Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvalvw | Structured version Visualization version GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvalv 2401 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.) |
Ref | Expression |
---|---|
cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvalvw | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1916 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
2 | ax-5 1916 | . 2 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
3 | ax-5 1916 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) | |
4 | ax-5 1916 | . 2 ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) | |
5 | cbvalvw.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvalw 2041 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 |
This theorem is referenced by: cbvexvw 2043 cbvaldvaw 2044 cbval2vw 2046 alcomiw 2049 hba1w 2053 sbjust 2069 ax12wdemo 2134 mo4 2567 cbvmovw 2603 nfcjust 2889 cbvralvw 3380 cbvraldva2 3389 zfpow 5292 tfisi 7693 findcard 8911 pssnn 8916 ssfi 8921 pssnnOLD 9001 findcard3 9018 zfinf 9358 ttrclss 9439 ttrclselem2 9445 aceq0 9858 kmlem1 9890 kmlem13 9902 fin23lem32 10084 fin23lem41 10092 zfac 10200 zfcndpow 10356 zfcndinf 10358 zfcndac 10359 axgroth4 10572 relexpindlem 14755 ramcl 16711 mreexexlemd 17334 bnj1112 32942 dfon2lem6 33743 dfon2lem7 33744 dfon2 33747 phpreu 35740 axc11n-16 36931 dfac11 40867 ismnushort 41872 |
Copyright terms: Public domain | W3C validator |