![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eunex | Structured version Visualization version GIF version |
Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by NM, 24-Oct-2010.) (Proof shortened by BJ, 2-Jan-2023.) |
Ref | Expression |
---|---|
eunex | ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dtruALT2 5366 | . . . 4 ⊢ ¬ ∀𝑥 𝑥 = 𝑦 | |
2 | albi 1813 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (∀𝑥𝜑 ↔ ∀𝑥 𝑥 = 𝑦)) | |
3 | 1, 2 | mtbiri 326 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ¬ ∀𝑥𝜑) |
4 | 3 | exlimiv 1926 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ¬ ∀𝑥𝜑) |
5 | eu6 2563 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
6 | exnal 1822 | . 2 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) | |
7 | 4, 5, 6 | 3imtr4i 291 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1532 ∃wex 1774 ∃!weu 2557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-nul 5303 ax-pow 5361 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ex 1775 df-nf 1779 df-mo 2529 df-eu 2558 |
This theorem is referenced by: reusv2lem2 5395 neutru 36132 alneu 46773 |
Copyright terms: Public domain | W3C validator |