| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi13d | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3anbi13d | ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | biidd 262 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
| 3 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 4 | 1, 2, 3 | 3anbi123d 1438 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anbi3d 1444 ax12wdemo 2136 f1dom3el3dif 7247 xpord2lem 8124 xpord3lem 8131 frrlem1 8268 frrlem13 8280 cofsmo 10229 axdc3lem3 10412 axdc3lem4 10413 iscatd2 17649 psgnunilem1 19430 nn0gsumfz 19921 opprsubrg 20509 lsspropd 20931 mdetunilem3 22508 mdetunilem9 22514 smadiadetr 22569 lmres 23194 cnhaus 23248 regsep2 23270 dishaus 23276 ordthauslem 23277 nconnsubb 23317 pthaus 23532 txhaus 23541 xkohaus 23547 regr1lem 23633 ustval 24097 methaus 24415 metnrmlem3 24757 pmltpclem1 25356 brsslt 27704 axtgeucl 28406 iscgrad 28745 dfcgra2 28764 f1otrge 28806 axeuclidlem 28896 umgrvad2edg 29147 elwspths2spth 29904 upgr3v3e3cycl 30116 upgr4cycl4dv4e 30121 vdgn1frgrv2 30232 numclwlk1lem1 30305 ex-opab 30368 isnvlem 30546 ajval 30797 adjeu 31825 adjval 31826 adj1 31869 adjeq 31871 cnlnssadj 32016 br8d 32545 lt2addrd 32681 xlt2addrd 32689 crngmxidl 33447 constrconj 33742 constrllcllem 33749 constrcccllem 33751 constrcbvlem 33752 measval 34195 loop1cycl 35131 br8 35750 br6 35751 br4 35752 brcgr3 36041 brsegle 36103 fvray 36136 linedegen 36138 fvline 36139 poimirlem28 37649 isopos 39180 hlsuprexch 39382 2llnjN 39568 2lplnj 39621 cdlemk42 40942 zindbi 42942 jm2.27 43004 nnoeomeqom 43308 tfsconcatrev 43344 rp-brsslt 43419 stoweidlem43 46048 fourierdlem42 46154 ichexmpl1 47474 vopnbgrel 47858 dfclnbgr6 47860 dfnbgr6 47861 cycl3grtri 47950 grimgrtri 47952 usgrgrtrirex 47953 grlimgrtri 47999 usgrexmpl1tri 48020 sepfsepc 48920 iscnrm3rlem8 48939 iscnrm3llem2 48942 |
| Copyright terms: Public domain | W3C validator |