![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvalvw | Structured version Visualization version GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvalv 2399 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.) |
Ref | Expression |
---|---|
cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvalvw | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1913 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
2 | ax-5 1913 | . 2 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
3 | ax-5 1913 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) | |
4 | ax-5 1913 | . 2 ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) | |
5 | cbvalvw.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvalw 2038 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 |
This theorem is referenced by: cbvexvw 2040 cbvaldvaw 2041 cbval2vw 2043 alcomiw 2046 hba1w 2050 sbjust 2066 ax12wdemo 2131 mo4 2560 cbvmovw 2596 nfcjust 2884 cbvralvw 3234 cbvraldva2 3344 sbralie 3354 zfpow 5363 tfisi 7844 findcard 9159 pssnn 9164 ssfi 9169 pssnnOLD 9261 findcard3 9281 findcard3OLD 9282 zfinf 9630 ttrclss 9711 ttrclselem2 9717 aceq0 10109 kmlem1 10141 kmlem13 10153 fin23lem32 10335 fin23lem41 10343 zfac 10451 zfcndpow 10607 zfcndinf 10609 zfcndac 10610 axgroth4 10823 relexpindlem 15006 ramcl 16958 mreexexlemd 17584 bnj1112 33982 dfon2lem6 34748 dfon2lem7 34749 dfon2 34752 phpreu 36460 axc11n-16 37796 dfac11 41789 ismnushort 43045 |
Copyright terms: Public domain | W3C validator |