| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi13d | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3anbi13d | ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | biidd 262 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
| 3 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 4 | 1, 2, 3 | 3anbi123d 1438 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anbi3d 1444 ax12wdemo 2138 f1dom3el3dif 7203 xpord2lem 8072 xpord3lem 8079 frrlem1 8216 frrlem13 8228 cofsmo 10160 axdc3lem3 10343 axdc3lem4 10344 iscatd2 17587 psgnunilem1 19405 nn0gsumfz 19896 opprsubrg 20508 lsspropd 20951 mdetunilem3 22529 mdetunilem9 22535 smadiadetr 22590 lmres 23215 cnhaus 23269 regsep2 23291 dishaus 23297 ordthauslem 23298 nconnsubb 23338 pthaus 23553 txhaus 23562 xkohaus 23568 regr1lem 23654 ustval 24118 methaus 24435 metnrmlem3 24777 pmltpclem1 25376 brsslt 27725 axtgeucl 28450 iscgrad 28789 dfcgra2 28808 f1otrge 28850 axeuclidlem 28940 umgrvad2edg 29191 elwspths2spth 29948 upgr3v3e3cycl 30160 upgr4cycl4dv4e 30165 vdgn1frgrv2 30276 numclwlk1lem1 30349 ex-opab 30412 isnvlem 30590 ajval 30841 adjeu 31869 adjval 31870 adj1 31913 adjeq 31915 cnlnssadj 32060 br8d 32591 lt2addrd 32734 xlt2addrd 32742 crngmxidl 33434 constrconj 33758 constrllcllem 33765 constrcccllem 33767 constrcbvlem 33768 measval 34211 tz9.1regs 35130 loop1cycl 35181 br8 35800 br6 35801 br4 35802 brcgr3 36088 brsegle 36150 fvray 36183 linedegen 36185 fvline 36186 poimirlem28 37696 isopos 39227 hlsuprexch 39428 2llnjN 39614 2lplnj 39667 cdlemk42 40988 zindbi 42987 jm2.27 43049 nnoeomeqom 43353 tfsconcatrev 43389 rp-brsslt 43464 stoweidlem43 46089 fourierdlem42 46195 ichexmpl1 47508 vopnbgrel 47893 dfclnbgr6 47895 dfnbgr6 47896 cycl3grtri 47986 grimgrtri 47988 usgrgrtrirex 47989 grlimgrtri 48042 usgrexmpl1tri 48064 sepfsepc 48967 iscnrm3rlem8 48986 iscnrm3llem2 48989 |
| Copyright terms: Public domain | W3C validator |