| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hilcompl | Structured version Visualization version GIF version | ||
| Description: Lemma used for derivation of the completeness axiom ax-hcompl 31182 from ZFC Hilbert space theory. The first five hypotheses would be satisfied by the definitions described in ax-hilex 30979; the 6th would be satisfied by eqid 2731; the 7th by a given fixed Hilbert space; and the last by Theorem hlcompl 30895. (Contributed by NM, 13-Sep-2007.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hilcompl.1 | ⊢ ℋ = (BaseSet‘𝑈) |
| hilcompl.2 | ⊢ +ℎ = ( +𝑣 ‘𝑈) |
| hilcompl.3 | ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
| hilcompl.4 | ⊢ ·ih = (·𝑖OLD‘𝑈) |
| hilcompl.5 | ⊢ 𝐷 = (IndMet‘𝑈) |
| hilcompl.6 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| hilcompl.7 | ⊢ 𝑈 ∈ CHilOLD |
| hilcompl.8 | ⊢ (𝐹 ∈ (Cau‘𝐷) → ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥) |
| Ref | Expression |
|---|---|
| hilcompl | ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hilcompl.1 | . . 3 ⊢ ℋ = (BaseSet‘𝑈) | |
| 2 | hilcompl.2 | . . 3 ⊢ +ℎ = ( +𝑣 ‘𝑈) | |
| 3 | hilcompl.3 | . . 3 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) | |
| 4 | hilcompl.4 | . . 3 ⊢ ·ih = (·𝑖OLD‘𝑈) | |
| 5 | hilcompl.7 | . . . 4 ⊢ 𝑈 ∈ CHilOLD | |
| 6 | 5 | hlnvi 30872 | . . 3 ⊢ 𝑈 ∈ NrmCVec |
| 7 | 1, 2, 3, 4, 6 | hilhhi 31144 | . 2 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| 8 | hilcompl.5 | . 2 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 9 | hilcompl.6 | . 2 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 10 | hilcompl.8 | . 2 ⊢ (𝐹 ∈ (Cau‘𝐷) → ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥) | |
| 11 | 7, 8, 9, 10 | hhcmpl 31180 | 1 ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5089 ‘cfv 6481 MetOpencmopn 21281 ⇝𝑡clm 23141 Cauccau 25180 +𝑣 cpv 30565 BaseSetcba 30566 ·𝑠OLD cns 30567 IndMetcims 30571 ·𝑖OLDcdip 30680 CHilOLDchlo 30865 ℋchba 30899 +ℎ cva 30900 ·ℎ csm 30901 ·ih csp 30902 Cauchyccauold 30906 ⇝𝑣 chli 30907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 ax-hilex 30979 ax-hfvadd 30980 ax-hvcom 30981 ax-hvass 30982 ax-hv0cl 30983 ax-hvaddid 30984 ax-hfvmul 30985 ax-hvmulid 30986 ax-hvmulass 30987 ax-hvdistr1 30988 ax-hvdistr2 30989 ax-hvmul0 30990 ax-hfi 31059 ax-his1 31062 ax-his2 31063 ax-his3 31064 ax-his4 31065 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-topgen 17347 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-top 22809 df-topon 22826 df-bases 22861 df-lm 23144 df-cau 25183 df-grpo 30473 df-gid 30474 df-ginv 30475 df-gdiv 30476 df-ablo 30525 df-vc 30539 df-nv 30572 df-va 30575 df-ba 30576 df-sm 30577 df-0v 30578 df-vs 30579 df-nmcv 30580 df-ims 30581 df-dip 30681 df-cbn 30843 df-hlo 30866 df-hnorm 30948 df-hvsub 30951 df-hlim 30952 df-hcau 30953 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |