![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi13d | Structured version Visualization version GIF version |
Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3anbi13d | ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | biidd 262 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
3 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
4 | 1, 2, 3 | 3anbi123d 1437 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: 3anbi3d 1443 ax12wdemo 2132 f1dom3el3dif 7268 xpord2lem 8128 xpord3lem 8135 frrlem1 8271 frrlem13 8283 wfrlem1OLD 8308 wfrlem3OLDa 8311 wfrlem15OLD 8323 cofsmo 10264 axdc3lem3 10447 axdc3lem4 10448 iscatd2 17625 psgnunilem1 19361 nn0gsumfz 19852 opprsubrg 20340 lsspropd 20628 mdetunilem3 22116 mdetunilem9 22122 smadiadetr 22177 lmres 22804 cnhaus 22858 regsep2 22880 dishaus 22886 ordthauslem 22887 nconnsubb 22927 pthaus 23142 txhaus 23151 xkohaus 23157 regr1lem 23243 ustval 23707 methaus 24029 metnrmlem3 24377 pmltpclem1 24965 brsslt 27287 axtgeucl 27723 iscgrad 28062 dfcgra2 28081 f1otrge 28123 axeuclidlem 28220 umgrvad2edg 28470 elwspths2spth 29221 upgr3v3e3cycl 29433 upgr4cycl4dv4e 29438 vdgn1frgrv2 29549 numclwlk1lem1 29622 ex-opab 29685 isnvlem 29863 ajval 30114 adjeu 31142 adjval 31143 adj1 31186 adjeq 31188 cnlnssadj 31333 br8d 31839 lt2addrd 31964 xlt2addrd 31971 crngmxidl 32585 measval 33196 loop1cycl 34128 br8 34726 br6 34727 br4 34728 brcgr3 35018 brsegle 35080 fvray 35113 linedegen 35115 fvline 35116 poimirlem28 36516 isopos 38050 hlsuprexch 38252 2llnjN 38438 2lplnj 38491 cdlemk42 39812 zindbi 41685 jm2.27 41747 nnoeomeqom 42062 tfsconcatrev 42098 rp-brsslt 42174 stoweidlem43 44759 fourierdlem42 44865 ichexmpl1 46137 sepfsepc 47560 iscnrm3rlem8 47580 iscnrm3llem2 47583 |
Copyright terms: Public domain | W3C validator |