| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvalvw | Structured version Visualization version GIF version | ||
| Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvalv 2398 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.) |
| Ref | Expression |
|---|---|
| cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvalvw | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | ax-5 1910 | . 2 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
| 3 | ax-5 1910 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) | |
| 4 | ax-5 1910 | . 2 ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) | |
| 5 | cbvalvw.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvalw 2035 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: cbvexvw 2037 cbvaldvaw 2038 cbval2vw 2040 alcomimw 2043 hba1w 2048 sbjust 2064 ax12wdemo 2136 mo4 2559 cbvmovw 2595 nfcjust 2877 cbvralvw 3215 cbvraldva2 3321 sbralie 3326 sbralieOLD 3328 zfpow 5321 tfisi 7835 findcard 9127 pssnn 9132 ssfi 9137 findcard3 9229 findcard3OLD 9230 zfinf 9592 ttrclss 9673 ttrclselem2 9679 aceq0 10071 kmlem1 10104 kmlem13 10116 fin23lem32 10297 fin23lem41 10305 zfac 10413 zfcndpow 10569 zfcndinf 10571 zfcndac 10572 axgroth4 10785 relexpindlem 15029 ramcl 17000 mreexexlemd 17605 bnj1112 34973 dfon2lem6 35776 dfon2lem7 35777 dfon2 35780 cbvralvw2 36214 phpreu 37598 axc11n-16 38931 nfa1w 42663 eu6w 42664 abbibw 42665 dfac11 43051 ismnushort 44290 modelaxrep 44971 |
| Copyright terms: Public domain | W3C validator |