| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axc15 | Structured version Visualization version GIF version | ||
| Description: Derivation of set.mm's
original ax-c15 38927 from ax-c11n 38926 and the shorter
ax-12 2180 that has replaced it.
Theorem ax12 2423 shows the reverse derivation of ax-12 2180 from ax-c15 38927. Normally, axc15 2422 should be used rather than ax-c15 38927, except by theorems specifically studying the latter's properties. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Wolf Lammen, 26-Mar-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axc15 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6ev 1970 | . 2 ⊢ ∃𝑧 𝑧 = 𝑦 | |
| 2 | dveeq2 2378 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | |
| 3 | ax12v 2181 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) | |
| 4 | equeuclr 2024 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝑥 = 𝑦 → 𝑥 = 𝑧)) | |
| 5 | 4 | sps 2188 | . . . . 5 ⊢ (∀𝑥 𝑧 = 𝑦 → (𝑥 = 𝑦 → 𝑥 = 𝑧)) |
| 6 | 4 | imim1d 82 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → ((𝑥 = 𝑧 → 𝜑) → (𝑥 = 𝑦 → 𝜑))) |
| 7 | 6 | al2imi 1816 | . . . . . 6 ⊢ (∀𝑥 𝑧 = 𝑦 → (∀𝑥(𝑥 = 𝑧 → 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 8 | 7 | imim2d 57 | . . . . 5 ⊢ (∀𝑥 𝑧 = 𝑦 → ((𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑)) → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
| 9 | 5, 8 | imim12d 81 | . . . 4 ⊢ (∀𝑥 𝑧 = 𝑦 → ((𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) |
| 10 | 2, 3, 9 | syl6mpi 67 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) |
| 11 | 10 | exlimdv 1934 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) |
| 12 | 1, 11 | mpi 20 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: ax12 2423 ax12b 2424 equs5 2460 ax12vALT 2469 bj-ax12v3ALT 36719 |
| Copyright terms: Public domain | W3C validator |