Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anbi13d | Structured version Visualization version GIF version |
Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3anbi13d | ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | biidd 261 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
3 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
4 | 1, 2, 3 | 3anbi123d 1434 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3anbi3d 1440 ax12wdemo 2126 f1dom3el3dif 7162 frrlem1 8122 frrlem13 8134 wfrlem1OLD 8159 wfrlem3OLDa 8162 wfrlem15OLD 8174 cofsmo 10053 axdc3lem3 10236 axdc3lem4 10237 iscatd2 17418 psgnunilem1 19129 nn0gsumfz 19613 opprsubrg 20073 lsspropd 20307 mdetunilem3 21791 mdetunilem9 21797 smadiadetr 21852 lmres 22479 cnhaus 22533 regsep2 22555 dishaus 22561 ordthauslem 22562 nconnsubb 22602 pthaus 22817 txhaus 22826 xkohaus 22832 regr1lem 22918 ustval 23382 methaus 23704 metnrmlem3 24052 pmltpclem1 24640 axtgeucl 26861 iscgrad 27200 dfcgra2 27219 f1otrge 27261 axeuclidlem 27358 umgrvad2edg 27608 elwspths2spth 28360 upgr3v3e3cycl 28572 upgr4cycl4dv4e 28577 vdgn1frgrv2 28688 numclwlk1lem1 28761 ex-opab 28824 isnvlem 29000 ajval 29251 adjeu 30279 adjval 30280 adj1 30323 adjeq 30325 cnlnssadj 30470 br8d 30978 lt2addrd 31102 xlt2addrd 31109 measval 32194 loop1cycl 33127 br8 33751 br6 33752 br4 33753 xpord2lem 33817 xpord3lem 33823 brsslt 34008 brcgr3 34376 brsegle 34438 fvray 34471 linedegen 34473 fvline 34474 poimirlem28 35833 isopos 37220 hlsuprexch 37421 2llnjN 37607 2lplnj 37660 cdlemk42 38981 zindbi 40792 jm2.27 40854 stoweidlem43 43619 fourierdlem42 43725 ichexmpl1 44961 sepfsepc 46261 iscnrm3rlem8 46281 iscnrm3llem2 46284 |
Copyright terms: Public domain | W3C validator |