![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bibi1d | Structured version Visualization version GIF version |
Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bibi1d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | bibi2d 342 | . 2 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
3 | bicom 222 | . 2 ⊢ ((𝜓 ↔ 𝜃) ↔ (𝜃 ↔ 𝜓)) | |
4 | bicom 222 | . 2 ⊢ ((𝜒 ↔ 𝜃) ↔ (𝜃 ↔ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: bibi12d 345 bibi1 351 biass 384 axextg 2708 axextmo 2710 eqeq1dALT 2738 pm13.183 3666 elabgtOLDOLD 3674 elrab3t 3694 mob 3726 reu6 3735 sbctt 3867 sbcabel 3887 isoeq2 7338 caovcang 7634 domunfican 9359 axacndlem4 10648 axacnd 10650 expeq0 14130 dfrtrclrec2 15094 relexpind 15100 sumodd 16422 prmdvdsexp 16749 isacs 17696 acsfn 17704 tsrlemax 18644 odeq 19583 isslw 19641 isabv 20829 t0sep 23348 xkopt 23679 kqt0lem 23760 r0sep 23772 nrmr0reg 23773 ismet 24349 isxmet 24350 stdbdxmet 24544 xrsxmet 24845 iccpnfcnv 24989 mdegle0 26131 isppw2 27173 tgjustf 28496 eleclclwwlkn 30105 eupth2lem1 30247 hvaddcan 31099 eigre 31864 opsbc2ie 32504 xrge0iifcnv 33894 sgn0bi 34529 signswch 34555 bnj1468 34839 axsepg2 35075 axsepg2ALT 35076 subtr2 36298 nn0prpwlem 36305 nn0prpw 36306 bj-bm1.3ii 37047 dfgcd3 37307 ftc1anclem6 37685 zindbi 42935 expdioph 43012 islssfg2 43060 eliunov2 43669 pm14.122b 44419 elsetpreimafvbi 47316 line2ylem 48601 line2xlem 48603 |
Copyright terms: Public domain | W3C validator |