HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isch3 Structured version   Visualization version   GIF version

Theorem isch3 29504
Description: A Hilbert subspace is closed iff it is complete. A complete subspace is one in which every Cauchy sequence of vectors in the subspace converges to a member of the subspace (Definition of complete subspace in [Beran] p. 96). Remark 3.12 of [Beran] p. 107. (Contributed by NM, 24-Dec-2001.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
isch3 (𝐻C ↔ (𝐻S ∧ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
Distinct variable group:   𝑥,𝑓,𝐻

Proof of Theorem isch3
StepHypRef Expression
1 isch2 29486 . 2 (𝐻C ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
2 ax-hcompl 29465 . . . . . . . . . 10 (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓𝑣 𝑥)
3 rexex 3167 . . . . . . . . . 10 (∃𝑥 ∈ ℋ 𝑓𝑣 𝑥 → ∃𝑥 𝑓𝑣 𝑥)
42, 3syl 17 . . . . . . . . 9 (𝑓 ∈ Cauchy → ∃𝑥 𝑓𝑣 𝑥)
5 19.29 1877 . . . . . . . . 9 ((∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ ∃𝑥 𝑓𝑣 𝑥) → ∃𝑥(((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥))
64, 5sylan2 592 . . . . . . . 8 ((∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓 ∈ Cauchy) → ∃𝑥(((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥))
7 id 22 . . . . . . . . . . . . . . 15 (((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → ((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻))
87imp 406 . . . . . . . . . . . . . 14 ((((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ (𝑓:ℕ⟶𝐻𝑓𝑣 𝑥)) → 𝑥𝐻)
98an12s 645 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶𝐻 ∧ (((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥)) → 𝑥𝐻)
10 simprr 769 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶𝐻 ∧ (((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥)) → 𝑓𝑣 𝑥)
119, 10jca 511 . . . . . . . . . . . 12 ((𝑓:ℕ⟶𝐻 ∧ (((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥)) → (𝑥𝐻𝑓𝑣 𝑥))
1211ex 412 . . . . . . . . . . 11 (𝑓:ℕ⟶𝐻 → ((((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥) → (𝑥𝐻𝑓𝑣 𝑥)))
1312eximdv 1921 . . . . . . . . . 10 (𝑓:ℕ⟶𝐻 → (∃𝑥(((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥) → ∃𝑥(𝑥𝐻𝑓𝑣 𝑥)))
1413com12 32 . . . . . . . . 9 (∃𝑥(((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥) → (𝑓:ℕ⟶𝐻 → ∃𝑥(𝑥𝐻𝑓𝑣 𝑥)))
15 df-rex 3069 . . . . . . . . 9 (∃𝑥𝐻 𝑓𝑣 𝑥 ↔ ∃𝑥(𝑥𝐻𝑓𝑣 𝑥))
1614, 15syl6ibr 251 . . . . . . . 8 (∃𝑥(((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓𝑣 𝑥) → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥))
176, 16syl 17 . . . . . . 7 ((∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ∧ 𝑓 ∈ Cauchy) → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥))
1817ex 412 . . . . . 6 (∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) → (𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
19 nfv 1918 . . . . . . . 8 𝑥 𝑓 ∈ Cauchy
20 nfv 1918 . . . . . . . . 9 𝑥 𝑓:ℕ⟶𝐻
21 nfre1 3234 . . . . . . . . 9 𝑥𝑥𝐻 𝑓𝑣 𝑥
2220, 21nfim 1900 . . . . . . . 8 𝑥(𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)
2319, 22nfim 1900 . . . . . . 7 𝑥(𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥))
24 bi2.04 388 . . . . . . . . 9 ((𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)) ↔ (𝑓:ℕ⟶𝐻 → (𝑓 ∈ Cauchy → ∃𝑥𝐻 𝑓𝑣 𝑥)))
25 hlimcaui 29499 . . . . . . . . . . . 12 (𝑓𝑣 𝑥𝑓 ∈ Cauchy)
2625imim1i 63 . . . . . . . . . . 11 ((𝑓 ∈ Cauchy → ∃𝑥𝐻 𝑓𝑣 𝑥) → (𝑓𝑣 𝑥 → ∃𝑥𝐻 𝑓𝑣 𝑥))
27 rexex 3167 . . . . . . . . . . . . 13 (∃𝑥𝐻 𝑓𝑣 𝑥 → ∃𝑥 𝑓𝑣 𝑥)
28 hlimeui 29503 . . . . . . . . . . . . 13 (∃𝑥 𝑓𝑣 𝑥 ↔ ∃!𝑥 𝑓𝑣 𝑥)
2927, 28sylib 217 . . . . . . . . . . . 12 (∃𝑥𝐻 𝑓𝑣 𝑥 → ∃!𝑥 𝑓𝑣 𝑥)
30 exancom 1865 . . . . . . . . . . . . 13 (∃𝑥(𝑥𝐻𝑓𝑣 𝑥) ↔ ∃𝑥(𝑓𝑣 𝑥𝑥𝐻))
3115, 30sylbb 218 . . . . . . . . . . . 12 (∃𝑥𝐻 𝑓𝑣 𝑥 → ∃𝑥(𝑓𝑣 𝑥𝑥𝐻))
32 eupick 2635 . . . . . . . . . . . 12 ((∃!𝑥 𝑓𝑣 𝑥 ∧ ∃𝑥(𝑓𝑣 𝑥𝑥𝐻)) → (𝑓𝑣 𝑥𝑥𝐻))
3329, 31, 32syl2anc 583 . . . . . . . . . . 11 (∃𝑥𝐻 𝑓𝑣 𝑥 → (𝑓𝑣 𝑥𝑥𝐻))
3426, 33syli 39 . . . . . . . . . 10 ((𝑓 ∈ Cauchy → ∃𝑥𝐻 𝑓𝑣 𝑥) → (𝑓𝑣 𝑥𝑥𝐻))
3534imim2i 16 . . . . . . . . 9 ((𝑓:ℕ⟶𝐻 → (𝑓 ∈ Cauchy → ∃𝑥𝐻 𝑓𝑣 𝑥)) → (𝑓:ℕ⟶𝐻 → (𝑓𝑣 𝑥𝑥𝐻)))
3624, 35sylbi 216 . . . . . . . 8 ((𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)) → (𝑓:ℕ⟶𝐻 → (𝑓𝑣 𝑥𝑥𝐻)))
3736impd 410 . . . . . . 7 ((𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)) → ((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻))
3823, 37alrimi 2209 . . . . . 6 ((𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)) → ∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻))
3918, 38impbii 208 . . . . 5 (∀𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ (𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
4039albii 1823 . . . 4 (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑓(𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
41 df-ral 3068 . . . 4 (∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥) ↔ ∀𝑓(𝑓 ∈ Cauchy → (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
4240, 41bitr4i 277 . . 3 (∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥))
4342anbi2i 622 . 2 ((𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)) ↔ (𝐻S ∧ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
441, 43bitri 274 1 (𝐻C ↔ (𝐻S ∧ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537  wex 1783  wcel 2108  ∃!weu 2568  wral 3063  wrex 3064   class class class wbr 5070  wf 6414  cn 11903  chba 29182  Cauchyccauold 29189  𝑣 chli 29190   S csh 29191   C cch 29192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvmulass 29270  ax-hvdistr1 29271  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347  ax-his4 29348  ax-hcompl 29465
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-lm 22288  df-haus 22374  df-cau 24325  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-vs 28862  df-nmcv 28863  df-ims 28864  df-hnorm 29231  df-hvsub 29234  df-hlim 29235  df-hcau 29236  df-ch 29484
This theorem is referenced by:  chcompl  29505  occl  29567
  Copyright terms: Public domain W3C validator