Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hhsscms | Structured version Visualization version GIF version |
Description: The induced metric of a closed subspace is complete. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhssims2.1 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
hhssims2.3 | ⊢ 𝐷 = (IndMet‘𝑊) |
hhsscms.3 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
hhsscms | ⊢ 𝐷 ∈ (CMet‘𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
2 | hhssims2.1 | . . 3 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
3 | hhssims2.3 | . . 3 ⊢ 𝐷 = (IndMet‘𝑊) | |
4 | hhsscms.3 | . . . 4 ⊢ 𝐻 ∈ Cℋ | |
5 | 4 | chshii 29490 | . . 3 ⊢ 𝐻 ∈ Sℋ |
6 | 2, 3, 5 | hhssmet 29539 | . 2 ⊢ 𝐷 ∈ (Met‘𝐻) |
7 | simpl 482 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘𝐷)) | |
8 | 2, 3, 5 | hhssims2 29538 | . . . . . . . . . . 11 ⊢ 𝐷 = ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) |
9 | 8 | fveq2i 6759 | . . . . . . . . . 10 ⊢ (Cau‘𝐷) = (Cau‘((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻))) |
10 | 7, 9 | eleqtrdi 2849 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)))) |
11 | eqid 2738 | . . . . . . . . . . 11 ⊢ (normℎ ∘ −ℎ ) = (normℎ ∘ −ℎ ) | |
12 | 11 | hilxmet 29458 | . . . . . . . . . 10 ⊢ (normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) |
13 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓:ℕ⟶𝐻) | |
14 | causs 24367 | . . . . . . . . . 10 ⊢ (((normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) ∧ 𝑓:ℕ⟶𝐻) → (𝑓 ∈ (Cau‘(normℎ ∘ −ℎ )) ↔ 𝑓 ∈ (Cau‘((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻))))) | |
15 | 12, 13, 14 | sylancr 586 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (𝑓 ∈ (Cau‘(normℎ ∘ −ℎ )) ↔ 𝑓 ∈ (Cau‘((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻))))) |
16 | 10, 15 | mpbird 256 | . . . . . . . 8 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘(normℎ ∘ −ℎ ))) |
17 | 4 | chssii 29494 | . . . . . . . . . 10 ⊢ 𝐻 ⊆ ℋ |
18 | fss 6601 | . . . . . . . . . 10 ⊢ ((𝑓:ℕ⟶𝐻 ∧ 𝐻 ⊆ ℋ) → 𝑓:ℕ⟶ ℋ) | |
19 | 13, 17, 18 | sylancl 585 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓:ℕ⟶ ℋ) |
20 | ax-hilex 29262 | . . . . . . . . . 10 ⊢ ℋ ∈ V | |
21 | nnex 11909 | . . . . . . . . . 10 ⊢ ℕ ∈ V | |
22 | 20, 21 | elmap 8617 | . . . . . . . . 9 ⊢ (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ) |
23 | 19, 22 | sylibr 233 | . . . . . . . 8 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ ( ℋ ↑m ℕ)) |
24 | eqid 2738 | . . . . . . . . . 10 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
25 | 24, 11 | hhims 29435 | . . . . . . . . . 10 ⊢ (normℎ ∘ −ℎ ) = (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
26 | 24, 25 | hhcau 29461 | . . . . . . . . 9 ⊢ Cauchy = ((Cau‘(normℎ ∘ −ℎ )) ∩ ( ℋ ↑m ℕ)) |
27 | 26 | elin2 4127 | . . . . . . . 8 ⊢ (𝑓 ∈ Cauchy ↔ (𝑓 ∈ (Cau‘(normℎ ∘ −ℎ )) ∧ 𝑓 ∈ ( ℋ ↑m ℕ))) |
28 | 16, 23, 27 | sylanbrc 582 | . . . . . . 7 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ Cauchy) |
29 | ax-hcompl 29465 | . . . . . . 7 ⊢ (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥) | |
30 | vex 3426 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
31 | vex 3426 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
32 | 30, 31 | breldm 5806 | . . . . . . . 8 ⊢ (𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ⇝𝑣 ) |
33 | 32 | rexlimivw 3210 | . . . . . . 7 ⊢ (∃𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ⇝𝑣 ) |
34 | 28, 29, 33 | 3syl 18 | . . . . . 6 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ dom ⇝𝑣 ) |
35 | hlimf 29500 | . . . . . . 7 ⊢ ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ | |
36 | ffun 6587 | . . . . . . 7 ⊢ ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 ) | |
37 | funfvbrb 6910 | . . . . . . 7 ⊢ (Fun ⇝𝑣 → (𝑓 ∈ dom ⇝𝑣 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓))) | |
38 | 35, 36, 37 | mp2b 10 | . . . . . 6 ⊢ (𝑓 ∈ dom ⇝𝑣 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓)) |
39 | 34, 38 | sylib 217 | . . . . 5 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓)) |
40 | eqid 2738 | . . . . . . . 8 ⊢ (MetOpen‘(normℎ ∘ −ℎ )) = (MetOpen‘(normℎ ∘ −ℎ )) | |
41 | 24, 25, 40 | hhlm 29462 | . . . . . . 7 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ)) |
42 | resss 5905 | . . . . . . 7 ⊢ ((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) | |
43 | 41, 42 | eqsstri 3951 | . . . . . 6 ⊢ ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) |
44 | 43 | ssbri 5115 | . . . . 5 ⊢ (𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓) → 𝑓(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))( ⇝𝑣 ‘𝑓)) |
45 | 39, 44 | syl 17 | . . . 4 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))( ⇝𝑣 ‘𝑓)) |
46 | 8, 40, 1 | metrest 23586 | . . . . . . 7 ⊢ (((normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) ∧ 𝐻 ⊆ ℋ) → ((MetOpen‘(normℎ ∘ −ℎ )) ↾t 𝐻) = (MetOpen‘𝐷)) |
47 | 12, 17, 46 | mp2an 688 | . . . . . 6 ⊢ ((MetOpen‘(normℎ ∘ −ℎ )) ↾t 𝐻) = (MetOpen‘𝐷) |
48 | 47 | eqcomi 2747 | . . . . 5 ⊢ (MetOpen‘𝐷) = ((MetOpen‘(normℎ ∘ −ℎ )) ↾t 𝐻) |
49 | nnuz 12550 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
50 | 4 | a1i 11 | . . . . 5 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝐻 ∈ Cℋ ) |
51 | 40 | mopntop 23501 | . . . . . 6 ⊢ ((normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) → (MetOpen‘(normℎ ∘ −ℎ )) ∈ Top) |
52 | 12, 51 | mp1i 13 | . . . . 5 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (MetOpen‘(normℎ ∘ −ℎ )) ∈ Top) |
53 | fvex 6769 | . . . . . . 7 ⊢ ( ⇝𝑣 ‘𝑓) ∈ V | |
54 | 53 | chlimi 29497 | . . . . . 6 ⊢ ((𝐻 ∈ Cℋ ∧ 𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓)) → ( ⇝𝑣 ‘𝑓) ∈ 𝐻) |
55 | 50, 13, 39, 54 | syl3anc 1369 | . . . . 5 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → ( ⇝𝑣 ‘𝑓) ∈ 𝐻) |
56 | 1zzd 12281 | . . . . 5 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 1 ∈ ℤ) | |
57 | 48, 49, 50, 52, 55, 56, 13 | lmss 22357 | . . . 4 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (𝑓(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))( ⇝𝑣 ‘𝑓) ↔ 𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣 ‘𝑓))) |
58 | 45, 57 | mpbid 231 | . . 3 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣 ‘𝑓)) |
59 | 30, 53 | breldm 5806 | . . 3 ⊢ (𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣 ‘𝑓) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷))) |
60 | 58, 59 | syl 17 | . 2 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷))) |
61 | 1, 6, 60 | iscmet3i 24381 | 1 ⊢ 𝐷 ∈ (CMet‘𝐻) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 〈cop 4564 class class class wbr 5070 × cxp 5578 dom cdm 5580 ↾ cres 5582 ∘ ccom 5584 Fun wfun 6412 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 ℂcc 10800 1c1 10803 ℕcn 11903 ↾t crest 17048 ∞Metcxmet 20495 MetOpencmopn 20500 Topctop 21950 ⇝𝑡clm 22285 Cauccau 24322 CMetccmet 24323 IndMetcims 28854 ℋchba 29182 +ℎ cva 29183 ·ℎ csm 29184 normℎcno 29186 −ℎ cmv 29188 Cauchyccauold 29189 ⇝𝑣 chli 29190 Cℋ cch 29192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 ax-hilex 29262 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvmulass 29270 ax-hvdistr1 29271 ax-hvdistr2 29272 ax-hvmul0 29273 ax-hfi 29342 ax-his1 29345 ax-his2 29346 ax-his3 29347 ax-his4 29348 ax-hcompl 29465 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ico 13014 df-icc 13015 df-fz 13169 df-fl 13440 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-rest 17050 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-top 21951 df-topon 21968 df-bases 22004 df-ntr 22079 df-nei 22157 df-lm 22288 df-haus 22374 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-cfil 24324 df-cau 24325 df-cmet 24326 df-grpo 28756 df-gid 28757 df-ginv 28758 df-gdiv 28759 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-vs 28862 df-nmcv 28863 df-ims 28864 df-ssp 28985 df-hnorm 29231 df-hba 29232 df-hvsub 29234 df-hlim 29235 df-hcau 29236 df-sh 29470 df-ch 29484 df-ch0 29516 |
This theorem is referenced by: hhssbnOLD 29542 |
Copyright terms: Public domain | W3C validator |