![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dtruALT | Structured version Visualization version GIF version |
Description: Alternate proof of dtru 5456
which requires more axioms but is shorter and
may be easier to understand. Like dtruALT2 5388, it uses ax-pow 5383 rather
than ax-pr 5447.
Assuming that ZF set theory is consistent, we cannot prove this theorem unless we specify that 𝑥 and 𝑦 be distinct. Specifically, Theorem spcev 3619 requires that 𝑥 must not occur in the subexpression ¬ 𝑦 = {∅} in step 4 nor in the subexpression ¬ 𝑦 = ∅ in step 9. The proof verifier will require that 𝑥 and 𝑦 be in a distinct variable group to ensure this. You can check this by deleting the $d statement in set.mm and rerunning the verifier, which will print a detailed explanation of the distinct variable violation. (Contributed by NM, 15-Jul-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dtruALT | ⊢ ¬ ∀𝑥 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0inp0 5377 | . . . 4 ⊢ (𝑦 = ∅ → ¬ 𝑦 = {∅}) | |
2 | p0ex 5402 | . . . . 5 ⊢ {∅} ∈ V | |
3 | eqeq2 2752 | . . . . . 6 ⊢ (𝑥 = {∅} → (𝑦 = 𝑥 ↔ 𝑦 = {∅})) | |
4 | 3 | notbid 318 | . . . . 5 ⊢ (𝑥 = {∅} → (¬ 𝑦 = 𝑥 ↔ ¬ 𝑦 = {∅})) |
5 | 2, 4 | spcev 3619 | . . . 4 ⊢ (¬ 𝑦 = {∅} → ∃𝑥 ¬ 𝑦 = 𝑥) |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝑦 = ∅ → ∃𝑥 ¬ 𝑦 = 𝑥) |
7 | 0ex 5325 | . . . 4 ⊢ ∅ ∈ V | |
8 | eqeq2 2752 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑦 = 𝑥 ↔ 𝑦 = ∅)) | |
9 | 8 | notbid 318 | . . . 4 ⊢ (𝑥 = ∅ → (¬ 𝑦 = 𝑥 ↔ ¬ 𝑦 = ∅)) |
10 | 7, 9 | spcev 3619 | . . 3 ⊢ (¬ 𝑦 = ∅ → ∃𝑥 ¬ 𝑦 = 𝑥) |
11 | 6, 10 | pm2.61i 182 | . 2 ⊢ ∃𝑥 ¬ 𝑦 = 𝑥 |
12 | exnal 1825 | . . 3 ⊢ (∃𝑥 ¬ 𝑦 = 𝑥 ↔ ¬ ∀𝑥 𝑦 = 𝑥) | |
13 | eqcom 2747 | . . . 4 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
14 | 13 | albii 1817 | . . 3 ⊢ (∀𝑥 𝑦 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦) |
15 | 12, 14 | xchbinx 334 | . 2 ⊢ (∃𝑥 ¬ 𝑦 = 𝑥 ↔ ¬ ∀𝑥 𝑥 = 𝑦) |
16 | 11, 15 | mpbi 230 | 1 ⊢ ¬ ∀𝑥 𝑥 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1535 = wceq 1537 ∃wex 1777 ∅c0 4352 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-ss 3993 df-nul 4353 df-pw 4624 df-sn 4649 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |