![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi13d | Structured version Visualization version GIF version |
Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3anbi13d | ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | biidd 262 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
3 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
4 | 1, 2, 3 | 3anbi123d 1436 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3anbi3d 1442 ax12wdemo 2135 f1dom3el3dif 7306 xpord2lem 8183 xpord3lem 8190 frrlem1 8327 frrlem13 8339 wfrlem1OLD 8364 wfrlem3OLDa 8367 wfrlem15OLD 8379 cofsmo 10338 axdc3lem3 10521 axdc3lem4 10522 iscatd2 17739 psgnunilem1 19535 nn0gsumfz 20026 opprsubrg 20621 lsspropd 21039 mdetunilem3 22641 mdetunilem9 22647 smadiadetr 22702 lmres 23329 cnhaus 23383 regsep2 23405 dishaus 23411 ordthauslem 23412 nconnsubb 23452 pthaus 23667 txhaus 23676 xkohaus 23682 regr1lem 23768 ustval 24232 methaus 24554 metnrmlem3 24902 pmltpclem1 25502 brsslt 27848 axtgeucl 28498 iscgrad 28837 dfcgra2 28856 f1otrge 28898 axeuclidlem 28995 umgrvad2edg 29248 elwspths2spth 30000 upgr3v3e3cycl 30212 upgr4cycl4dv4e 30217 vdgn1frgrv2 30328 numclwlk1lem1 30401 ex-opab 30464 isnvlem 30642 ajval 30893 adjeu 31921 adjval 31922 adj1 31965 adjeq 31967 cnlnssadj 32112 br8d 32632 lt2addrd 32758 xlt2addrd 32765 crngmxidl 33462 constrconj 33735 measval 34162 loop1cycl 35105 br8 35718 br6 35719 br4 35720 brcgr3 36010 brsegle 36072 fvray 36105 linedegen 36107 fvline 36108 poimirlem28 37608 isopos 39136 hlsuprexch 39338 2llnjN 39524 2lplnj 39577 cdlemk42 40898 zindbi 42903 jm2.27 42965 nnoeomeqom 43274 tfsconcatrev 43310 rp-brsslt 43385 stoweidlem43 45964 fourierdlem42 46070 ichexmpl1 47343 vopnbgrel 47726 dfclnbgr6 47728 dfnbgr6 47729 grimgrtri 47798 usgrgrtrirex 47799 grlimgrtri 47820 usgrexmpl1tri 47840 sepfsepc 48607 iscnrm3rlem8 48627 iscnrm3llem2 48630 |
Copyright terms: Public domain | W3C validator |