| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi13d | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3anbi13d | ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | biidd 262 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
| 3 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 4 | 1, 2, 3 | 3anbi123d 1438 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anbi3d 1444 ax12wdemo 2136 f1dom3el3dif 7226 xpord2lem 8098 xpord3lem 8105 frrlem1 8242 frrlem13 8254 cofsmo 10198 axdc3lem3 10381 axdc3lem4 10382 iscatd2 17622 psgnunilem1 19407 nn0gsumfz 19898 opprsubrg 20513 lsspropd 20956 mdetunilem3 22534 mdetunilem9 22540 smadiadetr 22595 lmres 23220 cnhaus 23274 regsep2 23296 dishaus 23302 ordthauslem 23303 nconnsubb 23343 pthaus 23558 txhaus 23567 xkohaus 23573 regr1lem 23659 ustval 24123 methaus 24441 metnrmlem3 24783 pmltpclem1 25382 brsslt 27731 axtgeucl 28452 iscgrad 28791 dfcgra2 28810 f1otrge 28852 axeuclidlem 28942 umgrvad2edg 29193 elwspths2spth 29947 upgr3v3e3cycl 30159 upgr4cycl4dv4e 30164 vdgn1frgrv2 30275 numclwlk1lem1 30348 ex-opab 30411 isnvlem 30589 ajval 30840 adjeu 31868 adjval 31869 adj1 31912 adjeq 31914 cnlnssadj 32059 br8d 32588 lt2addrd 32724 xlt2addrd 32732 crngmxidl 33433 constrconj 33728 constrllcllem 33735 constrcccllem 33737 constrcbvlem 33738 measval 34181 loop1cycl 35117 br8 35736 br6 35737 br4 35738 brcgr3 36027 brsegle 36089 fvray 36122 linedegen 36124 fvline 36125 poimirlem28 37635 isopos 39166 hlsuprexch 39368 2llnjN 39554 2lplnj 39607 cdlemk42 40928 zindbi 42928 jm2.27 42990 nnoeomeqom 43294 tfsconcatrev 43330 rp-brsslt 43405 stoweidlem43 46034 fourierdlem42 46140 ichexmpl1 47463 vopnbgrel 47847 dfclnbgr6 47849 dfnbgr6 47850 cycl3grtri 47939 grimgrtri 47941 usgrgrtrirex 47942 grlimgrtri 47988 usgrexmpl1tri 48009 sepfsepc 48909 iscnrm3rlem8 48928 iscnrm3llem2 48931 |
| Copyright terms: Public domain | W3C validator |