MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dtruALT Structured version   Visualization version   GIF version

Theorem dtruALT 5311
Description: Alternate proof of dtru 5359 which requires more axioms but is shorter and may be easier to understand.

Assuming that ZF set theory is consistent, we cannot prove this theorem unless we specify that 𝑥 and 𝑦 be distinct. Specifically, Theorem spcev 3545 requires that 𝑥 must not occur in the subexpression ¬ 𝑦 = {∅} in step 4 nor in the subexpression ¬ 𝑦 = ∅ in step 9. The proof verifier will require that 𝑥 and 𝑦 be in a distinct variable group to ensure this. You can check this by deleting the $d statement in set.mm and rerunning the verifier, which will print a detailed explanation of the distinct variable violation. (Contributed by NM, 15-Jul-1994.) (Proof modification is discouraged.) (New usage is discouraged.)

Assertion
Ref Expression
dtruALT ¬ ∀𝑥 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem dtruALT
StepHypRef Expression
1 0inp0 5281 . . . 4 (𝑦 = ∅ → ¬ 𝑦 = {∅})
2 p0ex 5307 . . . . 5 {∅} ∈ V
3 eqeq2 2750 . . . . . 6 (𝑥 = {∅} → (𝑦 = 𝑥𝑦 = {∅}))
43notbid 318 . . . . 5 (𝑥 = {∅} → (¬ 𝑦 = 𝑥 ↔ ¬ 𝑦 = {∅}))
52, 4spcev 3545 . . . 4 𝑦 = {∅} → ∃𝑥 ¬ 𝑦 = 𝑥)
61, 5syl 17 . . 3 (𝑦 = ∅ → ∃𝑥 ¬ 𝑦 = 𝑥)
7 0ex 5231 . . . 4 ∅ ∈ V
8 eqeq2 2750 . . . . 5 (𝑥 = ∅ → (𝑦 = 𝑥𝑦 = ∅))
98notbid 318 . . . 4 (𝑥 = ∅ → (¬ 𝑦 = 𝑥 ↔ ¬ 𝑦 = ∅))
107, 9spcev 3545 . . 3 𝑦 = ∅ → ∃𝑥 ¬ 𝑦 = 𝑥)
116, 10pm2.61i 182 . 2 𝑥 ¬ 𝑦 = 𝑥
12 exnal 1829 . . 3 (∃𝑥 ¬ 𝑦 = 𝑥 ↔ ¬ ∀𝑥 𝑦 = 𝑥)
13 eqcom 2745 . . . 4 (𝑦 = 𝑥𝑥 = 𝑦)
1413albii 1822 . . 3 (∀𝑥 𝑦 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦)
1512, 14xchbinx 334 . 2 (∃𝑥 ¬ 𝑦 = 𝑥 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
1611, 15mpbi 229 1 ¬ ∀𝑥 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1537   = wceq 1539  wex 1782  c0 4256  {csn 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257  df-pw 4535  df-sn 4562
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator