| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hhsscms | Structured version Visualization version GIF version | ||
| Description: The induced metric of a closed subspace is complete. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hhssims2.1 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
| hhssims2.3 | ⊢ 𝐷 = (IndMet‘𝑊) |
| hhsscms.3 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| hhsscms | ⊢ 𝐷 ∈ (CMet‘𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 2 | hhssims2.1 | . . 3 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
| 3 | hhssims2.3 | . . 3 ⊢ 𝐷 = (IndMet‘𝑊) | |
| 4 | hhsscms.3 | . . . 4 ⊢ 𝐻 ∈ Cℋ | |
| 5 | 4 | chshii 31189 | . . 3 ⊢ 𝐻 ∈ Sℋ |
| 6 | 2, 3, 5 | hhssmet 31238 | . 2 ⊢ 𝐷 ∈ (Met‘𝐻) |
| 7 | simpl 482 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘𝐷)) | |
| 8 | 2, 3, 5 | hhssims2 31237 | . . . . . . . . . . 11 ⊢ 𝐷 = ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) |
| 9 | 8 | fveq2i 6829 | . . . . . . . . . 10 ⊢ (Cau‘𝐷) = (Cau‘((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻))) |
| 10 | 7, 9 | eleqtrdi 2838 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)))) |
| 11 | eqid 2729 | . . . . . . . . . . 11 ⊢ (normℎ ∘ −ℎ ) = (normℎ ∘ −ℎ ) | |
| 12 | 11 | hilxmet 31157 | . . . . . . . . . 10 ⊢ (normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) |
| 13 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓:ℕ⟶𝐻) | |
| 14 | causs 25214 | . . . . . . . . . 10 ⊢ (((normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) ∧ 𝑓:ℕ⟶𝐻) → (𝑓 ∈ (Cau‘(normℎ ∘ −ℎ )) ↔ 𝑓 ∈ (Cau‘((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻))))) | |
| 15 | 12, 13, 14 | sylancr 587 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (𝑓 ∈ (Cau‘(normℎ ∘ −ℎ )) ↔ 𝑓 ∈ (Cau‘((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻))))) |
| 16 | 10, 15 | mpbird 257 | . . . . . . . 8 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘(normℎ ∘ −ℎ ))) |
| 17 | 4 | chssii 31193 | . . . . . . . . . 10 ⊢ 𝐻 ⊆ ℋ |
| 18 | fss 6672 | . . . . . . . . . 10 ⊢ ((𝑓:ℕ⟶𝐻 ∧ 𝐻 ⊆ ℋ) → 𝑓:ℕ⟶ ℋ) | |
| 19 | 13, 17, 18 | sylancl 586 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓:ℕ⟶ ℋ) |
| 20 | ax-hilex 30961 | . . . . . . . . . 10 ⊢ ℋ ∈ V | |
| 21 | nnex 12152 | . . . . . . . . . 10 ⊢ ℕ ∈ V | |
| 22 | 20, 21 | elmap 8805 | . . . . . . . . 9 ⊢ (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ) |
| 23 | 19, 22 | sylibr 234 | . . . . . . . 8 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ ( ℋ ↑m ℕ)) |
| 24 | eqid 2729 | . . . . . . . . . 10 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 25 | 24, 11 | hhims 31134 | . . . . . . . . . 10 ⊢ (normℎ ∘ −ℎ ) = (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 26 | 24, 25 | hhcau 31160 | . . . . . . . . 9 ⊢ Cauchy = ((Cau‘(normℎ ∘ −ℎ )) ∩ ( ℋ ↑m ℕ)) |
| 27 | 26 | elin2 4156 | . . . . . . . 8 ⊢ (𝑓 ∈ Cauchy ↔ (𝑓 ∈ (Cau‘(normℎ ∘ −ℎ )) ∧ 𝑓 ∈ ( ℋ ↑m ℕ))) |
| 28 | 16, 23, 27 | sylanbrc 583 | . . . . . . 7 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ Cauchy) |
| 29 | ax-hcompl 31164 | . . . . . . 7 ⊢ (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥) | |
| 30 | vex 3442 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
| 31 | vex 3442 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 32 | 30, 31 | breldm 5855 | . . . . . . . 8 ⊢ (𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ⇝𝑣 ) |
| 33 | 32 | rexlimivw 3126 | . . . . . . 7 ⊢ (∃𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ⇝𝑣 ) |
| 34 | 28, 29, 33 | 3syl 18 | . . . . . 6 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ dom ⇝𝑣 ) |
| 35 | hlimf 31199 | . . . . . . 7 ⊢ ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ | |
| 36 | ffun 6659 | . . . . . . 7 ⊢ ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 ) | |
| 37 | funfvbrb 6989 | . . . . . . 7 ⊢ (Fun ⇝𝑣 → (𝑓 ∈ dom ⇝𝑣 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓))) | |
| 38 | 35, 36, 37 | mp2b 10 | . . . . . 6 ⊢ (𝑓 ∈ dom ⇝𝑣 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓)) |
| 39 | 34, 38 | sylib 218 | . . . . 5 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓)) |
| 40 | eqid 2729 | . . . . . . . 8 ⊢ (MetOpen‘(normℎ ∘ −ℎ )) = (MetOpen‘(normℎ ∘ −ℎ )) | |
| 41 | 24, 25, 40 | hhlm 31161 | . . . . . . 7 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ)) |
| 42 | resss 5956 | . . . . . . 7 ⊢ ((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) | |
| 43 | 41, 42 | eqsstri 3984 | . . . . . 6 ⊢ ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) |
| 44 | 43 | ssbri 5140 | . . . . 5 ⊢ (𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓) → 𝑓(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))( ⇝𝑣 ‘𝑓)) |
| 45 | 39, 44 | syl 17 | . . . 4 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))( ⇝𝑣 ‘𝑓)) |
| 46 | 8, 40, 1 | metrest 24428 | . . . . . . 7 ⊢ (((normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) ∧ 𝐻 ⊆ ℋ) → ((MetOpen‘(normℎ ∘ −ℎ )) ↾t 𝐻) = (MetOpen‘𝐷)) |
| 47 | 12, 17, 46 | mp2an 692 | . . . . . 6 ⊢ ((MetOpen‘(normℎ ∘ −ℎ )) ↾t 𝐻) = (MetOpen‘𝐷) |
| 48 | 47 | eqcomi 2738 | . . . . 5 ⊢ (MetOpen‘𝐷) = ((MetOpen‘(normℎ ∘ −ℎ )) ↾t 𝐻) |
| 49 | nnuz 12796 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
| 50 | 4 | a1i 11 | . . . . 5 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝐻 ∈ Cℋ ) |
| 51 | 40 | mopntop 24344 | . . . . . 6 ⊢ ((normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) → (MetOpen‘(normℎ ∘ −ℎ )) ∈ Top) |
| 52 | 12, 51 | mp1i 13 | . . . . 5 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (MetOpen‘(normℎ ∘ −ℎ )) ∈ Top) |
| 53 | fvex 6839 | . . . . . . 7 ⊢ ( ⇝𝑣 ‘𝑓) ∈ V | |
| 54 | 53 | chlimi 31196 | . . . . . 6 ⊢ ((𝐻 ∈ Cℋ ∧ 𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓)) → ( ⇝𝑣 ‘𝑓) ∈ 𝐻) |
| 55 | 50, 13, 39, 54 | syl3anc 1373 | . . . . 5 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → ( ⇝𝑣 ‘𝑓) ∈ 𝐻) |
| 56 | 1zzd 12524 | . . . . 5 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 1 ∈ ℤ) | |
| 57 | 48, 49, 50, 52, 55, 56, 13 | lmss 23201 | . . . 4 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (𝑓(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))( ⇝𝑣 ‘𝑓) ↔ 𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣 ‘𝑓))) |
| 58 | 45, 57 | mpbid 232 | . . 3 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣 ‘𝑓)) |
| 59 | 30, 53 | breldm 5855 | . . 3 ⊢ (𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣 ‘𝑓) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷))) |
| 60 | 58, 59 | syl 17 | . 2 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷))) |
| 61 | 1, 6, 60 | iscmet3i 25228 | 1 ⊢ 𝐷 ∈ (CMet‘𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3905 〈cop 4585 class class class wbr 5095 × cxp 5621 dom cdm 5623 ↾ cres 5625 ∘ ccom 5627 Fun wfun 6480 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 ℂcc 11026 1c1 11029 ℕcn 12146 ↾t crest 17342 ∞Metcxmet 21264 MetOpencmopn 21269 Topctop 22796 ⇝𝑡clm 23129 Cauccau 25169 CMetccmet 25170 IndMetcims 30553 ℋchba 30881 +ℎ cva 30882 ·ℎ csm 30883 normℎcno 30885 −ℎ cmv 30887 Cauchyccauold 30888 ⇝𝑣 chli 30889 Cℋ cch 30891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cc 10348 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 ax-hilex 30961 ax-hfvadd 30962 ax-hvcom 30963 ax-hvass 30964 ax-hv0cl 30965 ax-hvaddid 30966 ax-hfvmul 30967 ax-hvmulid 30968 ax-hvmulass 30969 ax-hvdistr1 30970 ax-hvdistr2 30971 ax-hvmul0 30972 ax-hfi 31041 ax-his1 31044 ax-his2 31045 ax-his3 31046 ax-his4 31047 ax-hcompl 31164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-omul 8400 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-acn 9857 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ico 13272 df-icc 13273 df-fz 13429 df-fl 13714 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-rlim 15414 df-rest 17344 df-topgen 17365 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-top 22797 df-topon 22814 df-bases 22849 df-ntr 22923 df-nei 23001 df-lm 23132 df-haus 23218 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-cfil 25171 df-cau 25172 df-cmet 25173 df-grpo 30455 df-gid 30456 df-ginv 30457 df-gdiv 30458 df-ablo 30507 df-vc 30521 df-nv 30554 df-va 30557 df-ba 30558 df-sm 30559 df-0v 30560 df-vs 30561 df-nmcv 30562 df-ims 30563 df-ssp 30684 df-hnorm 30930 df-hba 30931 df-hvsub 30933 df-hlim 30934 df-hcau 30935 df-sh 31169 df-ch 31183 df-ch0 31215 |
| This theorem is referenced by: hhssbnOLD 31241 |
| Copyright terms: Public domain | W3C validator |