| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi13d | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3anbi13d | ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | biidd 262 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
| 3 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 4 | 1, 2, 3 | 3anbi123d 1438 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anbi3d 1444 ax12wdemo 2136 f1dom3el3dif 7244 xpord2lem 8121 xpord3lem 8128 frrlem1 8265 frrlem13 8277 cofsmo 10222 axdc3lem3 10405 axdc3lem4 10406 iscatd2 17642 psgnunilem1 19423 nn0gsumfz 19914 opprsubrg 20502 lsspropd 20924 mdetunilem3 22501 mdetunilem9 22507 smadiadetr 22562 lmres 23187 cnhaus 23241 regsep2 23263 dishaus 23269 ordthauslem 23270 nconnsubb 23310 pthaus 23525 txhaus 23534 xkohaus 23540 regr1lem 23626 ustval 24090 methaus 24408 metnrmlem3 24750 pmltpclem1 25349 brsslt 27697 axtgeucl 28399 iscgrad 28738 dfcgra2 28757 f1otrge 28799 axeuclidlem 28889 umgrvad2edg 29140 elwspths2spth 29897 upgr3v3e3cycl 30109 upgr4cycl4dv4e 30114 vdgn1frgrv2 30225 numclwlk1lem1 30298 ex-opab 30361 isnvlem 30539 ajval 30790 adjeu 31818 adjval 31819 adj1 31862 adjeq 31864 cnlnssadj 32009 br8d 32538 lt2addrd 32674 xlt2addrd 32682 crngmxidl 33440 constrconj 33735 constrllcllem 33742 constrcccllem 33744 constrcbvlem 33745 measval 34188 loop1cycl 35124 br8 35743 br6 35744 br4 35745 brcgr3 36034 brsegle 36096 fvray 36129 linedegen 36131 fvline 36132 poimirlem28 37642 isopos 39173 hlsuprexch 39375 2llnjN 39561 2lplnj 39614 cdlemk42 40935 zindbi 42935 jm2.27 42997 nnoeomeqom 43301 tfsconcatrev 43337 rp-brsslt 43412 stoweidlem43 46041 fourierdlem42 46147 ichexmpl1 47470 vopnbgrel 47854 dfclnbgr6 47856 dfnbgr6 47857 cycl3grtri 47946 grimgrtri 47948 usgrgrtrirex 47949 grlimgrtri 47995 usgrexmpl1tri 48016 sepfsepc 48916 iscnrm3rlem8 48935 iscnrm3llem2 48938 |
| Copyright terms: Public domain | W3C validator |