| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvalvw | Structured version Visualization version GIF version | ||
| Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvalv 2398 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.) |
| Ref | Expression |
|---|---|
| cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvalvw | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | ax-5 1910 | . 2 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
| 3 | ax-5 1910 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) | |
| 4 | ax-5 1910 | . 2 ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) | |
| 5 | cbvalvw.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvalw 2035 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: cbvexvw 2037 cbvaldvaw 2038 cbval2vw 2040 alcomimw 2043 hba1w 2048 sbjust 2064 ax12wdemo 2136 mo4 2559 cbvmovw 2595 nfcjust 2877 cbvralvw 3207 cbvraldva2 3311 sbralie 3315 sbralieOLD 3317 zfpow 5305 tfisi 7792 findcard 9077 pssnn 9082 ssfi 9087 findcard3 9172 zfinf 9535 ttrclss 9616 ttrclselem2 9622 aceq0 10012 kmlem1 10045 kmlem13 10057 fin23lem32 10238 fin23lem41 10246 zfac 10354 zfcndpow 10510 zfcndinf 10512 zfcndac 10513 axgroth4 10726 relexpindlem 14970 ramcl 16941 mreexexlemd 17550 bnj1112 34950 dfon2lem6 35766 dfon2lem7 35767 dfon2 35770 cbvralvw2 36204 phpreu 37588 axc11n-16 38921 nfa1w 42652 eu6w 42653 abbibw 42654 dfac11 43039 ismnushort 44278 modelaxrep 44959 |
| Copyright terms: Public domain | W3C validator |