Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anbi13d | Structured version Visualization version GIF version |
Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3anbi13d | ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | biidd 261 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
3 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
4 | 1, 2, 3 | 3anbi123d 1434 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3anbi3d 1440 ax12wdemo 2133 f1dom3el3dif 7123 frrlem1 8073 frrlem13 8085 wfrlem1OLD 8110 wfrlem3OLDa 8113 wfrlem15OLD 8125 cofsmo 9956 axdc3lem3 10139 axdc3lem4 10140 iscatd2 17307 psgnunilem1 19016 nn0gsumfz 19500 opprsubrg 19960 lsspropd 20194 mdetunilem3 21671 mdetunilem9 21677 smadiadetr 21732 lmres 22359 cnhaus 22413 regsep2 22435 dishaus 22441 ordthauslem 22442 nconnsubb 22482 pthaus 22697 txhaus 22706 xkohaus 22712 regr1lem 22798 ustval 23262 methaus 23582 metnrmlem3 23930 pmltpclem1 24517 axtgeucl 26737 iscgrad 27076 dfcgra2 27095 f1otrge 27137 axeuclidlem 27233 umgrvad2edg 27483 elwspths2spth 28233 upgr3v3e3cycl 28445 upgr4cycl4dv4e 28450 vdgn1frgrv2 28561 numclwlk1lem1 28634 ex-opab 28697 isnvlem 28873 ajval 29124 adjeu 30152 adjval 30153 adj1 30196 adjeq 30198 cnlnssadj 30343 br8d 30851 lt2addrd 30976 xlt2addrd 30983 measval 32066 loop1cycl 32999 br8 33629 br6 33630 br4 33631 xpord2lem 33716 xpord3lem 33722 brsslt 33907 brcgr3 34275 brsegle 34337 fvray 34370 linedegen 34372 fvline 34373 poimirlem28 35732 isopos 37121 hlsuprexch 37322 2llnjN 37508 2lplnj 37561 cdlemk42 38882 zindbi 40684 jm2.27 40746 stoweidlem43 43474 fourierdlem42 43580 ichexmpl1 44809 sepfsepc 46109 iscnrm3rlem8 46129 iscnrm3llem2 46132 |
Copyright terms: Public domain | W3C validator |