MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvalvw Structured version   Visualization version   GIF version

Theorem cbvalvw 2037
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvalv 2400 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.)
Hypothesis
Ref Expression
cbvalvw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvalvw (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvalvw
StepHypRef Expression
1 ax-5 1911 . 2 (∀𝑥𝜑 → ∀𝑦𝑥𝜑)
2 ax-5 1911 . 2 𝜓 → ∀𝑥 ¬ 𝜓)
3 ax-5 1911 . 2 (∀𝑦𝜓 → ∀𝑥𝑦𝜓)
4 ax-5 1911 . 2 𝜑 → ∀𝑦 ¬ 𝜑)
5 cbvalvw.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
61, 2, 3, 4, 5cbvalw 2036 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781
This theorem is referenced by:  cbvexvw  2038  cbvaldvaw  2039  cbval2vw  2041  alcomimw  2044  hba1w  2050  sbjust  2066  ax12wdemo  2138  mo4  2561  cbvmovw  2597  nfcjust  2880  cbvralvw  3210  cbvraldva2  3314  sbralie  3318  sbralieOLD  3320  zfpow  5302  tfisi  7789  findcard  9073  pssnn  9078  ssfi  9082  findcard3  9167  zfinf  9529  ttrclss  9610  ttrclselem2  9616  aceq0  10009  kmlem1  10042  kmlem13  10054  fin23lem32  10235  fin23lem41  10243  zfac  10351  zfcndpow  10507  zfcndinf  10509  zfcndac  10510  axgroth4  10723  relexpindlem  14970  ramcl  16941  mreexexlemd  17550  bnj1112  34995  dfon2lem6  35830  dfon2lem7  35831  dfon2  35834  cbvralvw2  36270  phpreu  37654  axc11n-16  39047  nfa1w  42778  eu6w  42779  abbibw  42780  dfac11  43165  ismnushort  44404  modelaxrep  45084
  Copyright terms: Public domain W3C validator