HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhsscms Structured version   Visualization version   GIF version

Theorem hhsscms 31297
Description: The induced metric of a closed subspace is complete. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhssims2.1 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
hhssims2.3 𝐷 = (IndMet‘𝑊)
hhsscms.3 𝐻C
Assertion
Ref Expression
hhsscms 𝐷 ∈ (CMet‘𝐻)

Proof of Theorem hhsscms
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . 2 (MetOpen‘𝐷) = (MetOpen‘𝐷)
2 hhssims2.1 . . 3 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
3 hhssims2.3 . . 3 𝐷 = (IndMet‘𝑊)
4 hhsscms.3 . . . 4 𝐻C
54chshii 31246 . . 3 𝐻S
62, 3, 5hhssmet 31295 . 2 𝐷 ∈ (Met‘𝐻)
7 simpl 482 . . . . . . . . . 10 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘𝐷))
82, 3, 5hhssims2 31294 . . . . . . . . . . 11 𝐷 = ((norm ∘ − ) ↾ (𝐻 × 𝐻))
98fveq2i 6909 . . . . . . . . . 10 (Cau‘𝐷) = (Cau‘((norm ∘ − ) ↾ (𝐻 × 𝐻)))
107, 9eleqtrdi 2851 . . . . . . . . 9 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘((norm ∘ − ) ↾ (𝐻 × 𝐻))))
11 eqid 2737 . . . . . . . . . . 11 (norm ∘ − ) = (norm ∘ − )
1211hilxmet 31214 . . . . . . . . . 10 (norm ∘ − ) ∈ (∞Met‘ ℋ)
13 simpr 484 . . . . . . . . . 10 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓:ℕ⟶𝐻)
14 causs 25332 . . . . . . . . . 10 (((norm ∘ − ) ∈ (∞Met‘ ℋ) ∧ 𝑓:ℕ⟶𝐻) → (𝑓 ∈ (Cau‘(norm ∘ − )) ↔ 𝑓 ∈ (Cau‘((norm ∘ − ) ↾ (𝐻 × 𝐻)))))
1512, 13, 14sylancr 587 . . . . . . . . 9 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (𝑓 ∈ (Cau‘(norm ∘ − )) ↔ 𝑓 ∈ (Cau‘((norm ∘ − ) ↾ (𝐻 × 𝐻)))))
1610, 15mpbird 257 . . . . . . . 8 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘(norm ∘ − )))
174chssii 31250 . . . . . . . . . 10 𝐻 ⊆ ℋ
18 fss 6752 . . . . . . . . . 10 ((𝑓:ℕ⟶𝐻𝐻 ⊆ ℋ) → 𝑓:ℕ⟶ ℋ)
1913, 17, 18sylancl 586 . . . . . . . . 9 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓:ℕ⟶ ℋ)
20 ax-hilex 31018 . . . . . . . . . 10 ℋ ∈ V
21 nnex 12272 . . . . . . . . . 10 ℕ ∈ V
2220, 21elmap 8911 . . . . . . . . 9 (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ)
2319, 22sylibr 234 . . . . . . . 8 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ ( ℋ ↑m ℕ))
24 eqid 2737 . . . . . . . . . 10 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
2524, 11hhims 31191 . . . . . . . . . 10 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
2624, 25hhcau 31217 . . . . . . . . 9 Cauchy = ((Cau‘(norm ∘ − )) ∩ ( ℋ ↑m ℕ))
2726elin2 4203 . . . . . . . 8 (𝑓 ∈ Cauchy ↔ (𝑓 ∈ (Cau‘(norm ∘ − )) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)))
2816, 23, 27sylanbrc 583 . . . . . . 7 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ Cauchy)
29 ax-hcompl 31221 . . . . . . 7 (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓𝑣 𝑥)
30 vex 3484 . . . . . . . . 9 𝑓 ∈ V
31 vex 3484 . . . . . . . . 9 𝑥 ∈ V
3230, 31breldm 5919 . . . . . . . 8 (𝑓𝑣 𝑥𝑓 ∈ dom ⇝𝑣 )
3332rexlimivw 3151 . . . . . . 7 (∃𝑥 ∈ ℋ 𝑓𝑣 𝑥𝑓 ∈ dom ⇝𝑣 )
3428, 29, 333syl 18 . . . . . 6 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ dom ⇝𝑣 )
35 hlimf 31256 . . . . . . 7 𝑣 :dom ⇝𝑣 ⟶ ℋ
36 ffun 6739 . . . . . . 7 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 )
37 funfvbrb 7071 . . . . . . 7 (Fun ⇝𝑣 → (𝑓 ∈ dom ⇝𝑣𝑓𝑣 ( ⇝𝑣𝑓)))
3835, 36, 37mp2b 10 . . . . . 6 (𝑓 ∈ dom ⇝𝑣𝑓𝑣 ( ⇝𝑣𝑓))
3934, 38sylib 218 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓𝑣 ( ⇝𝑣𝑓))
40 eqid 2737 . . . . . . . 8 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
4124, 25, 40hhlm 31218 . . . . . . 7 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))
42 resss 6019 . . . . . . 7 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
4341, 42eqsstri 4030 . . . . . 6 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
4443ssbri 5188 . . . . 5 (𝑓𝑣 ( ⇝𝑣𝑓) → 𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝑓))
4539, 44syl 17 . . . 4 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝑓))
468, 40, 1metrest 24537 . . . . . . 7 (((norm ∘ − ) ∈ (∞Met‘ ℋ) ∧ 𝐻 ⊆ ℋ) → ((MetOpen‘(norm ∘ − )) ↾t 𝐻) = (MetOpen‘𝐷))
4712, 17, 46mp2an 692 . . . . . 6 ((MetOpen‘(norm ∘ − )) ↾t 𝐻) = (MetOpen‘𝐷)
4847eqcomi 2746 . . . . 5 (MetOpen‘𝐷) = ((MetOpen‘(norm ∘ − )) ↾t 𝐻)
49 nnuz 12921 . . . . 5 ℕ = (ℤ‘1)
504a1i 11 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝐻C )
5140mopntop 24450 . . . . . 6 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ Top)
5212, 51mp1i 13 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (MetOpen‘(norm ∘ − )) ∈ Top)
53 fvex 6919 . . . . . . 7 ( ⇝𝑣𝑓) ∈ V
5453chlimi 31253 . . . . . 6 ((𝐻C𝑓:ℕ⟶𝐻𝑓𝑣 ( ⇝𝑣𝑓)) → ( ⇝𝑣𝑓) ∈ 𝐻)
5550, 13, 39, 54syl3anc 1373 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → ( ⇝𝑣𝑓) ∈ 𝐻)
56 1zzd 12648 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 1 ∈ ℤ)
5748, 49, 50, 52, 55, 56, 13lmss 23306 . . . 4 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝑓) ↔ 𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣𝑓)))
5845, 57mpbid 232 . . 3 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣𝑓))
5930, 53breldm 5919 . . 3 (𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣𝑓) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
6058, 59syl 17 . 2 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
611, 6, 60iscmet3i 25346 1 𝐷 ∈ (CMet‘𝐻)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070  wss 3951  cop 4632   class class class wbr 5143   × cxp 5683  dom cdm 5685  cres 5687  ccom 5689  Fun wfun 6555  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  cc 11153  1c1 11156  cn 12266  t crest 17465  ∞Metcxmet 21349  MetOpencmopn 21354  Topctop 22899  𝑡clm 23234  Cauccau 25287  CMetccmet 25288  IndMetcims 30610  chba 30938   + cva 30939   · csm 30940  normcno 30942   cmv 30944  Cauchyccauold 30945  𝑣 chli 30946   C cch 30948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvdistr1 31027  ax-hvdistr2 31028  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103  ax-his4 31104  ax-hcompl 31221
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ico 13393  df-icc 13394  df-fz 13548  df-fl 13832  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-rest 17467  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-top 22900  df-topon 22917  df-bases 22953  df-ntr 23028  df-nei 23106  df-lm 23237  df-haus 23323  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-cfil 25289  df-cau 25290  df-cmet 25291  df-grpo 30512  df-gid 30513  df-ginv 30514  df-gdiv 30515  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-vs 30618  df-nmcv 30619  df-ims 30620  df-ssp 30741  df-hnorm 30987  df-hba 30988  df-hvsub 30990  df-hlim 30991  df-hcau 30992  df-sh 31226  df-ch 31240  df-ch0 31272
This theorem is referenced by:  hhssbnOLD  31298
  Copyright terms: Public domain W3C validator