| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvalvw | Structured version Visualization version GIF version | ||
| Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvalv 2399 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.) |
| Ref | Expression |
|---|---|
| cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvalvw | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | ax-5 1910 | . 2 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
| 3 | ax-5 1910 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) | |
| 4 | ax-5 1910 | . 2 ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) | |
| 5 | cbvalvw.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvalw 2035 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: cbvexvw 2037 cbvaldvaw 2038 cbval2vw 2040 alcomimw 2043 hba1w 2048 sbjust 2064 ax12wdemo 2136 mo4 2560 cbvmovw 2596 nfcjust 2878 cbvralvw 3216 cbvraldva2 3323 sbralie 3328 sbralieOLD 3330 zfpow 5324 tfisi 7838 findcard 9133 pssnn 9138 ssfi 9143 findcard3 9236 findcard3OLD 9237 zfinf 9599 ttrclss 9680 ttrclselem2 9686 aceq0 10078 kmlem1 10111 kmlem13 10123 fin23lem32 10304 fin23lem41 10312 zfac 10420 zfcndpow 10576 zfcndinf 10578 zfcndac 10579 axgroth4 10792 relexpindlem 15036 ramcl 17007 mreexexlemd 17612 bnj1112 34980 dfon2lem6 35783 dfon2lem7 35784 dfon2 35787 cbvralvw2 36221 phpreu 37605 axc11n-16 38938 nfa1w 42670 eu6w 42671 abbibw 42672 dfac11 43058 ismnushort 44297 modelaxrep 44978 |
| Copyright terms: Public domain | W3C validator |