MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax12b Structured version   Visualization version   GIF version

Theorem ax12b 2432
Description: A bidirectional version of axc15 2430. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
ax12b ((¬ ∀𝑥 𝑥 = 𝑦𝑥 = 𝑦) → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem ax12b
StepHypRef Expression
1 axc15 2430 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
21imp 406 . 2 ((¬ ∀𝑥 𝑥 = 𝑦𝑥 = 𝑦) → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
3 sp 2184 . . . 4 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
43com12 32 . . 3 (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦𝜑) → 𝜑))
54adantl 481 . 2 ((¬ ∀𝑥 𝑥 = 𝑦𝑥 = 𝑦) → (∀𝑥(𝑥 = 𝑦𝜑) → 𝜑))
62, 5impbid 212 1 ((¬ ∀𝑥 𝑥 = 𝑦𝑥 = 𝑦) → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2178  ax-13 2380
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator