Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvalvw | Structured version Visualization version GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvalv 2401 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.) |
Ref | Expression |
---|---|
cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvalvw | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1917 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
2 | ax-5 1917 | . 2 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
3 | ax-5 1917 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) | |
4 | ax-5 1917 | . 2 ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) | |
5 | cbvalvw.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvalw 2047 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1787 |
This theorem is referenced by: cbvexvw 2049 cbvaldvaw 2050 cbval2vw 2052 alcomiw 2055 hba1w 2059 sbjust 2073 ax12wdemo 2139 mo4 2567 cbvmovw 2604 nfcjust 2881 cbvralvw 3350 cbvraldva2 3359 zfpow 5234 tfisi 7595 findcard 8765 pssnn 8770 ssfi 8775 pssnnOLD 8818 findcard3 8838 zfinf 9178 aceq0 9621 kmlem1 9653 kmlem13 9665 fin23lem32 9847 fin23lem41 9855 zfac 9963 zfcndpow 10119 zfcndinf 10121 zfcndac 10122 axgroth4 10335 relexpindlem 14515 ramcl 16468 mreexexlemd 17021 bnj1112 32537 dfon2lem6 33341 dfon2lem7 33342 dfon2 33345 phpreu 35407 axc11n-16 36598 dfac11 40482 |
Copyright terms: Public domain | W3C validator |