MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax12 Structured version   Visualization version   GIF version

Theorem ax12 2422
Description: Rederivation of Axiom ax-12 2171 from ax12v 2172 (used only via sp 2176) , axc11r 2365, and axc15 2421 (on top of Tarski's FOL). Since this version depends on ax-13 2371, usage of the weaker ax12v 2172, ax12w 2129, ax12i 1970 are preferred. (Contributed by NM, 22-Jan-2007.) Proof uses contemporary axioms. (Revised by Wolf Lammen, 8-Aug-2020.) (Proof shortened by BJ, 4-Jul-2021.) (New usage is discouraged.)
Assertion
Ref Expression
ax12 (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem ax12
StepHypRef Expression
1 axc11r 2365 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥𝜑))
2 ala1 1815 . . . 4 (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
31, 2syl6 35 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
43a1d 25 . 2 (∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
5 sp 2176 . . 3 (∀𝑦𝜑𝜑)
6 axc15 2421 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
75, 6syl7 74 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
84, 7pm2.61i 182 1 (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171  ax-13 2371
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1782  df-nf 1786
This theorem is referenced by:  equs5a  2456  equs5e  2457  bj-ax12v3  35009  wl-axc11r  35848  axc11-o  37273
  Copyright terms: Public domain W3C validator