HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isch3 Structured version   Visualization version   GIF version

Theorem isch3 28426
Description: A Hilbert subspace is closed iff it is complete. A complete subspace is one in which every Cauchy sequence of vectors in the subspace converges to a member of the subspace (Definition of complete subspace in [Beran] p. 96). Remark 3.12 of [Beran] p. 107. (Contributed by NM, 24-Dec-2001.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
isch3 (𝐻C ↔ (𝐻S ∧ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
Distinct variable group:   𝑥,𝑓,𝐻

Proof of Theorem isch3
StepHypRef Expression
1 isch2 28408 . 2 (𝐻C ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
2 ax-hcompl 28387 . . . . . . . . . 10 (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓𝑣 𝑥)
3 rexex 3189 . . . . . . . . . 10 (∃𝑥 ∈ ℋ 𝑓𝑣 𝑥 → ∃𝑥 𝑓𝑣 𝑥)
42, 3syl 17 . . . . . . . . 9 (𝑓 ∈ Cauchy → ∃𝑥 𝑓𝑣 𝑥)
5 19.29 1963 . . . . . . . . 9 ((∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ ∃𝑥 𝑓𝑣 𝑥) → ∃𝑥(((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥))
64, 5sylan2 582 . . . . . . . 8 ((∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓 ∈ Cauchy) → ∃𝑥(((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥))
7 id 22 . . . . . . . . . . . . . . 15 (((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻))
87imp 395 . . . . . . . . . . . . . 14 ((((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ (𝑓:ℕ⟶𝐻𝑓𝑣 𝑥)) → 𝑥𝐻)
98an12s 631 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶𝐻 ∧ (((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥)) → 𝑥𝐻)
10 simprr 780 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶𝐻 ∧ (((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥)) → 𝑓𝑣 𝑥)
119, 10jca 503 . . . . . . . . . . . 12 ((𝑓:ℕ⟶𝐻 ∧ (((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥)) → (𝑥𝐻𝑓𝑣 𝑥))
1211ex 399 . . . . . . . . . . 11 (𝑓:ℕ⟶𝐻 → ((((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥) → (𝑥𝐻𝑓𝑣 𝑥)))
1312eximdv 2008 . . . . . . . . . 10 (𝑓:ℕ⟶𝐻 → (∃𝑥(((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥) → ∃𝑥(𝑥𝐻𝑓𝑣 𝑥)))
1413com12 32 . . . . . . . . 9 (∃𝑥(((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥) → (𝑓:ℕ⟶𝐻 → ∃𝑥(𝑥𝐻𝑓𝑣 𝑥)))
15 df-rex 3102 . . . . . . . . 9 (∃𝑥𝐻 𝑓𝑣 𝑥 ↔ ∃𝑥(𝑥𝐻𝑓𝑣 𝑥))
1614, 15syl6ibr 243 . . . . . . . 8 (∃𝑥(((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥) → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥))
176, 16syl 17 . . . . . . 7 ((∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓 ∈ Cauchy) → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥))
1817ex 399 . . . . . 6 (∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → (𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
19 nfv 2005 . . . . . . . 8 𝑥 𝑓 ∈ Cauchy
20 nfv 2005 . . . . . . . . 9 𝑥 𝑓:ℕ⟶𝐻
21 nfre1 3192 . . . . . . . . 9 𝑥𝑥𝐻 𝑓𝑣 𝑥
2220, 21nfim 1987 . . . . . . . 8 𝑥(𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)
2319, 22nfim 1987 . . . . . . 7 𝑥(𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥))
24 bi2.04 377 . . . . . . . . 9 ((𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)) ↔ (𝑓:ℕ⟶𝐻 → (𝑓 ∈ Cauchy → ∃𝑥𝐻 𝑓𝑣 𝑥)))
25 hlimcaui 28421 . . . . . . . . . . . 12 (𝑓𝑣 𝑥𝑓 ∈ Cauchy)
2625imim1i 63 . . . . . . . . . . 11 ((𝑓 ∈ Cauchy → ∃𝑥𝐻 𝑓𝑣 𝑥) → (𝑓𝑣 𝑥 → ∃𝑥𝐻 𝑓𝑣 𝑥))
27 rexex 3189 . . . . . . . . . . . . 13 (∃𝑥𝐻 𝑓𝑣 𝑥 → ∃𝑥 𝑓𝑣 𝑥)
28 hlimeui 28425 . . . . . . . . . . . . 13 (∃𝑥 𝑓𝑣 𝑥 ↔ ∃!𝑥 𝑓𝑣 𝑥)
2927, 28sylib 209 . . . . . . . . . . . 12 (∃𝑥𝐻 𝑓𝑣 𝑥 → ∃!𝑥 𝑓𝑣 𝑥)
30 exancom 1947 . . . . . . . . . . . . 13 (∃𝑥(𝑥𝐻𝑓𝑣 𝑥) ↔ ∃𝑥(𝑓𝑣 𝑥𝑥𝐻))
3115, 30sylbb 210 . . . . . . . . . . . 12 (∃𝑥𝐻 𝑓𝑣 𝑥 → ∃𝑥(𝑓𝑣 𝑥𝑥𝐻))
32 eupick 2700 . . . . . . . . . . . 12 ((∃!𝑥 𝑓𝑣 𝑥 ∧ ∃𝑥(𝑓𝑣 𝑥𝑥𝐻)) → (𝑓𝑣 𝑥𝑥𝐻))
3329, 31, 32syl2anc 575 . . . . . . . . . . 11 (∃𝑥𝐻 𝑓𝑣 𝑥 → (𝑓𝑣 𝑥𝑥𝐻))
3426, 33syli 39 . . . . . . . . . 10 ((𝑓 ∈ Cauchy → ∃𝑥𝐻 𝑓𝑣 𝑥) → (𝑓𝑣 𝑥𝑥𝐻))
3534imim2i 16 . . . . . . . . 9 ((𝑓:ℕ⟶𝐻 → (𝑓 ∈ Cauchy → ∃𝑥𝐻 𝑓𝑣 𝑥)) → (𝑓:ℕ⟶𝐻 → (𝑓𝑣 𝑥𝑥𝐻)))
3624, 35sylbi 208 . . . . . . . 8 ((𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)) → (𝑓:ℕ⟶𝐻 → (𝑓𝑣 𝑥𝑥𝐻)))
3736impd 398 . . . . . . 7 ((𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)) → ((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻))
3823, 37alrimi 2249 . . . . . 6 ((𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)) → ∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻))
3918, 38impbii 200 . . . . 5 (∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ (𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
4039albii 1904 . . . 4 (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑓(𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
41 df-ral 3101 . . . 4 (∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥) ↔ ∀𝑓(𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
4240, 41bitr4i 269 . . 3 (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥))
4342anbi2i 611 . 2 ((𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)) ↔ (𝐻S ∧ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
441, 43bitri 266 1 (𝐻C ↔ (𝐻S ∧ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wal 1635  wex 1859  wcel 2156  ∃!weu 2630  wral 3096  wrex 3097   class class class wbr 4844  wf 6097  cn 11305  chil 28104  Cauchyccau 28111  𝑣 chli 28112   S csh 28113   C cch 28114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298  ax-pre-sup 10299  ax-addf 10300  ax-mulf 10301  ax-hilex 28184  ax-hfvadd 28185  ax-hvcom 28186  ax-hvass 28187  ax-hv0cl 28188  ax-hvaddid 28189  ax-hfvmul 28190  ax-hvmulid 28191  ax-hvmulass 28192  ax-hvdistr1 28193  ax-hvdistr2 28194  ax-hvmul0 28195  ax-hfi 28264  ax-his1 28267  ax-his2 28268  ax-his3 28269  ax-his4 28270  ax-hcompl 28387
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-1st 7398  df-2nd 7399  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-er 7979  df-map 8094  df-pm 8095  df-en 8193  df-dom 8194  df-sdom 8195  df-sup 8587  df-inf 8588  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-div 10970  df-nn 11306  df-2 11364  df-3 11365  df-4 11366  df-n0 11560  df-z 11644  df-uz 11905  df-q 12008  df-rp 12047  df-xneg 12162  df-xadd 12163  df-xmul 12164  df-icc 12400  df-seq 13025  df-exp 13084  df-cj 14062  df-re 14063  df-im 14064  df-sqrt 14198  df-abs 14199  df-topgen 16309  df-psmet 19946  df-xmet 19947  df-met 19948  df-bl 19949  df-mopn 19950  df-top 20912  df-topon 20929  df-bases 20964  df-lm 21247  df-haus 21333  df-cau 23266  df-grpo 27676  df-gid 27677  df-ginv 27678  df-gdiv 27679  df-ablo 27728  df-vc 27742  df-nv 27775  df-va 27778  df-ba 27779  df-sm 27780  df-0v 27781  df-vs 27782  df-nmcv 27783  df-ims 27784  df-hnorm 28153  df-hvsub 28156  df-hlim 28157  df-hcau 28158  df-ch 28406
This theorem is referenced by:  chcompl  28427  occl  28491
  Copyright terms: Public domain W3C validator