HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhsscms Structured version   Visualization version   GIF version

Theorem hhsscms 29640
Description: The induced metric of a closed subspace is complete. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhssims2.1 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
hhssims2.3 𝐷 = (IndMet‘𝑊)
hhsscms.3 𝐻C
Assertion
Ref Expression
hhsscms 𝐷 ∈ (CMet‘𝐻)

Proof of Theorem hhsscms
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 (MetOpen‘𝐷) = (MetOpen‘𝐷)
2 hhssims2.1 . . 3 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
3 hhssims2.3 . . 3 𝐷 = (IndMet‘𝑊)
4 hhsscms.3 . . . 4 𝐻C
54chshii 29589 . . 3 𝐻S
62, 3, 5hhssmet 29638 . 2 𝐷 ∈ (Met‘𝐻)
7 simpl 483 . . . . . . . . . 10 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘𝐷))
82, 3, 5hhssims2 29637 . . . . . . . . . . 11 𝐷 = ((norm ∘ − ) ↾ (𝐻 × 𝐻))
98fveq2i 6777 . . . . . . . . . 10 (Cau‘𝐷) = (Cau‘((norm ∘ − ) ↾ (𝐻 × 𝐻)))
107, 9eleqtrdi 2849 . . . . . . . . 9 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘((norm ∘ − ) ↾ (𝐻 × 𝐻))))
11 eqid 2738 . . . . . . . . . . 11 (norm ∘ − ) = (norm ∘ − )
1211hilxmet 29557 . . . . . . . . . 10 (norm ∘ − ) ∈ (∞Met‘ ℋ)
13 simpr 485 . . . . . . . . . 10 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓:ℕ⟶𝐻)
14 causs 24462 . . . . . . . . . 10 (((norm ∘ − ) ∈ (∞Met‘ ℋ) ∧ 𝑓:ℕ⟶𝐻) → (𝑓 ∈ (Cau‘(norm ∘ − )) ↔ 𝑓 ∈ (Cau‘((norm ∘ − ) ↾ (𝐻 × 𝐻)))))
1512, 13, 14sylancr 587 . . . . . . . . 9 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (𝑓 ∈ (Cau‘(norm ∘ − )) ↔ 𝑓 ∈ (Cau‘((norm ∘ − ) ↾ (𝐻 × 𝐻)))))
1610, 15mpbird 256 . . . . . . . 8 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘(norm ∘ − )))
174chssii 29593 . . . . . . . . . 10 𝐻 ⊆ ℋ
18 fss 6617 . . . . . . . . . 10 ((𝑓:ℕ⟶𝐻𝐻 ⊆ ℋ) → 𝑓:ℕ⟶ ℋ)
1913, 17, 18sylancl 586 . . . . . . . . 9 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓:ℕ⟶ ℋ)
20 ax-hilex 29361 . . . . . . . . . 10 ℋ ∈ V
21 nnex 11979 . . . . . . . . . 10 ℕ ∈ V
2220, 21elmap 8659 . . . . . . . . 9 (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ)
2319, 22sylibr 233 . . . . . . . 8 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ ( ℋ ↑m ℕ))
24 eqid 2738 . . . . . . . . . 10 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
2524, 11hhims 29534 . . . . . . . . . 10 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
2624, 25hhcau 29560 . . . . . . . . 9 Cauchy = ((Cau‘(norm ∘ − )) ∩ ( ℋ ↑m ℕ))
2726elin2 4131 . . . . . . . 8 (𝑓 ∈ Cauchy ↔ (𝑓 ∈ (Cau‘(norm ∘ − )) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)))
2816, 23, 27sylanbrc 583 . . . . . . 7 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ Cauchy)
29 ax-hcompl 29564 . . . . . . 7 (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓𝑣 𝑥)
30 vex 3436 . . . . . . . . 9 𝑓 ∈ V
31 vex 3436 . . . . . . . . 9 𝑥 ∈ V
3230, 31breldm 5817 . . . . . . . 8 (𝑓𝑣 𝑥𝑓 ∈ dom ⇝𝑣 )
3332rexlimivw 3211 . . . . . . 7 (∃𝑥 ∈ ℋ 𝑓𝑣 𝑥𝑓 ∈ dom ⇝𝑣 )
3428, 29, 333syl 18 . . . . . 6 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ dom ⇝𝑣 )
35 hlimf 29599 . . . . . . 7 𝑣 :dom ⇝𝑣 ⟶ ℋ
36 ffun 6603 . . . . . . 7 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 )
37 funfvbrb 6928 . . . . . . 7 (Fun ⇝𝑣 → (𝑓 ∈ dom ⇝𝑣𝑓𝑣 ( ⇝𝑣𝑓)))
3835, 36, 37mp2b 10 . . . . . 6 (𝑓 ∈ dom ⇝𝑣𝑓𝑣 ( ⇝𝑣𝑓))
3934, 38sylib 217 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓𝑣 ( ⇝𝑣𝑓))
40 eqid 2738 . . . . . . . 8 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
4124, 25, 40hhlm 29561 . . . . . . 7 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))
42 resss 5916 . . . . . . 7 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
4341, 42eqsstri 3955 . . . . . 6 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
4443ssbri 5119 . . . . 5 (𝑓𝑣 ( ⇝𝑣𝑓) → 𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝑓))
4539, 44syl 17 . . . 4 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝑓))
468, 40, 1metrest 23680 . . . . . . 7 (((norm ∘ − ) ∈ (∞Met‘ ℋ) ∧ 𝐻 ⊆ ℋ) → ((MetOpen‘(norm ∘ − )) ↾t 𝐻) = (MetOpen‘𝐷))
4712, 17, 46mp2an 689 . . . . . 6 ((MetOpen‘(norm ∘ − )) ↾t 𝐻) = (MetOpen‘𝐷)
4847eqcomi 2747 . . . . 5 (MetOpen‘𝐷) = ((MetOpen‘(norm ∘ − )) ↾t 𝐻)
49 nnuz 12621 . . . . 5 ℕ = (ℤ‘1)
504a1i 11 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝐻C )
5140mopntop 23593 . . . . . 6 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ Top)
5212, 51mp1i 13 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (MetOpen‘(norm ∘ − )) ∈ Top)
53 fvex 6787 . . . . . . 7 ( ⇝𝑣𝑓) ∈ V
5453chlimi 29596 . . . . . 6 ((𝐻C𝑓:ℕ⟶𝐻𝑓𝑣 ( ⇝𝑣𝑓)) → ( ⇝𝑣𝑓) ∈ 𝐻)
5550, 13, 39, 54syl3anc 1370 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → ( ⇝𝑣𝑓) ∈ 𝐻)
56 1zzd 12351 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 1 ∈ ℤ)
5748, 49, 50, 52, 55, 56, 13lmss 22449 . . . 4 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝑓) ↔ 𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣𝑓)))
5845, 57mpbid 231 . . 3 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣𝑓))
5930, 53breldm 5817 . . 3 (𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣𝑓) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
6058, 59syl 17 . 2 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
611, 6, 60iscmet3i 24476 1 𝐷 ∈ (CMet‘𝐻)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  wss 3887  cop 4567   class class class wbr 5074   × cxp 5587  dom cdm 5589  cres 5591  ccom 5593  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  cc 10869  1c1 10872  cn 11973  t crest 17131  ∞Metcxmet 20582  MetOpencmopn 20587  Topctop 22042  𝑡clm 22377  Cauccau 24417  CMetccmet 24418  IndMetcims 28953  chba 29281   + cva 29282   · csm 29283  normcno 29285   cmv 29287  Cauchyccauold 29288  𝑣 chli 29289   C cch 29291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951  ax-hilex 29361  ax-hfvadd 29362  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvmulass 29369  ax-hvdistr1 29370  ax-hvdistr2 29371  ax-hvmul0 29372  ax-hfi 29441  ax-his1 29444  ax-his2 29445  ax-his3 29446  ax-his4 29447  ax-hcompl 29564
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-icc 13086  df-fz 13240  df-fl 13512  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-rest 17133  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-top 22043  df-topon 22060  df-bases 22096  df-ntr 22171  df-nei 22249  df-lm 22380  df-haus 22466  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-cfil 24419  df-cau 24420  df-cmet 24421  df-grpo 28855  df-gid 28856  df-ginv 28857  df-gdiv 28858  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-vs 28961  df-nmcv 28962  df-ims 28963  df-ssp 29084  df-hnorm 29330  df-hba 29331  df-hvsub 29333  df-hlim 29334  df-hcau 29335  df-sh 29569  df-ch 29583  df-ch0 29615
This theorem is referenced by:  hhssbnOLD  29641
  Copyright terms: Public domain W3C validator