Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax12 | Structured version Visualization version GIF version |
Description: Rederivation of Axiom ax-12 2171 from ax12v 2172 (used only via sp 2176) , axc11r 2366, and axc15 2422 (on top of Tarski's FOL). Since this version depends on ax-13 2372, usage of the weaker ax12v 2172, ax12w 2129, ax12i 1970 are preferred. (Contributed by NM, 22-Jan-2007.) Proof uses contemporary axioms. (Revised by Wolf Lammen, 8-Aug-2020.) (Proof shortened by BJ, 4-Jul-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax12 | ⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc11r 2366 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥𝜑)) | |
2 | ala1 1816 | . . . 4 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
3 | 1, 2 | syl6 35 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
4 | 3 | a1d 25 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
5 | sp 2176 | . . 3 ⊢ (∀𝑦𝜑 → 𝜑) | |
6 | axc15 2422 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | |
7 | 5, 6 | syl7 74 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
8 | 4, 7 | pm2.61i 182 | 1 ⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 |
This theorem is referenced by: equs5a 2457 equs5e 2458 bj-ax12v3 34867 wl-axc11r 35689 axc11-o 36965 |
Copyright terms: Public domain | W3C validator |