MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsyl4 Structured version   Visualization version   GIF version

Theorem nsyl4 158
Description: A negated syllogism inference. (Contributed by NM, 15-Feb-1996.)
Hypotheses
Ref Expression
nsyl4.1 (𝜑𝜓)
nsyl4.2 𝜑𝜒)
Assertion
Ref Expression
nsyl4 𝜒𝜓)

Proof of Theorem nsyl4
StepHypRef Expression
1 nsyl4.2 . . 3 𝜑𝜒)
21con1i 147 . 2 𝜒𝜑)
3 nsyl4.1 . 2 (𝜑𝜓)
42, 3syl 17 1 𝜒𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  nsyl5  159  pm2.61i  182  axc7  2311  nfunsn  6811  mptrcl  6884  card2on  9313  carden2a  9724  ax10fromc7  36909  axc5c711  36932  axc5c711to11  36935  naecoms-o  36941  axc5c4c711  42019  axc5c4c711to11  42023  afvco2  44668
  Copyright terms: Public domain W3C validator