HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isch3 Structured version   Visualization version   GIF version

Theorem isch3 30759
Description: A Hilbert subspace is closed iff it is complete. A complete subspace is one in which every Cauchy sequence of vectors in the subspace converges to a member of the subspace (Definition of complete subspace in [Beran] p. 96). Remark 3.12 of [Beran] p. 107. (Contributed by NM, 24-Dec-2001.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
isch3 (𝐻C ↔ (𝐻S ∧ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
Distinct variable group:   𝑥,𝑓,𝐻

Proof of Theorem isch3
StepHypRef Expression
1 isch2 30741 . 2 (𝐻C ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
2 ax-hcompl 30720 . . . . . . . . . 10 (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓𝑣 𝑥)
3 rexex 3074 . . . . . . . . . 10 (∃𝑥 ∈ ℋ 𝑓𝑣 𝑥 → ∃𝑥 𝑓𝑣 𝑥)
42, 3syl 17 . . . . . . . . 9 (𝑓 ∈ Cauchy → ∃𝑥 𝑓𝑣 𝑥)
5 19.29 1874 . . . . . . . . 9 ((∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ ∃𝑥 𝑓𝑣 𝑥) → ∃𝑥(((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥))
64, 5sylan2 591 . . . . . . . 8 ((∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓 ∈ Cauchy) → ∃𝑥(((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥))
7 id 22 . . . . . . . . . . . . . . 15 (((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻))
87imp 405 . . . . . . . . . . . . . 14 ((((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ (𝑓:ℕ⟶𝐻𝑓𝑣 𝑥)) → 𝑥𝐻)
98an12s 645 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶𝐻 ∧ (((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥)) → 𝑥𝐻)
10 simprr 769 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶𝐻 ∧ (((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥)) → 𝑓𝑣 𝑥)
119, 10jca 510 . . . . . . . . . . . 12 ((𝑓:ℕ⟶𝐻 ∧ (((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥)) → (𝑥𝐻𝑓𝑣 𝑥))
1211ex 411 . . . . . . . . . . 11 (𝑓:ℕ⟶𝐻 → ((((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥) → (𝑥𝐻𝑓𝑣 𝑥)))
1312eximdv 1918 . . . . . . . . . 10 (𝑓:ℕ⟶𝐻 → (∃𝑥(((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥) → ∃𝑥(𝑥𝐻𝑓𝑣 𝑥)))
1413com12 32 . . . . . . . . 9 (∃𝑥(((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥) → (𝑓:ℕ⟶𝐻 → ∃𝑥(𝑥𝐻𝑓𝑣 𝑥)))
15 df-rex 3069 . . . . . . . . 9 (∃𝑥𝐻 𝑓𝑣 𝑥 ↔ ∃𝑥(𝑥𝐻𝑓𝑣 𝑥))
1614, 15imbitrrdi 251 . . . . . . . 8 (∃𝑥(((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥) → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥))
176, 16syl 17 . . . . . . 7 ((∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓 ∈ Cauchy) → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥))
1817ex 411 . . . . . 6 (∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → (𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
19 nfv 1915 . . . . . . . 8 𝑥 𝑓 ∈ Cauchy
20 nfv 1915 . . . . . . . . 9 𝑥 𝑓:ℕ⟶𝐻
21 nfre1 3280 . . . . . . . . 9 𝑥𝑥𝐻 𝑓𝑣 𝑥
2220, 21nfim 1897 . . . . . . . 8 𝑥(𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)
2319, 22nfim 1897 . . . . . . 7 𝑥(𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥))
24 bi2.04 386 . . . . . . . . 9 ((𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)) ↔ (𝑓:ℕ⟶𝐻 → (𝑓 ∈ Cauchy → ∃𝑥𝐻 𝑓𝑣 𝑥)))
25 hlimcaui 30754 . . . . . . . . . . . 12 (𝑓𝑣 𝑥𝑓 ∈ Cauchy)
2625imim1i 63 . . . . . . . . . . 11 ((𝑓 ∈ Cauchy → ∃𝑥𝐻 𝑓𝑣 𝑥) → (𝑓𝑣 𝑥 → ∃𝑥𝐻 𝑓𝑣 𝑥))
27 rexex 3074 . . . . . . . . . . . . 13 (∃𝑥𝐻 𝑓𝑣 𝑥 → ∃𝑥 𝑓𝑣 𝑥)
28 hlimeui 30758 . . . . . . . . . . . . 13 (∃𝑥 𝑓𝑣 𝑥 ↔ ∃!𝑥 𝑓𝑣 𝑥)
2927, 28sylib 217 . . . . . . . . . . . 12 (∃𝑥𝐻 𝑓𝑣 𝑥 → ∃!𝑥 𝑓𝑣 𝑥)
30 exancom 1862 . . . . . . . . . . . . 13 (∃𝑥(𝑥𝐻𝑓𝑣 𝑥) ↔ ∃𝑥(𝑓𝑣 𝑥𝑥𝐻))
3115, 30sylbb 218 . . . . . . . . . . . 12 (∃𝑥𝐻 𝑓𝑣 𝑥 → ∃𝑥(𝑓𝑣 𝑥𝑥𝐻))
32 eupick 2627 . . . . . . . . . . . 12 ((∃!𝑥 𝑓𝑣 𝑥 ∧ ∃𝑥(𝑓𝑣 𝑥𝑥𝐻)) → (𝑓𝑣 𝑥𝑥𝐻))
3329, 31, 32syl2anc 582 . . . . . . . . . . 11 (∃𝑥𝐻 𝑓𝑣 𝑥 → (𝑓𝑣 𝑥𝑥𝐻))
3426, 33syli 39 . . . . . . . . . 10 ((𝑓 ∈ Cauchy → ∃𝑥𝐻 𝑓𝑣 𝑥) → (𝑓𝑣 𝑥𝑥𝐻))
3534imim2i 16 . . . . . . . . 9 ((𝑓:ℕ⟶𝐻 → (𝑓 ∈ Cauchy → ∃𝑥𝐻 𝑓𝑣 𝑥)) → (𝑓:ℕ⟶𝐻 → (𝑓𝑣 𝑥𝑥𝐻)))
3624, 35sylbi 216 . . . . . . . 8 ((𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)) → (𝑓:ℕ⟶𝐻 → (𝑓𝑣 𝑥𝑥𝐻)))
3736impd 409 . . . . . . 7 ((𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)) → ((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻))
3823, 37alrimi 2204 . . . . . 6 ((𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)) → ∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻))
3918, 38impbii 208 . . . . 5 (∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ (𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
4039albii 1819 . . . 4 (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑓(𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
41 df-ral 3060 . . . 4 (∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥) ↔ ∀𝑓(𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
4240, 41bitr4i 277 . . 3 (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥))
4342anbi2i 621 . 2 ((𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)) ↔ (𝐻S ∧ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
441, 43bitri 274 1 (𝐻C ↔ (𝐻S ∧ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1537  wex 1779  wcel 2104  ∃!weu 2560  wral 3059  wrex 3068   class class class wbr 5149  wf 6540  cn 12218  chba 30437  Cauchyccauold 30444  𝑣 chli 30445   S csh 30446   C cch 30447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192  ax-addf 11193  ax-mulf 11194  ax-hilex 30517  ax-hfvadd 30518  ax-hvcom 30519  ax-hvass 30520  ax-hv0cl 30521  ax-hvaddid 30522  ax-hfvmul 30523  ax-hvmulid 30524  ax-hvmulass 30525  ax-hvdistr1 30526  ax-hvdistr2 30527  ax-hvmul0 30528  ax-hfi 30597  ax-his1 30600  ax-his2 30601  ax-his3 30602  ax-his4 30603  ax-hcompl 30720
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-map 8826  df-pm 8827  df-en 8944  df-dom 8945  df-sdom 8946  df-sup 9441  df-inf 9442  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-div 11878  df-nn 12219  df-2 12281  df-3 12282  df-4 12283  df-n0 12479  df-z 12565  df-uz 12829  df-q 12939  df-rp 12981  df-xneg 13098  df-xadd 13099  df-xmul 13100  df-icc 13337  df-seq 13973  df-exp 14034  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-topgen 17395  df-psmet 21138  df-xmet 21139  df-met 21140  df-bl 21141  df-mopn 21142  df-top 22618  df-topon 22635  df-bases 22671  df-lm 22955  df-haus 23041  df-cau 25006  df-grpo 30011  df-gid 30012  df-ginv 30013  df-gdiv 30014  df-ablo 30063  df-vc 30077  df-nv 30110  df-va 30113  df-ba 30114  df-sm 30115  df-0v 30116  df-vs 30117  df-nmcv 30118  df-ims 30119  df-hnorm 30486  df-hvsub 30489  df-hlim 30490  df-hcau 30491  df-ch 30739
This theorem is referenced by:  chcompl  30760  occl  30822
  Copyright terms: Public domain W3C validator