MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc16b Structured version   Visualization version   GIF version

Theorem axc16b 5388
Description: This theorem shows that Axiom ax-c16 38067 is redundant in the presence of Theorem dtruALT2 5369, which states simply that at least two things exist. This justifies the remark at mmzfcnd.html#twoness 5369 (which links to this theorem). (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by NM, 7-Nov-2006.)
Assertion
Ref Expression
axc16b (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem axc16b
StepHypRef Expression
1 dtruALT2 5369 . 2 ¬ ∀𝑥 𝑥 = 𝑦
21pm2.21i 119 1 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-nul 5307  ax-pow 5364
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator