| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hhsscms | Structured version Visualization version GIF version | ||
| Description: The induced metric of a closed subspace is complete. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hhssims2.1 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
| hhssims2.3 | ⊢ 𝐷 = (IndMet‘𝑊) |
| hhsscms.3 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| hhsscms | ⊢ 𝐷 ∈ (CMet‘𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 2 | hhssims2.1 | . . 3 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
| 3 | hhssims2.3 | . . 3 ⊢ 𝐷 = (IndMet‘𝑊) | |
| 4 | hhsscms.3 | . . . 4 ⊢ 𝐻 ∈ Cℋ | |
| 5 | 4 | chshii 31156 | . . 3 ⊢ 𝐻 ∈ Sℋ |
| 6 | 2, 3, 5 | hhssmet 31205 | . 2 ⊢ 𝐷 ∈ (Met‘𝐻) |
| 7 | simpl 482 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘𝐷)) | |
| 8 | 2, 3, 5 | hhssims2 31204 | . . . . . . . . . . 11 ⊢ 𝐷 = ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) |
| 9 | 8 | fveq2i 6861 | . . . . . . . . . 10 ⊢ (Cau‘𝐷) = (Cau‘((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻))) |
| 10 | 7, 9 | eleqtrdi 2838 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)))) |
| 11 | eqid 2729 | . . . . . . . . . . 11 ⊢ (normℎ ∘ −ℎ ) = (normℎ ∘ −ℎ ) | |
| 12 | 11 | hilxmet 31124 | . . . . . . . . . 10 ⊢ (normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) |
| 13 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓:ℕ⟶𝐻) | |
| 14 | causs 25198 | . . . . . . . . . 10 ⊢ (((normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) ∧ 𝑓:ℕ⟶𝐻) → (𝑓 ∈ (Cau‘(normℎ ∘ −ℎ )) ↔ 𝑓 ∈ (Cau‘((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻))))) | |
| 15 | 12, 13, 14 | sylancr 587 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (𝑓 ∈ (Cau‘(normℎ ∘ −ℎ )) ↔ 𝑓 ∈ (Cau‘((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻))))) |
| 16 | 10, 15 | mpbird 257 | . . . . . . . 8 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘(normℎ ∘ −ℎ ))) |
| 17 | 4 | chssii 31160 | . . . . . . . . . 10 ⊢ 𝐻 ⊆ ℋ |
| 18 | fss 6704 | . . . . . . . . . 10 ⊢ ((𝑓:ℕ⟶𝐻 ∧ 𝐻 ⊆ ℋ) → 𝑓:ℕ⟶ ℋ) | |
| 19 | 13, 17, 18 | sylancl 586 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓:ℕ⟶ ℋ) |
| 20 | ax-hilex 30928 | . . . . . . . . . 10 ⊢ ℋ ∈ V | |
| 21 | nnex 12192 | . . . . . . . . . 10 ⊢ ℕ ∈ V | |
| 22 | 20, 21 | elmap 8844 | . . . . . . . . 9 ⊢ (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ) |
| 23 | 19, 22 | sylibr 234 | . . . . . . . 8 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ ( ℋ ↑m ℕ)) |
| 24 | eqid 2729 | . . . . . . . . . 10 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 25 | 24, 11 | hhims 31101 | . . . . . . . . . 10 ⊢ (normℎ ∘ −ℎ ) = (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 26 | 24, 25 | hhcau 31127 | . . . . . . . . 9 ⊢ Cauchy = ((Cau‘(normℎ ∘ −ℎ )) ∩ ( ℋ ↑m ℕ)) |
| 27 | 26 | elin2 4166 | . . . . . . . 8 ⊢ (𝑓 ∈ Cauchy ↔ (𝑓 ∈ (Cau‘(normℎ ∘ −ℎ )) ∧ 𝑓 ∈ ( ℋ ↑m ℕ))) |
| 28 | 16, 23, 27 | sylanbrc 583 | . . . . . . 7 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ Cauchy) |
| 29 | ax-hcompl 31131 | . . . . . . 7 ⊢ (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥) | |
| 30 | vex 3451 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
| 31 | vex 3451 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 32 | 30, 31 | breldm 5872 | . . . . . . . 8 ⊢ (𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ⇝𝑣 ) |
| 33 | 32 | rexlimivw 3130 | . . . . . . 7 ⊢ (∃𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ⇝𝑣 ) |
| 34 | 28, 29, 33 | 3syl 18 | . . . . . 6 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ dom ⇝𝑣 ) |
| 35 | hlimf 31166 | . . . . . . 7 ⊢ ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ | |
| 36 | ffun 6691 | . . . . . . 7 ⊢ ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 ) | |
| 37 | funfvbrb 7023 | . . . . . . 7 ⊢ (Fun ⇝𝑣 → (𝑓 ∈ dom ⇝𝑣 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓))) | |
| 38 | 35, 36, 37 | mp2b 10 | . . . . . 6 ⊢ (𝑓 ∈ dom ⇝𝑣 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓)) |
| 39 | 34, 38 | sylib 218 | . . . . 5 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓)) |
| 40 | eqid 2729 | . . . . . . . 8 ⊢ (MetOpen‘(normℎ ∘ −ℎ )) = (MetOpen‘(normℎ ∘ −ℎ )) | |
| 41 | 24, 25, 40 | hhlm 31128 | . . . . . . 7 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ)) |
| 42 | resss 5972 | . . . . . . 7 ⊢ ((⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) | |
| 43 | 41, 42 | eqsstri 3993 | . . . . . 6 ⊢ ⇝𝑣 ⊆ (⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ ))) |
| 44 | 43 | ssbri 5152 | . . . . 5 ⊢ (𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓) → 𝑓(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))( ⇝𝑣 ‘𝑓)) |
| 45 | 39, 44 | syl 17 | . . . 4 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))( ⇝𝑣 ‘𝑓)) |
| 46 | 8, 40, 1 | metrest 24412 | . . . . . . 7 ⊢ (((normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) ∧ 𝐻 ⊆ ℋ) → ((MetOpen‘(normℎ ∘ −ℎ )) ↾t 𝐻) = (MetOpen‘𝐷)) |
| 47 | 12, 17, 46 | mp2an 692 | . . . . . 6 ⊢ ((MetOpen‘(normℎ ∘ −ℎ )) ↾t 𝐻) = (MetOpen‘𝐷) |
| 48 | 47 | eqcomi 2738 | . . . . 5 ⊢ (MetOpen‘𝐷) = ((MetOpen‘(normℎ ∘ −ℎ )) ↾t 𝐻) |
| 49 | nnuz 12836 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
| 50 | 4 | a1i 11 | . . . . 5 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝐻 ∈ Cℋ ) |
| 51 | 40 | mopntop 24328 | . . . . . 6 ⊢ ((normℎ ∘ −ℎ ) ∈ (∞Met‘ ℋ) → (MetOpen‘(normℎ ∘ −ℎ )) ∈ Top) |
| 52 | 12, 51 | mp1i 13 | . . . . 5 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (MetOpen‘(normℎ ∘ −ℎ )) ∈ Top) |
| 53 | fvex 6871 | . . . . . . 7 ⊢ ( ⇝𝑣 ‘𝑓) ∈ V | |
| 54 | 53 | chlimi 31163 | . . . . . 6 ⊢ ((𝐻 ∈ Cℋ ∧ 𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓)) → ( ⇝𝑣 ‘𝑓) ∈ 𝐻) |
| 55 | 50, 13, 39, 54 | syl3anc 1373 | . . . . 5 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → ( ⇝𝑣 ‘𝑓) ∈ 𝐻) |
| 56 | 1zzd 12564 | . . . . 5 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 1 ∈ ℤ) | |
| 57 | 48, 49, 50, 52, 55, 56, 13 | lmss 23185 | . . . 4 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (𝑓(⇝𝑡‘(MetOpen‘(normℎ ∘ −ℎ )))( ⇝𝑣 ‘𝑓) ↔ 𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣 ‘𝑓))) |
| 58 | 45, 57 | mpbid 232 | . . 3 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣 ‘𝑓)) |
| 59 | 30, 53 | breldm 5872 | . . 3 ⊢ (𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣 ‘𝑓) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷))) |
| 60 | 58, 59 | syl 17 | . 2 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷))) |
| 61 | 1, 6, 60 | iscmet3i 25212 | 1 ⊢ 𝐷 ∈ (CMet‘𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3914 〈cop 4595 class class class wbr 5107 × cxp 5636 dom cdm 5638 ↾ cres 5640 ∘ ccom 5642 Fun wfun 6505 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 ℂcc 11066 1c1 11069 ℕcn 12186 ↾t crest 17383 ∞Metcxmet 21249 MetOpencmopn 21254 Topctop 22780 ⇝𝑡clm 23113 Cauccau 25153 CMetccmet 25154 IndMetcims 30520 ℋchba 30848 +ℎ cva 30849 ·ℎ csm 30850 normℎcno 30852 −ℎ cmv 30854 Cauchyccauold 30855 ⇝𝑣 chli 30856 Cℋ cch 30858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 ax-hilex 30928 ax-hfvadd 30929 ax-hvcom 30930 ax-hvass 30931 ax-hv0cl 30932 ax-hvaddid 30933 ax-hfvmul 30934 ax-hvmulid 30935 ax-hvmulass 30936 ax-hvdistr1 30937 ax-hvdistr2 30938 ax-hvmul0 30939 ax-hfi 31008 ax-his1 31011 ax-his2 31012 ax-his3 31013 ax-his4 31014 ax-hcompl 31131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ico 13312 df-icc 13313 df-fz 13469 df-fl 13754 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-rest 17385 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-top 22781 df-topon 22798 df-bases 22833 df-ntr 22907 df-nei 22985 df-lm 23116 df-haus 23202 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-cfil 25155 df-cau 25156 df-cmet 25157 df-grpo 30422 df-gid 30423 df-ginv 30424 df-gdiv 30425 df-ablo 30474 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-vs 30528 df-nmcv 30529 df-ims 30530 df-ssp 30651 df-hnorm 30897 df-hba 30898 df-hvsub 30900 df-hlim 30901 df-hcau 30902 df-sh 31136 df-ch 31150 df-ch0 31182 |
| This theorem is referenced by: hhssbnOLD 31208 |
| Copyright terms: Public domain | W3C validator |