HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhsscms Structured version   Visualization version   GIF version

Theorem hhsscms 31240
Description: The induced metric of a closed subspace is complete. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhssims2.1 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
hhssims2.3 𝐷 = (IndMet‘𝑊)
hhsscms.3 𝐻C
Assertion
Ref Expression
hhsscms 𝐷 ∈ (CMet‘𝐻)

Proof of Theorem hhsscms
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (MetOpen‘𝐷) = (MetOpen‘𝐷)
2 hhssims2.1 . . 3 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
3 hhssims2.3 . . 3 𝐷 = (IndMet‘𝑊)
4 hhsscms.3 . . . 4 𝐻C
54chshii 31189 . . 3 𝐻S
62, 3, 5hhssmet 31238 . 2 𝐷 ∈ (Met‘𝐻)
7 simpl 482 . . . . . . . . . 10 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘𝐷))
82, 3, 5hhssims2 31237 . . . . . . . . . . 11 𝐷 = ((norm ∘ − ) ↾ (𝐻 × 𝐻))
98fveq2i 6829 . . . . . . . . . 10 (Cau‘𝐷) = (Cau‘((norm ∘ − ) ↾ (𝐻 × 𝐻)))
107, 9eleqtrdi 2838 . . . . . . . . 9 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘((norm ∘ − ) ↾ (𝐻 × 𝐻))))
11 eqid 2729 . . . . . . . . . . 11 (norm ∘ − ) = (norm ∘ − )
1211hilxmet 31157 . . . . . . . . . 10 (norm ∘ − ) ∈ (∞Met‘ ℋ)
13 simpr 484 . . . . . . . . . 10 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓:ℕ⟶𝐻)
14 causs 25214 . . . . . . . . . 10 (((norm ∘ − ) ∈ (∞Met‘ ℋ) ∧ 𝑓:ℕ⟶𝐻) → (𝑓 ∈ (Cau‘(norm ∘ − )) ↔ 𝑓 ∈ (Cau‘((norm ∘ − ) ↾ (𝐻 × 𝐻)))))
1512, 13, 14sylancr 587 . . . . . . . . 9 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (𝑓 ∈ (Cau‘(norm ∘ − )) ↔ 𝑓 ∈ (Cau‘((norm ∘ − ) ↾ (𝐻 × 𝐻)))))
1610, 15mpbird 257 . . . . . . . 8 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ (Cau‘(norm ∘ − )))
174chssii 31193 . . . . . . . . . 10 𝐻 ⊆ ℋ
18 fss 6672 . . . . . . . . . 10 ((𝑓:ℕ⟶𝐻𝐻 ⊆ ℋ) → 𝑓:ℕ⟶ ℋ)
1913, 17, 18sylancl 586 . . . . . . . . 9 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓:ℕ⟶ ℋ)
20 ax-hilex 30961 . . . . . . . . . 10 ℋ ∈ V
21 nnex 12152 . . . . . . . . . 10 ℕ ∈ V
2220, 21elmap 8805 . . . . . . . . 9 (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ)
2319, 22sylibr 234 . . . . . . . 8 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ ( ℋ ↑m ℕ))
24 eqid 2729 . . . . . . . . . 10 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
2524, 11hhims 31134 . . . . . . . . . 10 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
2624, 25hhcau 31160 . . . . . . . . 9 Cauchy = ((Cau‘(norm ∘ − )) ∩ ( ℋ ↑m ℕ))
2726elin2 4156 . . . . . . . 8 (𝑓 ∈ Cauchy ↔ (𝑓 ∈ (Cau‘(norm ∘ − )) ∧ 𝑓 ∈ ( ℋ ↑m ℕ)))
2816, 23, 27sylanbrc 583 . . . . . . 7 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ Cauchy)
29 ax-hcompl 31164 . . . . . . 7 (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓𝑣 𝑥)
30 vex 3442 . . . . . . . . 9 𝑓 ∈ V
31 vex 3442 . . . . . . . . 9 𝑥 ∈ V
3230, 31breldm 5855 . . . . . . . 8 (𝑓𝑣 𝑥𝑓 ∈ dom ⇝𝑣 )
3332rexlimivw 3126 . . . . . . 7 (∃𝑥 ∈ ℋ 𝑓𝑣 𝑥𝑓 ∈ dom ⇝𝑣 )
3428, 29, 333syl 18 . . . . . 6 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ dom ⇝𝑣 )
35 hlimf 31199 . . . . . . 7 𝑣 :dom ⇝𝑣 ⟶ ℋ
36 ffun 6659 . . . . . . 7 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 )
37 funfvbrb 6989 . . . . . . 7 (Fun ⇝𝑣 → (𝑓 ∈ dom ⇝𝑣𝑓𝑣 ( ⇝𝑣𝑓)))
3835, 36, 37mp2b 10 . . . . . 6 (𝑓 ∈ dom ⇝𝑣𝑓𝑣 ( ⇝𝑣𝑓))
3934, 38sylib 218 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓𝑣 ( ⇝𝑣𝑓))
40 eqid 2729 . . . . . . . 8 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
4124, 25, 40hhlm 31161 . . . . . . 7 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))
42 resss 5956 . . . . . . 7 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
4341, 42eqsstri 3984 . . . . . 6 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
4443ssbri 5140 . . . . 5 (𝑓𝑣 ( ⇝𝑣𝑓) → 𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝑓))
4539, 44syl 17 . . . 4 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝑓))
468, 40, 1metrest 24428 . . . . . . 7 (((norm ∘ − ) ∈ (∞Met‘ ℋ) ∧ 𝐻 ⊆ ℋ) → ((MetOpen‘(norm ∘ − )) ↾t 𝐻) = (MetOpen‘𝐷))
4712, 17, 46mp2an 692 . . . . . 6 ((MetOpen‘(norm ∘ − )) ↾t 𝐻) = (MetOpen‘𝐷)
4847eqcomi 2738 . . . . 5 (MetOpen‘𝐷) = ((MetOpen‘(norm ∘ − )) ↾t 𝐻)
49 nnuz 12796 . . . . 5 ℕ = (ℤ‘1)
504a1i 11 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝐻C )
5140mopntop 24344 . . . . . 6 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ Top)
5212, 51mp1i 13 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (MetOpen‘(norm ∘ − )) ∈ Top)
53 fvex 6839 . . . . . . 7 ( ⇝𝑣𝑓) ∈ V
5453chlimi 31196 . . . . . 6 ((𝐻C𝑓:ℕ⟶𝐻𝑓𝑣 ( ⇝𝑣𝑓)) → ( ⇝𝑣𝑓) ∈ 𝐻)
5550, 13, 39, 54syl3anc 1373 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → ( ⇝𝑣𝑓) ∈ 𝐻)
56 1zzd 12524 . . . . 5 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 1 ∈ ℤ)
5748, 49, 50, 52, 55, 56, 13lmss 23201 . . . 4 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → (𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝑓) ↔ 𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣𝑓)))
5845, 57mpbid 232 . . 3 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣𝑓))
5930, 53breldm 5855 . . 3 (𝑓(⇝𝑡‘(MetOpen‘𝐷))( ⇝𝑣𝑓) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
6058, 59syl 17 . 2 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶𝐻) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷)))
611, 6, 60iscmet3i 25228 1 𝐷 ∈ (CMet‘𝐻)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  wss 3905  cop 4585   class class class wbr 5095   × cxp 5621  dom cdm 5623  cres 5625  ccom 5627  Fun wfun 6480  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  cc 11026  1c1 11029  cn 12146  t crest 17342  ∞Metcxmet 21264  MetOpencmopn 21269  Topctop 22796  𝑡clm 23129  Cauccau 25169  CMetccmet 25170  IndMetcims 30553  chba 30881   + cva 30882   · csm 30883  normcno 30885   cmv 30887  Cauchyccauold 30888  𝑣 chli 30889   C cch 30891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108  ax-hilex 30961  ax-hfvadd 30962  ax-hvcom 30963  ax-hvass 30964  ax-hv0cl 30965  ax-hvaddid 30966  ax-hfvmul 30967  ax-hvmulid 30968  ax-hvmulass 30969  ax-hvdistr1 30970  ax-hvdistr2 30971  ax-hvmul0 30972  ax-hfi 31041  ax-his1 31044  ax-his2 31045  ax-his3 31046  ax-his4 31047  ax-hcompl 31164
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ico 13272  df-icc 13273  df-fz 13429  df-fl 13714  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-rest 17344  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-top 22797  df-topon 22814  df-bases 22849  df-ntr 22923  df-nei 23001  df-lm 23132  df-haus 23218  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-cfil 25171  df-cau 25172  df-cmet 25173  df-grpo 30455  df-gid 30456  df-ginv 30457  df-gdiv 30458  df-ablo 30507  df-vc 30521  df-nv 30554  df-va 30557  df-ba 30558  df-sm 30559  df-0v 30560  df-vs 30561  df-nmcv 30562  df-ims 30563  df-ssp 30684  df-hnorm 30930  df-hba 30931  df-hvsub 30933  df-hlim 30934  df-hcau 30935  df-sh 31169  df-ch 31183  df-ch0 31215
This theorem is referenced by:  hhssbnOLD  31241
  Copyright terms: Public domain W3C validator