![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvalvw | Structured version Visualization version GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvalv 2402 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.) |
Ref | Expression |
---|---|
cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvalvw | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1907 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
2 | ax-5 1907 | . 2 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
3 | ax-5 1907 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) | |
4 | ax-5 1907 | . 2 ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) | |
5 | cbvalvw.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvalw 2031 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 |
This theorem is referenced by: cbvexvw 2033 cbvaldvaw 2034 cbval2vw 2036 alcomimw 2039 hba1w 2044 sbjust 2060 ax12wdemo 2132 mo4 2563 cbvmovw 2599 nfcjust 2888 cbvralvw 3234 cbvraldva2 3345 sbralie 3355 zfpow 5371 tfisi 7879 findcard 9201 pssnn 9206 ssfi 9211 findcard3 9315 findcard3OLD 9316 zfinf 9676 ttrclss 9757 ttrclselem2 9763 aceq0 10155 kmlem1 10188 kmlem13 10200 fin23lem32 10381 fin23lem41 10389 zfac 10497 zfcndpow 10653 zfcndinf 10655 zfcndac 10656 axgroth4 10869 relexpindlem 15098 ramcl 17062 mreexexlemd 17688 bnj1112 34975 dfon2lem6 35769 dfon2lem7 35770 dfon2 35773 cbvralvw2 36208 phpreu 37590 axc11n-16 38919 nfa1w 42661 eu6w 42662 abbibw 42663 dfac11 43050 ismnushort 44296 modelaxrep 44945 |
Copyright terms: Public domain | W3C validator |