Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hhsscms | Structured version Visualization version GIF version |
Description: The induced metric of a closed subspace is complete. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhssims2.1 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
hhssims2.3 | ⊢ 𝐷 = (IndMet‘𝑊) |
hhsscms.3 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
hhsscms | ⊢ 𝐷 ∈ (CMet‘𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
2 | hhssims2.1 | . . 3 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
3 | hhssims2.3 | . . 3 ⊢ 𝐷 = (IndMet‘𝑊) | |
4 | hhsscms.3 | . . . 4 ⊢ 𝐻 ∈ Cℋ | |
5 | 4 | chshii 29164 | . . 3 ⊢ 𝐻 ∈ Sℋ |
6 | 2, 3, 5 | hhssmet 29213 | . 2 ⊢ 𝐷 ∈ (Met‘𝐻) |
7 | simpl 486 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘𝐷)) | |
8 | 2, 3, 5 | hhssims2 29212 | . . . . . . . . . . 11 ⊢ 𝐷 = ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) |
9 | 8 | fveq2i 6679 | . . . . . . . . . 10 ⊢ (Cau‘𝐷) = (Cau‘((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻))) |
10 | 7, 9 | eleqtrdi 2843 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)))) |
11 | eqid 2738 | . . . . . . . . . . 11 ⊢ (normℎ ∘ −ℎ ) = (normℎ ∘ −ℎ ) | |
12 | 11 | hilxmet 29132 | . . . . . . . . . 10 ⊢ (normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) |
13 | simpr 488 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓:ℕ⟶𝐻) | |
14 | causs 24052 | . . . . . . . . . 10 ⊢ (((normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) ∧ 𝑓:ℕ⟶𝐻) → (𝑓 ∈ (Cau‘(normℎ ∘ −ℎ )) ↔ 𝑓 ∈ (Cau‘((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻))))) | |
15 | 12, 13, 14 | sylancr 590 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (𝑓 ∈ (Cau‘(normℎ ∘ −ℎ )) ↔ 𝑓 ∈ (Cau‘((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻))))) |
16 | 10, 15 | mpbird 260 | . . . . . . . 8 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘(normℎ ∘ −ℎ ))) |
17 | 4 | chssii 29168 | . . . . . . . . . 10 ⊢ 𝐻 ⊆ ℋ |
18 | fss 6521 | . . . . . . . . . 10 ⊢ ((𝑓:ℕ⟶𝐻 ∧ 𝐻 ⊆ ℋ) → 𝑓:ℕ⟶ ℋ) | |
19 | 13, 17, 18 | sylancl 589 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓:ℕ⟶ ℋ) |
20 | ax-hilex 28936 | . . . . . . . . . 10 ⊢ ℋ ∈ V | |
21 | nnex 11724 | . . . . . . . . . 10 ⊢ ℕ ∈ V | |
22 | 20, 21 | elmap 8483 | . . . . . . . . 9 ⊢ (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ) |
23 | 19, 22 | sylibr 237 | . . . . . . . 8 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ ( ℋ ↑m ℕ)) |
24 | eqid 2738 | . . . . . . . . . 10 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
25 | 24, 11 | hhims 29109 | . . . . . . . . . 10 ⊢ (normℎ ∘ −ℎ ) = (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
26 | 24, 25 | hhcau 29135 | . . . . . . . . 9 ⊢ Cauchy = ((Cau‘(normℎ ∘ −ℎ )) ∩ ( ℋ ↑m ℕ)) |
27 | 26 | elin2 4087 | . . . . . . . 8 ⊢ (𝑓 ∈ Cauchy ↔ (𝑓 ∈ (Cau‘(normℎ ∘ −ℎ )) ∧ 𝑓 ∈ ( ℋ ↑m ℕ))) |
28 | 16, 23, 27 | sylanbrc 586 | . . . . . . 7 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ Cauchy) |
29 | ax-hcompl 29139 | . . . . . . 7 ⊢ (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥) | |
30 | vex 3402 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
31 | vex 3402 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
32 | 30, 31 | breldm 5751 | . . . . . . . 8 ⊢ (𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ⇝𝑣 ) |
33 | 32 | rexlimivw 3192 | . . . . . . 7 ⊢ (∃𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ⇝𝑣 ) |
34 | 28, 29, 33 | 3syl 18 | . . . . . 6 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ dom ⇝𝑣 ) |
35 | hlimf 29174 | . . . . . . 7 ⊢ ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ | |
36 | ffun 6507 | . . . . . . 7 ⊢ ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 ) | |
37 | funfvbrb 6830 | . . . . . . 7 ⊢ (Fun ⇝𝑣 → (𝑓 ∈ dom ⇝𝑣 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓))) | |
38 | 35, 36, 37 | mp2b 10 | . . . . . 6 ⊢ (𝑓 ∈ dom ⇝𝑣 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓)) |
39 | 34, 38 | sylib 221 | . . . . 5 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓)) |
40 | eqid 2738 | . . . . . . . 8 ⊢ (MetOpen‘(normℎ ∘ −ℎ )) = (MetOpen‘(normℎ ∘ −ℎ )) | |
41 | 24, 25, 40 | hhlm 29136 | . . . . . . 7 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ)) |
42 | resss 5850 | . . . . . . 7 ⊢ ((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) | |
43 | 41, 42 | eqsstri 3911 | . . . . . 6 ⊢ ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) |
44 | 43 | ssbri 5075 | . . . . 5 ⊢ (𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓) → 𝑓(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))( ⇝𝑣 ‘𝑓)) |
45 | 39, 44 | syl 17 | . . . 4 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))( ⇝𝑣 ‘𝑓)) |
46 | 8, 40, 1 | metrest 23279 | . . . . . . 7 ⊢ (((normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) ∧ 𝐻 ⊆ ℋ) → ((MetOpen‘(normℎ ∘ −ℎ )) ↾t 𝐻) = (MetOpen‘𝐷)) |
47 | 12, 17, 46 | mp2an 692 | . . . . . 6 ⊢ ((MetOpen‘(normℎ ∘ −ℎ )) ↾t 𝐻) = (MetOpen‘𝐷) |
48 | 47 | eqcomi 2747 | . . . . 5 ⊢ (MetOpen‘𝐷) = ((MetOpen‘(normℎ ∘ −ℎ )) ↾t 𝐻) |
49 | nnuz 12365 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
50 | 4 | a1i 11 | . . . . 5 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝐻 ∈ Cℋ ) |
51 | 40 | mopntop 23195 | . . . . . 6 ⊢ ((normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) → (MetOpen‘(normℎ ∘ −ℎ )) ∈ Top) |
52 | 12, 51 | mp1i 13 | . . . . 5 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (MetOpen‘(normℎ ∘ −ℎ )) ∈ Top) |
53 | fvex 6689 | . . . . . . 7 ⊢ ( ⇝𝑣 ‘𝑓) ∈ V | |
54 | 53 | chlimi 29171 | . . . . . 6 ⊢ ((𝐻 ∈ Cℋ ∧ 𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓)) → ( ⇝𝑣 ‘𝑓) ∈ 𝐻) |
55 | 50, 13, 39, 54 | syl3anc 1372 | . . . . 5 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → ( ⇝𝑣 ‘𝑓) ∈ 𝐻) |
56 | 1zzd 12096 | . . . . 5 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 1 ∈ ℤ) | |
57 | 48, 49, 50, 52, 55, 56, 13 | lmss 22051 | . . . 4 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (𝑓(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))( ⇝𝑣 ‘𝑓) ↔ 𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣 ‘𝑓))) |
58 | 45, 57 | mpbid 235 | . . 3 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣 ‘𝑓)) |
59 | 30, 53 | breldm 5751 | . . 3 ⊢ (𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣 ‘𝑓) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷))) |
60 | 58, 59 | syl 17 | . 2 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷))) |
61 | 1, 6, 60 | iscmet3i 24066 | 1 ⊢ 𝐷 ∈ (CMet‘𝐻) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∃wrex 3054 ⊆ wss 3843 〈cop 4522 class class class wbr 5030 × cxp 5523 dom cdm 5525 ↾ cres 5527 ∘ ccom 5529 Fun wfun 6333 ⟶wf 6335 ‘cfv 6339 (class class class)co 7172 ↑m cmap 8439 ℂcc 10615 1c1 10618 ℕcn 11718 ↾t crest 16799 ∞Metcxmet 20204 MetOpencmopn 20209 Topctop 21646 ⇝𝑡clm 21979 Cauccau 24007 CMetccmet 24008 IndMetcims 28528 ℋchba 28856 +ℎ cva 28857 ·ℎ csm 28858 normℎcno 28860 −ℎ cmv 28862 Cauchyccauold 28863 ⇝𝑣 chli 28864 Cℋ cch 28866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-inf2 9179 ax-cc 9937 ax-cnex 10673 ax-resscn 10674 ax-1cn 10675 ax-icn 10676 ax-addcl 10677 ax-addrcl 10678 ax-mulcl 10679 ax-mulrcl 10680 ax-mulcom 10681 ax-addass 10682 ax-mulass 10683 ax-distr 10684 ax-i2m1 10685 ax-1ne0 10686 ax-1rid 10687 ax-rnegex 10688 ax-rrecex 10689 ax-cnre 10690 ax-pre-lttri 10691 ax-pre-lttrn 10692 ax-pre-ltadd 10693 ax-pre-mulgt0 10694 ax-pre-sup 10695 ax-addf 10696 ax-mulf 10697 ax-hilex 28936 ax-hfvadd 28937 ax-hvcom 28938 ax-hvass 28939 ax-hv0cl 28940 ax-hvaddid 28941 ax-hfvmul 28942 ax-hvmulid 28943 ax-hvmulass 28944 ax-hvdistr1 28945 ax-hvdistr2 28946 ax-hvmul0 28947 ax-hfi 29016 ax-his1 29019 ax-his2 29020 ax-his3 29021 ax-his4 29022 ax-hcompl 29139 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7129 df-ov 7175 df-oprab 7176 df-mpo 7177 df-om 7602 df-1st 7716 df-2nd 7717 df-wrecs 7978 df-recs 8039 df-rdg 8077 df-1o 8133 df-oadd 8137 df-omul 8138 df-er 8322 df-map 8441 df-pm 8442 df-en 8558 df-dom 8559 df-sdom 8560 df-fin 8561 df-fi 8950 df-sup 8981 df-inf 8982 df-oi 9049 df-card 9443 df-acn 9446 df-pnf 10757 df-mnf 10758 df-xr 10759 df-ltxr 10760 df-le 10761 df-sub 10952 df-neg 10953 df-div 11378 df-nn 11719 df-2 11781 df-3 11782 df-4 11783 df-n0 11979 df-z 12065 df-uz 12327 df-q 12433 df-rp 12475 df-xneg 12592 df-xadd 12593 df-xmul 12594 df-ico 12829 df-icc 12830 df-fz 12984 df-fl 13255 df-seq 13463 df-exp 13524 df-cj 14550 df-re 14551 df-im 14552 df-sqrt 14686 df-abs 14687 df-clim 14937 df-rlim 14938 df-rest 16801 df-topgen 16822 df-psmet 20211 df-xmet 20212 df-met 20213 df-bl 20214 df-mopn 20215 df-fbas 20216 df-fg 20217 df-top 21647 df-topon 21664 df-bases 21699 df-ntr 21773 df-nei 21851 df-lm 21982 df-haus 22068 df-fil 22599 df-fm 22691 df-flim 22692 df-flf 22693 df-cfil 24009 df-cau 24010 df-cmet 24011 df-grpo 28430 df-gid 28431 df-ginv 28432 df-gdiv 28433 df-ablo 28482 df-vc 28496 df-nv 28529 df-va 28532 df-ba 28533 df-sm 28534 df-0v 28535 df-vs 28536 df-nmcv 28537 df-ims 28538 df-ssp 28659 df-hnorm 28905 df-hba 28906 df-hvsub 28908 df-hlim 28909 df-hcau 28910 df-sh 29144 df-ch 29158 df-ch0 29190 |
This theorem is referenced by: hhssbnOLD 29216 |
Copyright terms: Public domain | W3C validator |