Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dtruALT | Structured version Visualization version GIF version |
Description: Alternate proof of dtru 5359
which requires more axioms but is shorter and
may be easier to understand.
Assuming that ZF set theory is consistent, we cannot prove this theorem unless we specify that 𝑥 and 𝑦 be distinct. Specifically, Theorem spcev 3545 requires that 𝑥 must not occur in the subexpression ¬ 𝑦 = {∅} in step 4 nor in the subexpression ¬ 𝑦 = ∅ in step 9. The proof verifier will require that 𝑥 and 𝑦 be in a distinct variable group to ensure this. You can check this by deleting the $d statement in set.mm and rerunning the verifier, which will print a detailed explanation of the distinct variable violation. (Contributed by NM, 15-Jul-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dtruALT | ⊢ ¬ ∀𝑥 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0inp0 5281 | . . . 4 ⊢ (𝑦 = ∅ → ¬ 𝑦 = {∅}) | |
2 | p0ex 5307 | . . . . 5 ⊢ {∅} ∈ V | |
3 | eqeq2 2750 | . . . . . 6 ⊢ (𝑥 = {∅} → (𝑦 = 𝑥 ↔ 𝑦 = {∅})) | |
4 | 3 | notbid 318 | . . . . 5 ⊢ (𝑥 = {∅} → (¬ 𝑦 = 𝑥 ↔ ¬ 𝑦 = {∅})) |
5 | 2, 4 | spcev 3545 | . . . 4 ⊢ (¬ 𝑦 = {∅} → ∃𝑥 ¬ 𝑦 = 𝑥) |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝑦 = ∅ → ∃𝑥 ¬ 𝑦 = 𝑥) |
7 | 0ex 5231 | . . . 4 ⊢ ∅ ∈ V | |
8 | eqeq2 2750 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑦 = 𝑥 ↔ 𝑦 = ∅)) | |
9 | 8 | notbid 318 | . . . 4 ⊢ (𝑥 = ∅ → (¬ 𝑦 = 𝑥 ↔ ¬ 𝑦 = ∅)) |
10 | 7, 9 | spcev 3545 | . . 3 ⊢ (¬ 𝑦 = ∅ → ∃𝑥 ¬ 𝑦 = 𝑥) |
11 | 6, 10 | pm2.61i 182 | . 2 ⊢ ∃𝑥 ¬ 𝑦 = 𝑥 |
12 | exnal 1829 | . . 3 ⊢ (∃𝑥 ¬ 𝑦 = 𝑥 ↔ ¬ ∀𝑥 𝑦 = 𝑥) | |
13 | eqcom 2745 | . . . 4 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
14 | 13 | albii 1822 | . . 3 ⊢ (∀𝑥 𝑦 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦) |
15 | 12, 14 | xchbinx 334 | . 2 ⊢ (∃𝑥 ¬ 𝑦 = 𝑥 ↔ ¬ ∀𝑥 𝑥 = 𝑦) |
16 | 11, 15 | mpbi 229 | 1 ⊢ ¬ ∀𝑥 𝑥 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1537 = wceq 1539 ∃wex 1782 ∅c0 4256 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-sn 4562 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |