![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > occl | Structured version Visualization version GIF version |
Description: Closure of complement of Hilbert subset. Part of Remark 3.12 of [Beran] p. 107. (Contributed by NM, 8-Aug-2000.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
occl | ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ Cℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ocsh 31315 | . 2 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ Sℋ ) | |
2 | ax-hcompl 31234 | . . . . . . . . 9 ⊢ (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥) | |
3 | vex 3492 | . . . . . . . . . . 11 ⊢ 𝑓 ∈ V | |
4 | vex 3492 | . . . . . . . . . . 11 ⊢ 𝑥 ∈ V | |
5 | 3, 4 | breldm 5933 | . . . . . . . . . 10 ⊢ (𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ⇝𝑣 ) |
6 | 5 | rexlimivw 3157 | . . . . . . . . 9 ⊢ (∃𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ⇝𝑣 ) |
7 | 2, 6 | syl 17 | . . . . . . . 8 ⊢ (𝑓 ∈ Cauchy → 𝑓 ∈ dom ⇝𝑣 ) |
8 | 7 | ad2antlr 726 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) → 𝑓 ∈ dom ⇝𝑣 ) |
9 | hlimf 31269 | . . . . . . . 8 ⊢ ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ | |
10 | 9 | ffvelcdmi 7117 | . . . . . . 7 ⊢ (𝑓 ∈ dom ⇝𝑣 → ( ⇝𝑣 ‘𝑓) ∈ ℋ) |
11 | 8, 10 | syl 17 | . . . . . 6 ⊢ (((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) → ( ⇝𝑣 ‘𝑓) ∈ ℋ) |
12 | simplll 774 | . . . . . . . 8 ⊢ ((((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℋ) | |
13 | simpllr 775 | . . . . . . . 8 ⊢ ((((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑓 ∈ Cauchy) | |
14 | simplr 768 | . . . . . . . 8 ⊢ ((((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑓:ℕ⟶(⊥‘𝐴)) | |
15 | simpr 484 | . . . . . . . 8 ⊢ ((((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
16 | 12, 13, 14, 15 | occllem 31335 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) ∧ 𝑥 ∈ 𝐴) → (( ⇝𝑣 ‘𝑓) ·ih 𝑥) = 0) |
17 | 16 | ralrimiva 3152 | . . . . . 6 ⊢ (((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) → ∀𝑥 ∈ 𝐴 (( ⇝𝑣 ‘𝑓) ·ih 𝑥) = 0) |
18 | ocel 31313 | . . . . . . 7 ⊢ (𝐴 ⊆ ℋ → (( ⇝𝑣 ‘𝑓) ∈ (⊥‘𝐴) ↔ (( ⇝𝑣 ‘𝑓) ∈ ℋ ∧ ∀𝑥 ∈ 𝐴 (( ⇝𝑣 ‘𝑓) ·ih 𝑥) = 0))) | |
19 | 18 | ad2antrr 725 | . . . . . 6 ⊢ (((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) → (( ⇝𝑣 ‘𝑓) ∈ (⊥‘𝐴) ↔ (( ⇝𝑣 ‘𝑓) ∈ ℋ ∧ ∀𝑥 ∈ 𝐴 (( ⇝𝑣 ‘𝑓) ·ih 𝑥) = 0))) |
20 | 11, 17, 19 | mpbir2and 712 | . . . . 5 ⊢ (((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) → ( ⇝𝑣 ‘𝑓) ∈ (⊥‘𝐴)) |
21 | ffun 6750 | . . . . . . 7 ⊢ ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 ) | |
22 | funfvbrb 7084 | . . . . . . 7 ⊢ (Fun ⇝𝑣 → (𝑓 ∈ dom ⇝𝑣 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓))) | |
23 | 9, 21, 22 | mp2b 10 | . . . . . 6 ⊢ (𝑓 ∈ dom ⇝𝑣 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓)) |
24 | 8, 23 | sylib 218 | . . . . 5 ⊢ (((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) → 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓)) |
25 | breq2 5170 | . . . . . 6 ⊢ (𝑥 = ( ⇝𝑣 ‘𝑓) → (𝑓 ⇝𝑣 𝑥 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓))) | |
26 | 25 | rspcev 3635 | . . . . 5 ⊢ ((( ⇝𝑣 ‘𝑓) ∈ (⊥‘𝐴) ∧ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘𝑓)) → ∃𝑥 ∈ (⊥‘𝐴)𝑓 ⇝𝑣 𝑥) |
27 | 20, 24, 26 | syl2anc 583 | . . . 4 ⊢ (((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) ∧ 𝑓:ℕ⟶(⊥‘𝐴)) → ∃𝑥 ∈ (⊥‘𝐴)𝑓 ⇝𝑣 𝑥) |
28 | 27 | ex 412 | . . 3 ⊢ ((𝐴 ⊆ ℋ ∧ 𝑓 ∈ Cauchy) → (𝑓:ℕ⟶(⊥‘𝐴) → ∃𝑥 ∈ (⊥‘𝐴)𝑓 ⇝𝑣 𝑥)) |
29 | 28 | ralrimiva 3152 | . 2 ⊢ (𝐴 ⊆ ℋ → ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶(⊥‘𝐴) → ∃𝑥 ∈ (⊥‘𝐴)𝑓 ⇝𝑣 𝑥)) |
30 | isch3 31273 | . 2 ⊢ ((⊥‘𝐴) ∈ Cℋ ↔ ((⊥‘𝐴) ∈ Sℋ ∧ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶(⊥‘𝐴) → ∃𝑥 ∈ (⊥‘𝐴)𝑓 ⇝𝑣 𝑥))) | |
31 | 1, 29, 30 | sylanbrc 582 | 1 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ Cℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 class class class wbr 5166 dom cdm 5700 Fun wfun 6567 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 0cc0 11184 ℕcn 12293 ℋchba 30951 ·ih csp 30954 Cauchyccauold 30958 ⇝𝑣 chli 30959 Sℋ csh 30960 Cℋ cch 30961 ⊥cort 30962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 ax-hilex 31031 ax-hfvadd 31032 ax-hvcom 31033 ax-hvass 31034 ax-hv0cl 31035 ax-hvaddid 31036 ax-hfvmul 31037 ax-hvmulid 31038 ax-hvmulass 31039 ax-hvdistr1 31040 ax-hvdistr2 31041 ax-hvmul0 31042 ax-hfi 31111 ax-his1 31114 ax-his2 31115 ax-his3 31116 ax-his4 31117 ax-hcompl 31234 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cn 23256 df-cnp 23257 df-lm 23258 df-haus 23344 df-tx 23591 df-hmeo 23784 df-xms 24351 df-ms 24352 df-tms 24353 df-cau 25309 df-grpo 30525 df-gid 30526 df-ginv 30527 df-gdiv 30528 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-vs 30631 df-nmcv 30632 df-ims 30633 df-dip 30733 df-hnorm 31000 df-hvsub 31003 df-hlim 31004 df-hcau 31005 df-sh 31239 df-ch 31253 df-oc 31284 |
This theorem is referenced by: shoccl 31337 hsupcl 31371 sshjcl 31387 dfch2 31439 ococin 31440 shjshsi 31524 sshhococi 31578 h1dei 31582 h1de2bi 31586 h1de2ctlem 31587 h1de2ci 31588 spansnch 31592 spansnpji 31610 h1da 32381 atom1d 32385 |
Copyright terms: Public domain | W3C validator |