| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvalvw | Structured version Visualization version GIF version | ||
| Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvalv 2400 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.) |
| Ref | Expression |
|---|---|
| cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvalvw | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1911 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | ax-5 1911 | . 2 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
| 3 | ax-5 1911 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) | |
| 4 | ax-5 1911 | . 2 ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) | |
| 5 | cbvalvw.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvalw 2036 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: cbvexvw 2038 cbvaldvaw 2039 cbval2vw 2041 alcomimw 2044 hba1w 2050 sbjust 2066 ax12wdemo 2138 mo4 2561 cbvmovw 2597 nfcjust 2880 cbvralvw 3210 cbvraldva2 3314 sbralie 3318 sbralieOLD 3320 zfpow 5302 tfisi 7789 findcard 9073 pssnn 9078 ssfi 9082 findcard3 9167 zfinf 9529 ttrclss 9610 ttrclselem2 9616 aceq0 10009 kmlem1 10042 kmlem13 10054 fin23lem32 10235 fin23lem41 10243 zfac 10351 zfcndpow 10507 zfcndinf 10509 zfcndac 10510 axgroth4 10723 relexpindlem 14970 ramcl 16941 mreexexlemd 17550 bnj1112 34995 dfon2lem6 35830 dfon2lem7 35831 dfon2 35834 cbvralvw2 36270 phpreu 37654 axc11n-16 39047 nfa1w 42778 eu6w 42779 abbibw 42780 dfac11 43165 ismnushort 44404 modelaxrep 45084 |
| Copyright terms: Public domain | W3C validator |