HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhsscms Structured version   Visualization version   GIF version

Theorem hhsscms 31248
Description: The induced metric of a closed subspace is complete. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhssims2.1 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
hhssims2.3 𝐷 = (IndMet‘𝑊)
hhsscms.3 𝐻C
Assertion
Ref Expression
hhsscms 𝐷 ∈ (CMet‘𝐻)

Proof of Theorem hhsscms
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . 2 (MetOpen‘𝐷) = (MetOpen‘𝐷)
2 hhssims2.1 . . 3 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
3 hhssims2.3 . . 3 𝐷 = (IndMet‘𝑊)
4 hhsscms.3 . . . 4 𝐻C
54chshii 31197 . . 3 𝐻S
62, 3, 5hhssmet 31246 . 2 𝐷 ∈ (Met‘𝐻)
7 simpl 482 . . . . . . . . . 10 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘𝐷))
82, 3, 5hhssims2 31245 . . . . . . . . . . 11 𝐷 = ((norm ∘ − ) ↾ (𝐻 × 𝐻))
98fveq2i 6820 . . . . . . . . . 10 (Cau‘𝐷) = (Cau‘((norm ∘ − ) ↾ (𝐻 × 𝐻)))
107, 9eleqtrdi 2839 . . . . . . . . 9 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘((norm ∘ − ) ↾ (𝐻 × 𝐻))))
11 eqid 2730 . . . . . . . . . . 11 (norm ∘ − ) = (norm ∘ − )
1211hilxmet 31165 . . . . . . . . . 10 (norm ∘ − ) ∈ (∞Met‘ ℋ)
13 simpr 484 . . . . . . . . . 10 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓:ℕ⟶𝐻)
14 causs 25218 . . . . . . . . . 10 (((norm ∘ − ) ∈ (∞Met‘ ℋ) ∧ 𝑓:ℕ⟶𝐻) → (𝑓 ∈ (Cau‘(norm ∘ − )) ↔ 𝑓 ∈ (Cau‘((norm ∘ − ) ↾ (𝐻 × 𝐻)))))
1512, 13, 14sylancr 587 . . . . . . . . 9 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (𝑓 ∈ (Cau‘(norm ∘ − )) ↔ 𝑓 ∈ (Cau‘((norm ∘ − ) ↾ (𝐻 × 𝐻)))))
1610, 15mpbird 257 . . . . . . . 8 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘(norm ∘ − )))
174chssii 31201 . . . . . . . . . 10 𝐻 ⊆ ℋ
18 fss 6663 . . . . . . . . . 10 ((𝑓:ℕ⟶𝐻𝐻 ⊆ ℋ) → 𝑓:ℕ⟶ ℋ)
1913, 17, 18sylancl 586 . . . . . . . . 9 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓:ℕ⟶ ℋ)
20 ax-hilex 30969 . . . . . . . . . 10 ℋ ∈ V
21 nnex 12123 . . . . . . . . . 10 ℕ ∈ V
2220, 21elmap 8790 . . . . . . . . 9 (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ)
2319, 22sylibr 234 . . . . . . . 8 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ ( ℋ ↑m ℕ))
24 eqid 2730 . . . . . . . . . 10 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
2524, 11hhims 31142 . . . . . . . . . 10 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
2624, 25hhcau 31168 . . . . . . . . 9 Cauchy = ((Cau‘(norm ∘ − )) ∩ ( ℋ ↑m ℕ))
2726elin2 4151 . . . . . . . 8 (𝑓 ∈ Cauchy ↔ (𝑓 ∈ (Cau‘(norm ∘ − )) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)))
2816, 23, 27sylanbrc 583 . . . . . . 7 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ Cauchy)
29 ax-hcompl 31172 . . . . . . 7 (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓𝑣 𝑥)
30 vex 3438 . . . . . . . . 9 𝑓 ∈ V
31 vex 3438 . . . . . . . . 9 𝑥 ∈ V
3230, 31breldm 5846 . . . . . . . 8 (𝑓𝑣 𝑥𝑓 ∈ dom ⇝𝑣 )
3332rexlimivw 3127 . . . . . . 7 (∃𝑥 ∈ ℋ 𝑓𝑣 𝑥𝑓 ∈ dom ⇝𝑣 )
3428, 29, 333syl 18 . . . . . 6 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ dom ⇝𝑣 )
35 hlimf 31207 . . . . . . 7 𝑣 :dom ⇝𝑣 ⟶ ℋ
36 ffun 6650 . . . . . . 7 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 )
37 funfvbrb 6979 . . . . . . 7 (Fun ⇝𝑣 → (𝑓 ∈ dom ⇝𝑣𝑓𝑣 ( ⇝𝑣𝑓)))
3835, 36, 37mp2b 10 . . . . . 6 (𝑓 ∈ dom ⇝𝑣𝑓𝑣 ( ⇝𝑣𝑓))
3934, 38sylib 218 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓𝑣 ( ⇝𝑣𝑓))
40 eqid 2730 . . . . . . . 8 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
4124, 25, 40hhlm 31169 . . . . . . 7 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))
42 resss 5947 . . . . . . 7 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
4341, 42eqsstri 3979 . . . . . 6 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
4443ssbri 5134 . . . . 5 (𝑓𝑣 ( ⇝𝑣𝑓) → 𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝑓))
4539, 44syl 17 . . . 4 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝑓))
468, 40, 1metrest 24432 . . . . . . 7 (((norm ∘ − ) ∈ (∞Met‘ ℋ) ∧ 𝐻 ⊆ ℋ) → ((MetOpen‘(norm ∘ − )) ↾t 𝐻) = (MetOpen‘𝐷))
4712, 17, 46mp2an 692 . . . . . 6 ((MetOpen‘(norm ∘ − )) ↾t 𝐻) = (MetOpen‘𝐷)
4847eqcomi 2739 . . . . 5 (MetOpen‘𝐷) = ((MetOpen‘(norm ∘ − )) ↾t 𝐻)
49 nnuz 12767 . . . . 5 ℕ = (ℤ‘1)
504a1i 11 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝐻C )
5140mopntop 24348 . . . . . 6 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ Top)
5212, 51mp1i 13 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (MetOpen‘(norm ∘ − )) ∈ Top)
53 fvex 6830 . . . . . . 7 ( ⇝𝑣𝑓) ∈ V
5453chlimi 31204 . . . . . 6 ((𝐻C𝑓:ℕ⟶𝐻𝑓𝑣 ( ⇝𝑣𝑓)) → ( ⇝𝑣𝑓) ∈ 𝐻)
5550, 13, 39, 54syl3anc 1373 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → ( ⇝𝑣𝑓) ∈ 𝐻)
56 1zzd 12495 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 1 ∈ ℤ)
5748, 49, 50, 52, 55, 56, 13lmss 23206 . . . 4 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝑓) ↔ 𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣𝑓)))
5845, 57mpbid 232 . . 3 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣𝑓))
5930, 53breldm 5846 . . 3 (𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣𝑓) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
6058, 59syl 17 . 2 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
611, 6, 60iscmet3i 25232 1 𝐷 ∈ (CMet‘𝐻)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2110  wrex 3054  wss 3900  cop 4580   class class class wbr 5089   × cxp 5612  dom cdm 5614  cres 5616  ccom 5618  Fun wfun 6471  wf 6473  cfv 6477  (class class class)co 7341  m cmap 8745  cc 10996  1c1 10999  cn 12117  t crest 17316  ∞Metcxmet 21269  MetOpencmopn 21274  Topctop 22801  𝑡clm 23134  Cauccau 25173  CMetccmet 25174  IndMetcims 30561  chba 30889   + cva 30890   · csm 30891  normcno 30893   cmv 30895  Cauchyccauold 30896  𝑣 chli 30897   C cch 30899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cc 10318  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077  ax-mulf 11078  ax-hilex 30969  ax-hfvadd 30970  ax-hvcom 30971  ax-hvass 30972  ax-hv0cl 30973  ax-hvaddid 30974  ax-hfvmul 30975  ax-hvmulid 30976  ax-hvmulass 30977  ax-hvdistr1 30978  ax-hvdistr2 30979  ax-hvmul0 30980  ax-hfi 31049  ax-his1 31052  ax-his2 31053  ax-his3 31054  ax-his4 31055  ax-hcompl 31172
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-acn 9827  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-n0 12374  df-z 12461  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ico 13243  df-icc 13244  df-fz 13400  df-fl 13688  df-seq 13901  df-exp 13961  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-rlim 15388  df-rest 17318  df-topgen 17339  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-top 22802  df-topon 22819  df-bases 22854  df-ntr 22928  df-nei 23006  df-lm 23137  df-haus 23223  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-cfil 25175  df-cau 25176  df-cmet 25177  df-grpo 30463  df-gid 30464  df-ginv 30465  df-gdiv 30466  df-ablo 30515  df-vc 30529  df-nv 30562  df-va 30565  df-ba 30566  df-sm 30567  df-0v 30568  df-vs 30569  df-nmcv 30570  df-ims 30571  df-ssp 30692  df-hnorm 30938  df-hba 30939  df-hvsub 30941  df-hlim 30942  df-hcau 30943  df-sh 31177  df-ch 31191  df-ch0 31223
This theorem is referenced by:  hhssbnOLD  31249
  Copyright terms: Public domain W3C validator