Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eunex | Structured version Visualization version GIF version |
Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by NM, 24-Oct-2010.) (Proof shortened by BJ, 2-Jan-2023.) |
Ref | Expression |
---|---|
eunex | ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dtru 5288 | . . . 4 ⊢ ¬ ∀𝑥 𝑥 = 𝑦 | |
2 | albi 1822 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (∀𝑥𝜑 ↔ ∀𝑥 𝑥 = 𝑦)) | |
3 | 1, 2 | mtbiri 326 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ¬ ∀𝑥𝜑) |
4 | 3 | exlimiv 1934 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ¬ ∀𝑥𝜑) |
5 | eu6 2574 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
6 | exnal 1830 | . 2 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) | |
7 | 4, 5, 6 | 3imtr4i 291 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-nul 5225 ax-pow 5283 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-mo 2540 df-eu 2569 |
This theorem is referenced by: reusv2lem2 5317 neutru 34523 amosym1 34542 alneu 44503 |
Copyright terms: Public domain | W3C validator |