| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi13d | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3anbi13d | ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | biidd 262 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
| 3 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 4 | 1, 2, 3 | 3anbi123d 1438 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anbi3d 1444 ax12wdemo 2136 f1dom3el3dif 7267 xpord2lem 8146 xpord3lem 8153 frrlem1 8290 frrlem13 8302 wfrlem1OLD 8327 wfrlem3OLDa 8330 wfrlem15OLD 8342 cofsmo 10288 axdc3lem3 10471 axdc3lem4 10472 iscatd2 17698 psgnunilem1 19479 nn0gsumfz 19970 opprsubrg 20558 lsspropd 20980 mdetunilem3 22557 mdetunilem9 22563 smadiadetr 22618 lmres 23243 cnhaus 23297 regsep2 23319 dishaus 23325 ordthauslem 23326 nconnsubb 23366 pthaus 23581 txhaus 23590 xkohaus 23596 regr1lem 23682 ustval 24146 methaus 24464 metnrmlem3 24806 pmltpclem1 25406 brsslt 27754 axtgeucl 28456 iscgrad 28795 dfcgra2 28814 f1otrge 28856 axeuclidlem 28946 umgrvad2edg 29197 elwspths2spth 29954 upgr3v3e3cycl 30166 upgr4cycl4dv4e 30171 vdgn1frgrv2 30282 numclwlk1lem1 30355 ex-opab 30418 isnvlem 30596 ajval 30847 adjeu 31875 adjval 31876 adj1 31919 adjeq 31921 cnlnssadj 32066 br8d 32595 lt2addrd 32733 xlt2addrd 32741 crngmxidl 33489 constrconj 33784 constrllcllem 33791 constrcccllem 33793 constrcbvlem 33794 measval 34234 loop1cycl 35164 br8 35778 br6 35779 br4 35780 brcgr3 36069 brsegle 36131 fvray 36164 linedegen 36166 fvline 36167 poimirlem28 37677 isopos 39203 hlsuprexch 39405 2llnjN 39591 2lplnj 39644 cdlemk42 40965 zindbi 42937 jm2.27 42999 nnoeomeqom 43303 tfsconcatrev 43339 rp-brsslt 43414 stoweidlem43 46039 fourierdlem42 46145 ichexmpl1 47450 vopnbgrel 47834 dfclnbgr6 47836 dfnbgr6 47837 cycl3grtri 47926 grimgrtri 47928 usgrgrtrirex 47929 grlimgrtri 47975 usgrexmpl1tri 47996 sepfsepc 48869 iscnrm3rlem8 48888 iscnrm3llem2 48891 |
| Copyright terms: Public domain | W3C validator |