 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
8 | hilcompl.5 | . 2 ⊢ 𝐷 = (IndMet‘𝑈) | |
9 | hilcompl.6 | . 2 ⊢ 𝐽 = (MetOpen‘𝐷) | |
10 | hilcompl.8 | . 2 ⊢ (𝐹 ∈ (Cau‘𝐷) → ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥) | |
11 | 7, 8, 9, 10 | hhcmpl 31102 | 1 ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∃wrex 3059 class class class wbr 5149 ‘cfv 6549 MetOpencmopn 21303 ⇝𝑡clm 23191 Cauccau 25242 +𝑣 cpv 30487 BaseSetcba 30488 ·𝑠OLD cns 30489 IndMetcims 30493 ·𝑖OLDcdip 30602 CHilOLDchlo 30787 ℋchba 30821 +ℎ cva 30822 ·ℎ csm 30823 ·ih csp 30824 Cauchyccauold 30828 ⇝𝑣 chli 30829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9671 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 ax-pre-sup 11223 ax-addf 11224 ax-mulf 11225 ax-hilex 30901 ax-hfvadd 30902 ax-hvcom 30903 ax-hvass 30904 ax-hv0cl 30905 ax-hvaddid 30906 ax-hfvmul 30907 ax-hvmulid 30908 ax-hvmulass 30909 ax-hvdistr1 30910 ax-hvdistr2 30911 ax-hvmul0 30912 ax-hfi 30981 ax-his1 30984 ax-his2 30985 ax-his3 30986 ax-his4 30987 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9472 df-inf 9473 df-oi 9540 df-card 9969 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-div 11909 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-n0 12511 df-z 12597 df-uz 12861 df-q 12971 df-rp 13015 df-xneg 13132 df-xadd 13133 df-xmul 13134 df-fz 13525 df-fzo 13668 df-seq 14008 df-exp 14068 df-hash 14334 df-cj 15090 df-re 15091 df-im 15092 df-sqrt 15226 df-abs 15227 df-clim 15476 df-sum 15677 df-topgen 17444 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-top 22857 df-topon 22874 df-bases 22910 df-lm 23194 df-cau 25245 df-grpo 30395 df-gid 30396 df-ginv 30397 df-gdiv 30398 df-ablo 30447 df-vc 30461 df-nv 30494 df-va 30497 df-ba 30498 df-sm 30499 df-0v 30500 df-vs 30501 df-nmcv 30502 df-ims 30503 df-dip 30603 df-cbn 30765 df-hlo 30788 df-hnorm 30870 df-hvsub 30873 df-hlim 30874 df-hcau 30875 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |