| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvalvw | Structured version Visualization version GIF version | ||
| Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvalv 2398 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.) |
| Ref | Expression |
|---|---|
| cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvalvw | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | ax-5 1910 | . 2 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
| 3 | ax-5 1910 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) | |
| 4 | ax-5 1910 | . 2 ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) | |
| 5 | cbvalvw.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvalw 2035 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: cbvexvw 2037 cbvaldvaw 2038 cbval2vw 2040 alcomimw 2043 hba1w 2048 sbjust 2064 ax12wdemo 2136 mo4 2559 cbvmovw 2595 nfcjust 2877 cbvralvw 3213 cbvraldva2 3318 sbralie 3323 sbralieOLD 3325 zfpow 5316 tfisi 7815 findcard 9104 pssnn 9109 ssfi 9114 findcard3 9205 findcard3OLD 9206 zfinf 9568 ttrclss 9649 ttrclselem2 9655 aceq0 10047 kmlem1 10080 kmlem13 10092 fin23lem32 10273 fin23lem41 10281 zfac 10389 zfcndpow 10545 zfcndinf 10547 zfcndac 10548 axgroth4 10761 relexpindlem 15005 ramcl 16976 mreexexlemd 17585 bnj1112 34966 dfon2lem6 35769 dfon2lem7 35770 dfon2 35773 cbvralvw2 36207 phpreu 37591 axc11n-16 38924 nfa1w 42656 eu6w 42657 abbibw 42658 dfac11 43044 ismnushort 44283 modelaxrep 44964 |
| Copyright terms: Public domain | W3C validator |