![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax12 | Structured version Visualization version GIF version |
Description: Rederivation of Axiom ax-12 2169 from ax12v 2170 (used only via sp 2174), axc11r 2363, and axc15 2419 (on top of Tarski's FOL). Since this version depends on ax-13 2369, usage of the weaker ax12v 2170, ax12w 2127, ax12i 1968 are preferred. (Contributed by NM, 22-Jan-2007.) Proof uses contemporary axioms. (Revised by Wolf Lammen, 8-Aug-2020.) (Proof shortened by BJ, 4-Jul-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax12 | ⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc11r 2363 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥𝜑)) | |
2 | ala1 1813 | . . . 4 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
3 | 1, 2 | syl6 35 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
4 | 3 | a1d 25 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
5 | sp 2174 | . . 3 ⊢ (∀𝑦𝜑 → 𝜑) | |
6 | axc15 2419 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | |
7 | 5, 6 | syl7 74 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
8 | 4, 7 | pm2.61i 182 | 1 ⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-10 2135 ax-12 2169 ax-13 2369 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-nf 1784 |
This theorem is referenced by: equs5a 2454 equs5e 2455 bj-ax12v3 35868 wl-axc11r 36704 axc11-o 38126 |
Copyright terms: Public domain | W3C validator |