HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhsscms Structured version   Visualization version   GIF version

Theorem hhsscms 31307
Description: The induced metric of a closed subspace is complete. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhssims2.1 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
hhssims2.3 𝐷 = (IndMet‘𝑊)
hhsscms.3 𝐻C
Assertion
Ref Expression
hhsscms 𝐷 ∈ (CMet‘𝐻)

Proof of Theorem hhsscms
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . 2 (MetOpen‘𝐷) = (MetOpen‘𝐷)
2 hhssims2.1 . . 3 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
3 hhssims2.3 . . 3 𝐷 = (IndMet‘𝑊)
4 hhsscms.3 . . . 4 𝐻C
54chshii 31256 . . 3 𝐻S
62, 3, 5hhssmet 31305 . 2 𝐷 ∈ (Met‘𝐻)
7 simpl 482 . . . . . . . . . 10 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘𝐷))
82, 3, 5hhssims2 31304 . . . . . . . . . . 11 𝐷 = ((norm ∘ − ) ↾ (𝐻 × 𝐻))
98fveq2i 6910 . . . . . . . . . 10 (Cau‘𝐷) = (Cau‘((norm ∘ − ) ↾ (𝐻 × 𝐻)))
107, 9eleqtrdi 2849 . . . . . . . . 9 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘((norm ∘ − ) ↾ (𝐻 × 𝐻))))
11 eqid 2735 . . . . . . . . . . 11 (norm ∘ − ) = (norm ∘ − )
1211hilxmet 31224 . . . . . . . . . 10 (norm ∘ − ) ∈ (∞Met‘ ℋ)
13 simpr 484 . . . . . . . . . 10 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓:ℕ⟶𝐻)
14 causs 25346 . . . . . . . . . 10 (((norm ∘ − ) ∈ (∞Met‘ ℋ) ∧ 𝑓:ℕ⟶𝐻) → (𝑓 ∈ (Cau‘(norm ∘ − )) ↔ 𝑓 ∈ (Cau‘((norm ∘ − ) ↾ (𝐻 × 𝐻)))))
1512, 13, 14sylancr 587 . . . . . . . . 9 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (𝑓 ∈ (Cau‘(norm ∘ − )) ↔ 𝑓 ∈ (Cau‘((norm ∘ − ) ↾ (𝐻 × 𝐻)))))
1610, 15mpbird 257 . . . . . . . 8 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘(norm ∘ − )))
174chssii 31260 . . . . . . . . . 10 𝐻 ⊆ ℋ
18 fss 6753 . . . . . . . . . 10 ((𝑓:ℕ⟶𝐻𝐻 ⊆ ℋ) → 𝑓:ℕ⟶ ℋ)
1913, 17, 18sylancl 586 . . . . . . . . 9 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓:ℕ⟶ ℋ)
20 ax-hilex 31028 . . . . . . . . . 10 ℋ ∈ V
21 nnex 12270 . . . . . . . . . 10 ℕ ∈ V
2220, 21elmap 8910 . . . . . . . . 9 (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ)
2319, 22sylibr 234 . . . . . . . 8 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ ( ℋ ↑m ℕ))
24 eqid 2735 . . . . . . . . . 10 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
2524, 11hhims 31201 . . . . . . . . . 10 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
2624, 25hhcau 31227 . . . . . . . . 9 Cauchy = ((Cau‘(norm ∘ − )) ∩ ( ℋ ↑m ℕ))
2726elin2 4213 . . . . . . . 8 (𝑓 ∈ Cauchy ↔ (𝑓 ∈ (Cau‘(norm ∘ − )) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)))
2816, 23, 27sylanbrc 583 . . . . . . 7 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ Cauchy)
29 ax-hcompl 31231 . . . . . . 7 (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓𝑣 𝑥)
30 vex 3482 . . . . . . . . 9 𝑓 ∈ V
31 vex 3482 . . . . . . . . 9 𝑥 ∈ V
3230, 31breldm 5922 . . . . . . . 8 (𝑓𝑣 𝑥𝑓 ∈ dom ⇝𝑣 )
3332rexlimivw 3149 . . . . . . 7 (∃𝑥 ∈ ℋ 𝑓𝑣 𝑥𝑓 ∈ dom ⇝𝑣 )
3428, 29, 333syl 18 . . . . . 6 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ dom ⇝𝑣 )
35 hlimf 31266 . . . . . . 7 𝑣 :dom ⇝𝑣 ⟶ ℋ
36 ffun 6740 . . . . . . 7 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 )
37 funfvbrb 7071 . . . . . . 7 (Fun ⇝𝑣 → (𝑓 ∈ dom ⇝𝑣𝑓𝑣 ( ⇝𝑣𝑓)))
3835, 36, 37mp2b 10 . . . . . 6 (𝑓 ∈ dom ⇝𝑣𝑓𝑣 ( ⇝𝑣𝑓))
3934, 38sylib 218 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓𝑣 ( ⇝𝑣𝑓))
40 eqid 2735 . . . . . . . 8 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
4124, 25, 40hhlm 31228 . . . . . . 7 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))
42 resss 6022 . . . . . . 7 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
4341, 42eqsstri 4030 . . . . . 6 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
4443ssbri 5193 . . . . 5 (𝑓𝑣 ( ⇝𝑣𝑓) → 𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝑓))
4539, 44syl 17 . . . 4 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝑓))
468, 40, 1metrest 24553 . . . . . . 7 (((norm ∘ − ) ∈ (∞Met‘ ℋ) ∧ 𝐻 ⊆ ℋ) → ((MetOpen‘(norm ∘ − )) ↾t 𝐻) = (MetOpen‘𝐷))
4712, 17, 46mp2an 692 . . . . . 6 ((MetOpen‘(norm ∘ − )) ↾t 𝐻) = (MetOpen‘𝐷)
4847eqcomi 2744 . . . . 5 (MetOpen‘𝐷) = ((MetOpen‘(norm ∘ − )) ↾t 𝐻)
49 nnuz 12919 . . . . 5 ℕ = (ℤ‘1)
504a1i 11 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝐻C )
5140mopntop 24466 . . . . . 6 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ Top)
5212, 51mp1i 13 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (MetOpen‘(norm ∘ − )) ∈ Top)
53 fvex 6920 . . . . . . 7 ( ⇝𝑣𝑓) ∈ V
5453chlimi 31263 . . . . . 6 ((𝐻C𝑓:ℕ⟶𝐻𝑓𝑣 ( ⇝𝑣𝑓)) → ( ⇝𝑣𝑓) ∈ 𝐻)
5550, 13, 39, 54syl3anc 1370 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → ( ⇝𝑣𝑓) ∈ 𝐻)
56 1zzd 12646 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 1 ∈ ℤ)
5748, 49, 50, 52, 55, 56, 13lmss 23322 . . . 4 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝑓) ↔ 𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣𝑓)))
5845, 57mpbid 232 . . 3 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣𝑓))
5930, 53breldm 5922 . . 3 (𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣𝑓) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
6058, 59syl 17 . 2 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
611, 6, 60iscmet3i 25360 1 𝐷 ∈ (CMet‘𝐻)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2106  wrex 3068  wss 3963  cop 4637   class class class wbr 5148   × cxp 5687  dom cdm 5689  cres 5691  ccom 5693  Fun wfun 6557  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  cc 11151  1c1 11154  cn 12264  t crest 17467  ∞Metcxmet 21367  MetOpencmopn 21372  Topctop 22915  𝑡clm 23250  Cauccau 25301  CMetccmet 25302  IndMetcims 30620  chba 30948   + cva 30949   · csm 30950  normcno 30952   cmv 30954  Cauchyccauold 30955  𝑣 chli 30956   C cch 30958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cc 10473  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233  ax-hilex 31028  ax-hfvadd 31029  ax-hvcom 31030  ax-hvass 31031  ax-hv0cl 31032  ax-hvaddid 31033  ax-hfvmul 31034  ax-hvmulid 31035  ax-hvmulass 31036  ax-hvdistr1 31037  ax-hvdistr2 31038  ax-hvmul0 31039  ax-hfi 31108  ax-his1 31111  ax-his2 31112  ax-his3 31113  ax-his4 31114  ax-hcompl 31231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ico 13390  df-icc 13391  df-fz 13545  df-fl 13829  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-rest 17469  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-top 22916  df-topon 22933  df-bases 22969  df-ntr 23044  df-nei 23122  df-lm 23253  df-haus 23339  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-cfil 25303  df-cau 25304  df-cmet 25305  df-grpo 30522  df-gid 30523  df-ginv 30524  df-gdiv 30525  df-ablo 30574  df-vc 30588  df-nv 30621  df-va 30624  df-ba 30625  df-sm 30626  df-0v 30627  df-vs 30628  df-nmcv 30629  df-ims 30630  df-ssp 30751  df-hnorm 30997  df-hba 30998  df-hvsub 31000  df-hlim 31001  df-hcau 31002  df-sh 31236  df-ch 31250  df-ch0 31282
This theorem is referenced by:  hhssbnOLD  31308
  Copyright terms: Public domain W3C validator