Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bibi1d | Structured version Visualization version GIF version |
Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bibi1d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | bibi2d 342 | . 2 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
3 | bicom 221 | . 2 ⊢ ((𝜓 ↔ 𝜃) ↔ (𝜃 ↔ 𝜓)) | |
4 | bicom 221 | . 2 ⊢ ((𝜒 ↔ 𝜃) ↔ (𝜃 ↔ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 313 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bibi12d 345 bibi1 351 biass 385 axextg 2711 axextmo 2713 eqeq1dALT 2741 pm13.183 3590 elabgtOLD 3597 elrab3t 3616 mob 3647 reu6 3656 sbctt 3788 sbcabel 3807 isoeq2 7169 caovcang 7451 domunfican 9017 axacndlem4 10297 axacnd 10299 expeq0 13741 dfrtrclrec2 14697 relexpind 14703 sumodd 16025 prmdvdsexp 16348 isacs 17277 acsfn 17285 tsrlemax 18219 odeq 19073 isslw 19128 isabv 19994 t0sep 22383 xkopt 22714 kqt0lem 22795 r0sep 22807 nrmr0reg 22808 ismet 23384 isxmet 23385 stdbdxmet 23577 xrsxmet 23878 iccpnfcnv 24013 mdegle0 25147 isppw2 26169 tgjustf 26738 eleclclwwlkn 28341 eupth2lem1 28483 hvaddcan 29333 eigre 30098 opsbc2ie 30725 xrge0iifcnv 31785 sgn0bi 32414 signswch 32440 bnj1468 32726 subtr2 34431 nn0prpwlem 34438 nn0prpw 34439 bj-bm1.3ii 35162 dfgcd3 35422 ftc1anclem6 35782 zindbi 40684 expdioph 40761 islssfg2 40812 eliunov2 41176 pm14.122b 41930 elsetpreimafvbi 44731 line2ylem 45985 line2xlem 45987 |
Copyright terms: Public domain | W3C validator |