| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi13d | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3anbi13d | ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | biidd 262 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
| 3 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 4 | 1, 2, 3 | 3anbi123d 1438 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anbi3d 1444 ax12wdemo 2136 f1dom3el3dif 7226 xpord2lem 8098 xpord3lem 8105 frrlem1 8242 frrlem13 8254 cofsmo 10198 axdc3lem3 10381 axdc3lem4 10382 iscatd2 17618 psgnunilem1 19399 nn0gsumfz 19890 opprsubrg 20478 lsspropd 20900 mdetunilem3 22477 mdetunilem9 22483 smadiadetr 22538 lmres 23163 cnhaus 23217 regsep2 23239 dishaus 23245 ordthauslem 23246 nconnsubb 23286 pthaus 23501 txhaus 23510 xkohaus 23516 regr1lem 23602 ustval 24066 methaus 24384 metnrmlem3 24726 pmltpclem1 25325 brsslt 27673 axtgeucl 28375 iscgrad 28714 dfcgra2 28733 f1otrge 28775 axeuclidlem 28865 umgrvad2edg 29116 elwspths2spth 29870 upgr3v3e3cycl 30082 upgr4cycl4dv4e 30087 vdgn1frgrv2 30198 numclwlk1lem1 30271 ex-opab 30334 isnvlem 30512 ajval 30763 adjeu 31791 adjval 31792 adj1 31835 adjeq 31837 cnlnssadj 31982 br8d 32511 lt2addrd 32647 xlt2addrd 32655 crngmxidl 33413 constrconj 33708 constrllcllem 33715 constrcccllem 33717 constrcbvlem 33718 measval 34161 loop1cycl 35097 br8 35716 br6 35717 br4 35718 brcgr3 36007 brsegle 36069 fvray 36102 linedegen 36104 fvline 36105 poimirlem28 37615 isopos 39146 hlsuprexch 39348 2llnjN 39534 2lplnj 39587 cdlemk42 40908 zindbi 42908 jm2.27 42970 nnoeomeqom 43274 tfsconcatrev 43310 rp-brsslt 43385 stoweidlem43 46014 fourierdlem42 46120 ichexmpl1 47443 vopnbgrel 47827 dfclnbgr6 47829 dfnbgr6 47830 cycl3grtri 47919 grimgrtri 47921 usgrgrtrirex 47922 grlimgrtri 47968 usgrexmpl1tri 47989 sepfsepc 48889 iscnrm3rlem8 48908 iscnrm3llem2 48911 |
| Copyright terms: Public domain | W3C validator |