| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hilcompl | Structured version Visualization version GIF version | ||
| Description: Lemma used for derivation of the completeness axiom ax-hcompl 31222 from ZFC Hilbert space theory. The first five hypotheses would be satisfied by the definitions described in ax-hilex 31019; the 6th would be satisfied by eqid 2736; the 7th by a given fixed Hilbert space; and the last by Theorem hlcompl 30935. (Contributed by NM, 13-Sep-2007.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hilcompl.1 | ⊢ ℋ = (BaseSet‘𝑈) |
| hilcompl.2 | ⊢ +ℎ = ( +𝑣 ‘𝑈) |
| hilcompl.3 | ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
| hilcompl.4 | ⊢ ·ih = (·𝑖OLD‘𝑈) |
| hilcompl.5 | ⊢ 𝐷 = (IndMet‘𝑈) |
| hilcompl.6 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| hilcompl.7 | ⊢ 𝑈 ∈ CHilOLD |
| hilcompl.8 | ⊢ (𝐹 ∈ (Cau‘𝐷) → ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥) |
| Ref | Expression |
|---|---|
| hilcompl | ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hilcompl.1 | . . 3 ⊢ ℋ = (BaseSet‘𝑈) | |
| 2 | hilcompl.2 | . . 3 ⊢ +ℎ = ( +𝑣 ‘𝑈) | |
| 3 | hilcompl.3 | . . 3 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) | |
| 4 | hilcompl.4 | . . 3 ⊢ ·ih = (·𝑖OLD‘𝑈) | |
| 5 | hilcompl.7 | . . . 4 ⊢ 𝑈 ∈ CHilOLD | |
| 6 | 5 | hlnvi 30912 | . . 3 ⊢ 𝑈 ∈ NrmCVec |
| 7 | 1, 2, 3, 4, 6 | hilhhi 31184 | . 2 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| 8 | hilcompl.5 | . 2 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 9 | hilcompl.6 | . 2 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 10 | hilcompl.8 | . 2 ⊢ (𝐹 ∈ (Cau‘𝐷) → ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥) | |
| 11 | 7, 8, 9, 10 | hhcmpl 31220 | 1 ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 class class class wbr 5142 ‘cfv 6560 MetOpencmopn 21355 ⇝𝑡clm 23235 Cauccau 25288 +𝑣 cpv 30605 BaseSetcba 30606 ·𝑠OLD cns 30607 IndMetcims 30611 ·𝑖OLDcdip 30720 CHilOLDchlo 30905 ℋchba 30939 +ℎ cva 30940 ·ℎ csm 30941 ·ih csp 30942 Cauchyccauold 30946 ⇝𝑣 chli 30947 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 ax-addf 11235 ax-mulf 11236 ax-hilex 31019 ax-hfvadd 31020 ax-hvcom 31021 ax-hvass 31022 ax-hv0cl 31023 ax-hvaddid 31024 ax-hfvmul 31025 ax-hvmulid 31026 ax-hvmulass 31027 ax-hvdistr1 31028 ax-hvdistr2 31029 ax-hvmul0 31030 ax-hfi 31099 ax-his1 31102 ax-his2 31103 ax-his3 31104 ax-his4 31105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-inf 9484 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-n0 12529 df-z 12616 df-uz 12880 df-q 12992 df-rp 13036 df-xneg 13155 df-xadd 13156 df-xmul 13157 df-fz 13549 df-fzo 13696 df-seq 14044 df-exp 14104 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-sum 15724 df-topgen 17489 df-psmet 21357 df-xmet 21358 df-met 21359 df-bl 21360 df-mopn 21361 df-top 22901 df-topon 22918 df-bases 22954 df-lm 23238 df-cau 25291 df-grpo 30513 df-gid 30514 df-ginv 30515 df-gdiv 30516 df-ablo 30565 df-vc 30579 df-nv 30612 df-va 30615 df-ba 30616 df-sm 30617 df-0v 30618 df-vs 30619 df-nmcv 30620 df-ims 30621 df-dip 30721 df-cbn 30883 df-hlo 30906 df-hnorm 30988 df-hvsub 30991 df-hlim 30992 df-hcau 30993 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |