![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axc15 | Structured version Visualization version GIF version |
Description: Derivation of set.mm's
original ax-c15 35052 from ax-c11n 35051 and the shorter
ax-12 2163 that has replaced it.
Theorem ax12 2389 shows the reverse derivation of ax-12 2163 from ax-c15 35052. Normally, axc15 2387 should be used rather than ax-c15 35052, except by theorems specifically studying the latter's properties. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Wolf Lammen, 26-Mar-2023.) |
Ref | Expression |
---|---|
axc15 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6ev 2023 | . 2 ⊢ ∃𝑧 𝑧 = 𝑦 | |
2 | dveeq2 2342 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | |
3 | ax12v 2164 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) | |
4 | equeuclr 2070 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝑥 = 𝑦 → 𝑥 = 𝑧)) | |
5 | 4 | sps 2169 | . . . . 5 ⊢ (∀𝑥 𝑧 = 𝑦 → (𝑥 = 𝑦 → 𝑥 = 𝑧)) |
6 | 4 | imim1d 82 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → ((𝑥 = 𝑧 → 𝜑) → (𝑥 = 𝑦 → 𝜑))) |
7 | 6 | al2imi 1859 | . . . . . 6 ⊢ (∀𝑥 𝑧 = 𝑦 → (∀𝑥(𝑥 = 𝑧 → 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
8 | 7 | imim2d 57 | . . . . 5 ⊢ (∀𝑥 𝑧 = 𝑦 → ((𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑)) → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
9 | 5, 8 | imim12d 81 | . . . 4 ⊢ (∀𝑥 𝑧 = 𝑦 → ((𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) |
10 | 2, 3, 9 | syl6mpi 67 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) |
11 | 10 | exlimdv 1976 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) |
12 | 1, 11 | mpi 20 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1599 ∃wex 1823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-10 2135 ax-12 2163 ax-13 2334 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1824 df-nf 1828 |
This theorem is referenced by: ax12 2389 ax12b 2390 equs5 2426 ax12vALT 2505 bj-ax12v3ALT 33273 |
Copyright terms: Public domain | W3C validator |