| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > occl | Structured version Visualization version GIF version | ||
| Description: Closure of complement of Hilbert subset. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 8-Aug-2000.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| occl | ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ Cℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocsh 31284 | . 2 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ Sℋ ) | |
| 2 | ax-hcompl 31203 | . . . . . . . . 9 ⊢ (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥) | |
| 3 | vex 3441 | . . . . . . . . . . 11 ⊢ 𝑓 ∈ V | |
| 4 | vex 3441 | . . . . . . . . . . 11 ⊢ 𝑥 ∈ V | |
| 5 | 3, 4 | breldm 5854 | . . . . . . . . . 10 ⊢ (𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ⇝𝑣 ) |
| 6 | 5 | rexlimivw 3130 | . . . . . . . . 9 ⊢ (∃𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ⇝𝑣 ) |
| 7 | 2, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑓 ∈ Cauchy → 𝑓 ∈ dom ⇝𝑣 ) |
| 8 | 7 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) → 𝑓 ∈ dom ⇝𝑣 ) |
| 9 | hlimf 31238 | . . . . . . . 8 ⊢ ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ | |
| 10 | 9 | ffvelcdmi 7025 | . . . . . . 7 ⊢ (𝑓 ∈ dom ⇝𝑣 → ( ⇝𝑣 ‘𝑓) ∈ ℋ) |
| 11 | 8, 10 | syl 17 | . . . . . 6 ⊢ (((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) → ( ⇝𝑣 ‘𝑓) ∈ ℋ) |
| 12 | simplll 774 | . . . . . . . 8 ⊢ ((((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℋ) | |
| 13 | simpllr 775 | . . . . . . . 8 ⊢ ((((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑓 ∈ Cauchy) | |
| 14 | simplr 768 | . . . . . . . 8 ⊢ ((((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑓:ℕ⟶(⊥‘𝐴)) | |
| 15 | simpr 484 | . . . . . . . 8 ⊢ ((((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 16 | 12, 13, 14, 15 | occllem 31304 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) ∧ 𝑥 ∈ 𝐴) → (( ⇝𝑣 ‘𝑓) ·ih 𝑥) = 0) |
| 17 | 16 | ralrimiva 3125 | . . . . . 6 ⊢ (((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) → ∀𝑥 ∈ 𝐴 (( ⇝𝑣 ‘𝑓) ·ih 𝑥) = 0) |
| 18 | ocel 31282 | . . . . . . 7 ⊢ (𝐴 ⊆ ℋ → (( ⇝𝑣 ‘𝑓) ∈ (⊥‘𝐴) ↔ (( ⇝𝑣 ‘𝑓) ∈ ℋ ∧ ∀𝑥 ∈ 𝐴 (( ⇝𝑣 ‘𝑓) ·ih 𝑥) = 0))) | |
| 19 | 18 | ad2antrr 726 | . . . . . 6 ⊢ (((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) → (( ⇝𝑣 ‘𝑓) ∈ (⊥‘𝐴) ↔ (( ⇝𝑣 ‘𝑓) ∈ ℋ ∧ ∀𝑥 ∈ 𝐴 (( ⇝𝑣 ‘𝑓) ·ih 𝑥) = 0))) |
| 20 | 11, 17, 19 | mpbir2and 713 | . . . . 5 ⊢ (((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) → ( ⇝𝑣 ‘𝑓) ∈ (⊥‘𝐴)) |
| 21 | ffun 6662 | . . . . . . 7 ⊢ ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 ) | |
| 22 | funfvbrb 6993 | . . . . . . 7 ⊢ (Fun ⇝𝑣 → (𝑓 ∈ dom ⇝𝑣 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓))) | |
| 23 | 9, 21, 22 | mp2b 10 | . . . . . 6 ⊢ (𝑓 ∈ dom ⇝𝑣 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓)) |
| 24 | 8, 23 | sylib 218 | . . . . 5 ⊢ (((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) → 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓)) |
| 25 | breq2 5099 | . . . . . 6 ⊢ (𝑥 = ( ⇝𝑣 ‘𝑓) → (𝑓 ⇝𝑣 𝑥 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓))) | |
| 26 | 25 | rspcev 3573 | . . . . 5 ⊢ ((( ⇝𝑣 ‘𝑓) ∈ (⊥‘𝐴) ∧ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓)) → ∃𝑥 ∈ (⊥‘𝐴)𝑓 ⇝𝑣 𝑥) |
| 27 | 20, 24, 26 | syl2anc 584 | . . . 4 ⊢ (((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) → ∃𝑥 ∈ (⊥‘𝐴)𝑓 ⇝𝑣 𝑥) |
| 28 | 27 | ex 412 | . . 3 ⊢ ((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) → (𝑓:ℕ⟶(⊥‘𝐴) → ∃𝑥 ∈ (⊥‘𝐴)𝑓 ⇝𝑣 𝑥)) |
| 29 | 28 | ralrimiva 3125 | . 2 ⊢ (𝐴 ⊆ ℋ → ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶(⊥‘𝐴) → ∃𝑥 ∈ (⊥‘𝐴)𝑓 ⇝𝑣 𝑥)) |
| 30 | isch3 31242 | . 2 ⊢ ((⊥‘𝐴) ∈ Cℋ ↔ ((⊥‘𝐴) ∈ Sℋ ∧ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶(⊥‘𝐴) → ∃𝑥 ∈ (⊥‘𝐴)𝑓 ⇝𝑣 𝑥))) | |
| 31 | 1, 29, 30 | sylanbrc 583 | 1 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ Cℋ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ⊆ wss 3898 class class class wbr 5095 dom cdm 5621 Fun wfun 6483 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 0cc0 11017 ℕcn 12136 ℋchba 30920 ·ih csp 30923 Cauchyccauold 30927 ⇝𝑣 chli 30928 Sℋ csh 30929 Cℋ cch 30930 ⊥cort 30931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 ax-addf 11096 ax-mulf 11097 ax-hilex 31000 ax-hfvadd 31001 ax-hvcom 31002 ax-hvass 31003 ax-hv0cl 31004 ax-hvaddid 31005 ax-hfvmul 31006 ax-hvmulid 31007 ax-hvmulass 31008 ax-hvdistr1 31009 ax-hvdistr2 31010 ax-hvmul0 31011 ax-hfi 31080 ax-his1 31083 ax-his2 31084 ax-his3 31085 ax-his4 31086 ax-hcompl 31203 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-fi 9306 df-sup 9337 df-inf 9338 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-ioo 13256 df-icc 13259 df-fz 13415 df-fzo 13562 df-seq 13916 df-exp 13976 df-hash 14245 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-clim 15402 df-sum 15601 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-starv 17183 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-unif 17191 df-hom 17192 df-cco 17193 df-rest 17333 df-topn 17334 df-0g 17352 df-gsum 17353 df-topgen 17354 df-pt 17355 df-prds 17358 df-xrs 17414 df-qtop 17419 df-imas 17420 df-xps 17422 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-submnd 18700 df-mulg 18989 df-cntz 19237 df-cmn 19702 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-cnfld 21301 df-top 22829 df-topon 22846 df-topsp 22868 df-bases 22881 df-cn 23162 df-cnp 23163 df-lm 23164 df-haus 23250 df-tx 23497 df-hmeo 23690 df-xms 24255 df-ms 24256 df-tms 24257 df-cau 25203 df-grpo 30494 df-gid 30495 df-ginv 30496 df-gdiv 30497 df-ablo 30546 df-vc 30560 df-nv 30593 df-va 30596 df-ba 30597 df-sm 30598 df-0v 30599 df-vs 30600 df-nmcv 30601 df-ims 30602 df-dip 30702 df-hnorm 30969 df-hvsub 30972 df-hlim 30973 df-hcau 30974 df-sh 31208 df-ch 31222 df-oc 31253 |
| This theorem is referenced by: shoccl 31306 hsupcl 31340 sshjcl 31356 dfch2 31408 ococin 31409 shjshsi 31493 sshhococi 31547 h1dei 31551 h1de2bi 31555 h1de2ctlem 31556 h1de2ci 31557 spansnch 31561 spansnpji 31579 h1da 32350 atom1d 32354 |
| Copyright terms: Public domain | W3C validator |