| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax12b | Structured version Visualization version GIF version | ||
| Description: A bidirectional version of axc15 2421. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax12b | ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axc15 2421 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 3 | sp 2184 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜑)) | |
| 4 | 3 | com12 32 | . . 3 ⊢ (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦 → 𝜑) → 𝜑)) |
| 5 | 4 | adantl 481 | . 2 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (∀𝑥(𝑥 = 𝑦 → 𝜑) → 𝜑)) |
| 6 | 2, 5 | impbid 212 | 1 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-12 2178 ax-13 2371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |