| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi13d | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3anbi13d | ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | biidd 262 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
| 3 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 4 | 1, 2, 3 | 3anbi123d 1438 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anbi3d 1444 ax12wdemo 2136 f1dom3el3dif 7206 xpord2lem 8075 xpord3lem 8082 frrlem1 8219 frrlem13 8231 cofsmo 10163 axdc3lem3 10346 axdc3lem4 10347 iscatd2 17587 psgnunilem1 19372 nn0gsumfz 19863 opprsubrg 20478 lsspropd 20921 mdetunilem3 22499 mdetunilem9 22505 smadiadetr 22560 lmres 23185 cnhaus 23239 regsep2 23261 dishaus 23267 ordthauslem 23268 nconnsubb 23308 pthaus 23523 txhaus 23532 xkohaus 23538 regr1lem 23624 ustval 24088 methaus 24406 metnrmlem3 24748 pmltpclem1 25347 brsslt 27696 axtgeucl 28417 iscgrad 28756 dfcgra2 28775 f1otrge 28817 axeuclidlem 28907 umgrvad2edg 29158 elwspths2spth 29912 upgr3v3e3cycl 30124 upgr4cycl4dv4e 30129 vdgn1frgrv2 30240 numclwlk1lem1 30313 ex-opab 30376 isnvlem 30554 ajval 30805 adjeu 31833 adjval 31834 adj1 31877 adjeq 31879 cnlnssadj 32024 br8d 32555 lt2addrd 32694 xlt2addrd 32702 crngmxidl 33406 constrconj 33712 constrllcllem 33719 constrcccllem 33721 constrcbvlem 33722 measval 34165 tz9.1regs 35067 loop1cycl 35110 br8 35729 br6 35730 br4 35731 brcgr3 36020 brsegle 36082 fvray 36115 linedegen 36117 fvline 36118 poimirlem28 37628 isopos 39159 hlsuprexch 39360 2llnjN 39546 2lplnj 39599 cdlemk42 40920 zindbi 42919 jm2.27 42981 nnoeomeqom 43285 tfsconcatrev 43321 rp-brsslt 43396 stoweidlem43 46024 fourierdlem42 46130 ichexmpl1 47453 vopnbgrel 47838 dfclnbgr6 47840 dfnbgr6 47841 cycl3grtri 47931 grimgrtri 47933 usgrgrtrirex 47934 grlimgrtri 47987 usgrexmpl1tri 48009 sepfsepc 48912 iscnrm3rlem8 48931 iscnrm3llem2 48934 |
| Copyright terms: Public domain | W3C validator |