HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isch3 Structured version   Visualization version   GIF version

Theorem isch3 31273
Description: A Hilbert subspace is closed iff it is complete. A complete subspace is one in which every Cauchy sequence of vectors in the subspace converges to a member of the subspace (Definition of complete subspace in [Beran] p. 96). Remark 3.12 of [Beran] p. 107. (Contributed by NM, 24-Dec-2001.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
isch3 (𝐻C ↔ (𝐻S ∧ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
Distinct variable group:   𝑥,𝑓,𝐻

Proof of Theorem isch3
StepHypRef Expression
1 isch2 31255 . 2 (𝐻C ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
2 ax-hcompl 31234 . . . . . . . . . 10 (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓𝑣 𝑥)
3 rexex 3082 . . . . . . . . . 10 (∃𝑥 ∈ ℋ 𝑓𝑣 𝑥 → ∃𝑥 𝑓𝑣 𝑥)
42, 3syl 17 . . . . . . . . 9 (𝑓 ∈ Cauchy → ∃𝑥 𝑓𝑣 𝑥)
5 19.29 1872 . . . . . . . . 9 ((∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ ∃𝑥 𝑓𝑣 𝑥) → ∃𝑥(((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥))
64, 5sylan2 592 . . . . . . . 8 ((∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓 ∈ Cauchy) → ∃𝑥(((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥))
7 id 22 . . . . . . . . . . . . . . 15 (((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻))
87imp 406 . . . . . . . . . . . . . 14 ((((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ (𝑓:ℕ⟶𝐻𝑓𝑣 𝑥)) → 𝑥𝐻)
98an12s 648 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶𝐻 ∧ (((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥)) → 𝑥𝐻)
10 simprr 772 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶𝐻 ∧ (((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥)) → 𝑓𝑣 𝑥)
119, 10jca 511 . . . . . . . . . . . 12 ((𝑓:ℕ⟶𝐻 ∧ (((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥)) → (𝑥𝐻𝑓𝑣 𝑥))
1211ex 412 . . . . . . . . . . 11 (𝑓:ℕ⟶𝐻 → ((((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥) → (𝑥𝐻𝑓𝑣 𝑥)))
1312eximdv 1916 . . . . . . . . . 10 (𝑓:ℕ⟶𝐻 → (∃𝑥(((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥) → ∃𝑥(𝑥𝐻𝑓𝑣 𝑥)))
1413com12 32 . . . . . . . . 9 (∃𝑥(((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥) → (𝑓:ℕ⟶𝐻 → ∃𝑥(𝑥𝐻𝑓𝑣 𝑥)))
15 df-rex 3077 . . . . . . . . 9 (∃𝑥𝐻 𝑓𝑣 𝑥 ↔ ∃𝑥(𝑥𝐻𝑓𝑣 𝑥))
1614, 15imbitrrdi 252 . . . . . . . 8 (∃𝑥(((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥) → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥))
176, 16syl 17 . . . . . . 7 ((∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓 ∈ Cauchy) → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥))
1817ex 412 . . . . . 6 (∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → (𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
19 nfv 1913 . . . . . . . 8 𝑥 𝑓 ∈ Cauchy
20 nfv 1913 . . . . . . . . 9 𝑥 𝑓:ℕ⟶𝐻
21 nfre1 3291 . . . . . . . . 9 𝑥𝑥𝐻 𝑓𝑣 𝑥
2220, 21nfim 1895 . . . . . . . 8 𝑥(𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)
2319, 22nfim 1895 . . . . . . 7 𝑥(𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥))
24 bi2.04 387 . . . . . . . . 9 ((𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)) ↔ (𝑓:ℕ⟶𝐻 → (𝑓 ∈ Cauchy → ∃𝑥𝐻 𝑓𝑣 𝑥)))
25 hlimcaui 31268 . . . . . . . . . . . 12 (𝑓𝑣 𝑥𝑓 ∈ Cauchy)
2625imim1i 63 . . . . . . . . . . 11 ((𝑓 ∈ Cauchy → ∃𝑥𝐻 𝑓𝑣 𝑥) → (𝑓𝑣 𝑥 → ∃𝑥𝐻 𝑓𝑣 𝑥))
27 rexex 3082 . . . . . . . . . . . . 13 (∃𝑥𝐻 𝑓𝑣 𝑥 → ∃𝑥 𝑓𝑣 𝑥)
28 hlimeui 31272 . . . . . . . . . . . . 13 (∃𝑥 𝑓𝑣 𝑥 ↔ ∃!𝑥 𝑓𝑣 𝑥)
2927, 28sylib 218 . . . . . . . . . . . 12 (∃𝑥𝐻 𝑓𝑣 𝑥 → ∃!𝑥 𝑓𝑣 𝑥)
30 exancom 1860 . . . . . . . . . . . . 13 (∃𝑥(𝑥𝐻𝑓𝑣 𝑥) ↔ ∃𝑥(𝑓𝑣 𝑥𝑥𝐻))
3115, 30sylbb 219 . . . . . . . . . . . 12 (∃𝑥𝐻 𝑓𝑣 𝑥 → ∃𝑥(𝑓𝑣 𝑥𝑥𝐻))
32 eupick 2636 . . . . . . . . . . . 12 ((∃!𝑥 𝑓𝑣 𝑥 ∧ ∃𝑥(𝑓𝑣 𝑥𝑥𝐻)) → (𝑓𝑣 𝑥𝑥𝐻))
3329, 31, 32syl2anc 583 . . . . . . . . . . 11 (∃𝑥𝐻 𝑓𝑣 𝑥 → (𝑓𝑣 𝑥𝑥𝐻))
3426, 33syli 39 . . . . . . . . . 10 ((𝑓 ∈ Cauchy → ∃𝑥𝐻 𝑓𝑣 𝑥) → (𝑓𝑣 𝑥𝑥𝐻))
3534imim2i 16 . . . . . . . . 9 ((𝑓:ℕ⟶𝐻 → (𝑓 ∈ Cauchy → ∃𝑥𝐻 𝑓𝑣 𝑥)) → (𝑓:ℕ⟶𝐻 → (𝑓𝑣 𝑥𝑥𝐻)))
3624, 35sylbi 217 . . . . . . . 8 ((𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)) → (𝑓:ℕ⟶𝐻 → (𝑓𝑣 𝑥𝑥𝐻)))
3736impd 410 . . . . . . 7 ((𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)) → ((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻))
3823, 37alrimi 2214 . . . . . 6 ((𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)) → ∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻))
3918, 38impbii 209 . . . . 5 (∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ (𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
4039albii 1817 . . . 4 (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑓(𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
41 df-ral 3068 . . . 4 (∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥) ↔ ∀𝑓(𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
4240, 41bitr4i 278 . . 3 (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥))
4342anbi2i 622 . 2 ((𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)) ↔ (𝐻S ∧ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
441, 43bitri 275 1 (𝐻C ↔ (𝐻S ∧ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  wex 1777  wcel 2108  ∃!weu 2571  wral 3067  wrex 3076   class class class wbr 5166  wf 6569  cn 12293  chba 30951  Cauchyccauold 30958  𝑣 chli 30959   S csh 30960   C cch 30961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264  ax-hilex 31031  ax-hfvadd 31032  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvmulass 31039  ax-hvdistr1 31040  ax-hvdistr2 31041  ax-hvmul0 31042  ax-hfi 31111  ax-his1 31114  ax-his2 31115  ax-his3 31116  ax-his4 31117  ax-hcompl 31234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-icc 13414  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-lm 23258  df-haus 23344  df-cau 25309  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-hnorm 31000  df-hvsub 31003  df-hlim 31004  df-hcau 31005  df-ch 31253
This theorem is referenced by:  chcompl  31274  occl  31336
  Copyright terms: Public domain W3C validator