| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eunex | Structured version Visualization version GIF version | ||
| Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by NM, 24-Oct-2010.) (Proof shortened by BJ, 2-Jan-2023.) |
| Ref | Expression |
|---|---|
| eunex | ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dtruALT2 5345 | . . . 4 ⊢ ¬ ∀𝑥 𝑥 = 𝑦 | |
| 2 | albi 1818 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (∀𝑥𝜑 ↔ ∀𝑥 𝑥 = 𝑦)) | |
| 3 | 1, 2 | mtbiri 327 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ¬ ∀𝑥𝜑) |
| 4 | 3 | exlimiv 1930 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ¬ ∀𝑥𝜑) |
| 5 | eu6 2574 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
| 6 | exnal 1827 | . 2 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) | |
| 7 | 4, 5, 6 | 3imtr4i 292 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 ∃!weu 2568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-nul 5281 ax-pow 5340 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-mo 2540 df-eu 2569 |
| This theorem is referenced by: reusv2lem2 5374 neutru 36430 alneu 47120 |
| Copyright terms: Public domain | W3C validator |