MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dtruALT Structured version   Visualization version   GIF version

Theorem dtruALT 5343
Description: Alternate proof of dtru 5393 which requires more axioms but is shorter and may be easier to understand.

Assuming that ZF set theory is consistent, we cannot prove this theorem unless we specify that 𝑥 and 𝑦 be distinct. Specifically, Theorem spcev 3565 requires that 𝑥 must not occur in the subexpression ¬ 𝑦 = {∅} in step 4 nor in the subexpression ¬ 𝑦 = ∅ in step 9. The proof verifier will require that 𝑥 and 𝑦 be in a distinct variable group to ensure this. You can check this by deleting the $d statement in set.mm and rerunning the verifier, which will print a detailed explanation of the distinct variable violation. (Contributed by NM, 15-Jul-1994.) (Proof modification is discouraged.) (New usage is discouraged.)

Assertion
Ref Expression
dtruALT ¬ ∀𝑥 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem dtruALT
StepHypRef Expression
1 0inp0 5314 . . . 4 (𝑦 = ∅ → ¬ 𝑦 = {∅})
2 p0ex 5339 . . . . 5 {∅} ∈ V
3 eqeq2 2748 . . . . . 6 (𝑥 = {∅} → (𝑦 = 𝑥𝑦 = {∅}))
43notbid 317 . . . . 5 (𝑥 = {∅} → (¬ 𝑦 = 𝑥 ↔ ¬ 𝑦 = {∅}))
52, 4spcev 3565 . . . 4 𝑦 = {∅} → ∃𝑥 ¬ 𝑦 = 𝑥)
61, 5syl 17 . . 3 (𝑦 = ∅ → ∃𝑥 ¬ 𝑦 = 𝑥)
7 0ex 5264 . . . 4 ∅ ∈ V
8 eqeq2 2748 . . . . 5 (𝑥 = ∅ → (𝑦 = 𝑥𝑦 = ∅))
98notbid 317 . . . 4 (𝑥 = ∅ → (¬ 𝑦 = 𝑥 ↔ ¬ 𝑦 = ∅))
107, 9spcev 3565 . . 3 𝑦 = ∅ → ∃𝑥 ¬ 𝑦 = 𝑥)
116, 10pm2.61i 182 . 2 𝑥 ¬ 𝑦 = 𝑥
12 exnal 1829 . . 3 (∃𝑥 ¬ 𝑦 = 𝑥 ↔ ¬ ∀𝑥 𝑦 = 𝑥)
13 eqcom 2743 . . . 4 (𝑦 = 𝑥𝑥 = 𝑦)
1413albii 1821 . . 3 (∀𝑥 𝑦 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦)
1512, 14xchbinx 333 . 2 (∃𝑥 ¬ 𝑦 = 𝑥 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
1611, 15mpbi 229 1 ¬ ∀𝑥 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1539   = wceq 1541  wex 1781  c0 4282  {csn 4586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2944  df-v 3447  df-dif 3913  df-in 3917  df-ss 3927  df-nul 4283  df-pw 4562  df-sn 4587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator