| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvalvw | Structured version Visualization version GIF version | ||
| Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvalv 2404 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.) |
| Ref | Expression |
|---|---|
| cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvalvw | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | ax-5 1910 | . 2 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
| 3 | ax-5 1910 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) | |
| 4 | ax-5 1910 | . 2 ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) | |
| 5 | cbvalvw.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvalw 2034 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: cbvexvw 2036 cbvaldvaw 2037 cbval2vw 2039 alcomimw 2042 hba1w 2047 sbjust 2063 ax12wdemo 2135 mo4 2565 cbvmovw 2601 nfcjust 2884 cbvralvw 3220 cbvraldva2 3327 sbralie 3337 zfpow 5336 tfisi 7854 findcard 9177 pssnn 9182 ssfi 9187 findcard3 9290 findcard3OLD 9291 zfinf 9653 ttrclss 9734 ttrclselem2 9740 aceq0 10132 kmlem1 10165 kmlem13 10177 fin23lem32 10358 fin23lem41 10366 zfac 10474 zfcndpow 10630 zfcndinf 10632 zfcndac 10633 axgroth4 10846 relexpindlem 15082 ramcl 17049 mreexexlemd 17656 bnj1112 35014 dfon2lem6 35806 dfon2lem7 35807 dfon2 35810 cbvralvw2 36244 phpreu 37628 axc11n-16 38956 nfa1w 42698 eu6w 42699 abbibw 42700 dfac11 43086 ismnushort 44325 modelaxrep 45006 |
| Copyright terms: Public domain | W3C validator |