| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsyl4 | Structured version Visualization version GIF version | ||
| Description: A negated syllogism inference. (Contributed by NM, 15-Feb-1996.) |
| Ref | Expression |
|---|---|
| nsyl4.1 | ⊢ (𝜑 → 𝜓) |
| nsyl4.2 | ⊢ (¬ 𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| nsyl4 | ⊢ (¬ 𝜒 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl4.2 | . . 3 ⊢ (¬ 𝜑 → 𝜒) | |
| 2 | 1 | con1i 147 | . 2 ⊢ (¬ 𝜒 → 𝜑) |
| 3 | nsyl4.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (¬ 𝜒 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: nsyl5 159 pm2.61i 182 axc7 2317 nfunsn 6918 mptrcl 6995 card2on 9568 carden2a 9980 ax10fromc7 38913 axc5c711 38936 axc5c711to11 38939 naecoms-o 38945 axc5c4c711 44425 axc5c4c711to11 44429 afvco2 47205 |
| Copyright terms: Public domain | W3C validator |