![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvalvw | Structured version Visualization version GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvalv 2408 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.) |
Ref | Expression |
---|---|
cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvalvw | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1909 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
2 | ax-5 1909 | . 2 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
3 | ax-5 1909 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) | |
4 | ax-5 1909 | . 2 ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) | |
5 | cbvalvw.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvalw 2034 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: cbvexvw 2036 cbvaldvaw 2037 cbval2vw 2039 alcomimw 2042 hba1w 2047 sbjust 2063 ax12wdemo 2135 mo4 2569 cbvmovw 2605 nfcjust 2894 cbvralvw 3243 cbvraldva2 3356 sbralie 3366 zfpow 5384 tfisi 7896 findcard 9229 pssnn 9234 ssfi 9240 findcard3 9346 findcard3OLD 9347 zfinf 9708 ttrclss 9789 ttrclselem2 9795 aceq0 10187 kmlem1 10220 kmlem13 10232 fin23lem32 10413 fin23lem41 10421 zfac 10529 zfcndpow 10685 zfcndinf 10687 zfcndac 10688 axgroth4 10901 relexpindlem 15112 ramcl 17076 mreexexlemd 17702 bnj1112 34959 dfon2lem6 35752 dfon2lem7 35753 dfon2 35756 cbvralvw2 36192 phpreu 37564 axc11n-16 38894 nfa1w 42630 eu6w 42631 abbibw 42632 dfac11 43019 ismnushort 44270 |
Copyright terms: Public domain | W3C validator |