![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi13d | Structured version Visualization version GIF version |
Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3anbi13d | ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | biidd 263 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
3 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
4 | 1, 2, 3 | 3anbi123d 1428 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ w3a 1080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 df-3an 1082 |
This theorem is referenced by: 3anbi3d 1434 ax12wdemo 2106 f1dom3el3dif 6892 wfrlem1 7805 wfrlem3a 7808 wfrlem15 7821 cofsmo 9537 axdc3lem3 9720 axdc3lem4 9721 iscatd2 16781 psgnunilem1 18352 nn0gsumfz 18821 opprsubrg 19246 lsspropd 19479 mdetunilem3 20907 mdetunilem9 20913 smadiadetr 20968 lmres 21592 cnhaus 21646 regsep2 21668 dishaus 21674 ordthauslem 21675 nconnsubb 21715 pthaus 21930 txhaus 21939 xkohaus 21945 regr1lem 22031 ustval 22494 methaus 22813 metnrmlem3 23152 pmltpclem1 23732 axtgeucl 25940 iscgrad 26279 dfcgra2 26298 f1otrge 26341 axeuclidlem 26431 umgrvad2edg 26678 elwspths2spth 27433 upgr3v3e3cycl 27646 upgr4cycl4dv4e 27651 vdgn1frgrv2 27767 numclwlk1lem1 27840 ex-opab 27903 isnvlem 28078 ajval 28329 adjeu 29357 adjval 29358 adj1 29401 adjeq 29403 cnlnssadj 29548 br8d 30051 lt2addrd 30163 xlt2addrd 30170 measval 31074 loop1cycl 31992 br8 32600 br6 32601 br4 32602 frrlem1 32732 frrlem13 32744 brsslt 32863 brcgr3 33116 brsegle 33178 fvray 33211 linedegen 33213 fvline 33214 poimirlem28 34451 isopos 35847 hlsuprexch 36048 2llnjN 36234 2lplnj 36287 cdlemk42 37608 zindbi 39028 jm2.27 39090 stoweidlem43 41870 fourierdlem42 41976 ichexmpl1 43113 |
Copyright terms: Public domain | W3C validator |