![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi13d | Structured version Visualization version GIF version |
Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3anbi13d | ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | biidd 262 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
3 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
4 | 1, 2, 3 | 3anbi123d 1435 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3anbi3d 1441 ax12wdemo 2133 f1dom3el3dif 7289 xpord2lem 8166 xpord3lem 8173 frrlem1 8310 frrlem13 8322 wfrlem1OLD 8347 wfrlem3OLDa 8350 wfrlem15OLD 8362 cofsmo 10307 axdc3lem3 10490 axdc3lem4 10491 iscatd2 17726 psgnunilem1 19526 nn0gsumfz 20017 opprsubrg 20610 lsspropd 21034 mdetunilem3 22636 mdetunilem9 22642 smadiadetr 22697 lmres 23324 cnhaus 23378 regsep2 23400 dishaus 23406 ordthauslem 23407 nconnsubb 23447 pthaus 23662 txhaus 23671 xkohaus 23677 regr1lem 23763 ustval 24227 methaus 24549 metnrmlem3 24897 pmltpclem1 25497 brsslt 27845 axtgeucl 28495 iscgrad 28834 dfcgra2 28853 f1otrge 28895 axeuclidlem 28992 umgrvad2edg 29245 elwspths2spth 29997 upgr3v3e3cycl 30209 upgr4cycl4dv4e 30214 vdgn1frgrv2 30325 numclwlk1lem1 30398 ex-opab 30461 isnvlem 30639 ajval 30890 adjeu 31918 adjval 31919 adj1 31962 adjeq 31964 cnlnssadj 32109 br8d 32630 lt2addrd 32762 xlt2addrd 32769 crngmxidl 33477 constrconj 33750 measval 34179 loop1cycl 35122 br8 35736 br6 35737 br4 35738 brcgr3 36028 brsegle 36090 fvray 36123 linedegen 36125 fvline 36126 poimirlem28 37635 isopos 39162 hlsuprexch 39364 2llnjN 39550 2lplnj 39603 cdlemk42 40924 zindbi 42935 jm2.27 42997 nnoeomeqom 43302 tfsconcatrev 43338 rp-brsslt 43413 stoweidlem43 45999 fourierdlem42 46105 ichexmpl1 47394 vopnbgrel 47778 dfclnbgr6 47780 dfnbgr6 47781 grimgrtri 47852 usgrgrtrirex 47853 grlimgrtri 47899 usgrexmpl1tri 47920 sepfsepc 48724 iscnrm3rlem8 48744 iscnrm3llem2 48747 |
Copyright terms: Public domain | W3C validator |