![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvalvw | Structured version Visualization version GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvalv 2400 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.) |
Ref | Expression |
---|---|
cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvalvw | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1914 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
2 | ax-5 1914 | . 2 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
3 | ax-5 1914 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) | |
4 | ax-5 1914 | . 2 ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) | |
5 | cbvalvw.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvalw 2039 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 |
This theorem is referenced by: cbvexvw 2041 cbvaldvaw 2042 cbval2vw 2044 alcomiw 2047 hba1w 2051 sbjust 2067 ax12wdemo 2132 mo4 2561 cbvmovw 2597 nfcjust 2885 cbvralvw 3235 cbvraldva2 3345 sbralie 3355 zfpow 5365 tfisi 7848 findcard 9163 pssnn 9168 ssfi 9173 pssnnOLD 9265 findcard3 9285 findcard3OLD 9286 zfinf 9634 ttrclss 9715 ttrclselem2 9721 aceq0 10113 kmlem1 10145 kmlem13 10157 fin23lem32 10339 fin23lem41 10347 zfac 10455 zfcndpow 10611 zfcndinf 10613 zfcndac 10614 axgroth4 10827 relexpindlem 15010 ramcl 16962 mreexexlemd 17588 bnj1112 34025 dfon2lem6 34791 dfon2lem7 34792 dfon2 34795 phpreu 36520 axc11n-16 37856 dfac11 41852 ismnushort 43108 |
Copyright terms: Public domain | W3C validator |