Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nsyl4 | Structured version Visualization version GIF version |
Description: A negated syllogism inference. (Contributed by NM, 15-Feb-1996.) |
Ref | Expression |
---|---|
nsyl4.1 | ⊢ (𝜑 → 𝜓) |
nsyl4.2 | ⊢ (¬ 𝜑 → 𝜒) |
Ref | Expression |
---|---|
nsyl4 | ⊢ (¬ 𝜒 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl4.2 | . . 3 ⊢ (¬ 𝜑 → 𝜒) | |
2 | 1 | con1i 147 | . 2 ⊢ (¬ 𝜒 → 𝜑) |
3 | nsyl4.1 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | syl 17 | 1 ⊢ (¬ 𝜒 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: nsyl5 159 pm2.61i 182 axc7 2311 nfunsn 6811 mptrcl 6884 card2on 9313 carden2a 9724 ax10fromc7 36909 axc5c711 36932 axc5c711to11 36935 naecoms-o 36941 axc5c4c711 42019 axc5c4c711to11 42023 afvco2 44668 |
Copyright terms: Public domain | W3C validator |