![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bibi1d | Structured version Visualization version GIF version |
Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bibi1d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | bibi2d 343 | . 2 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
3 | bicom 221 | . 2 ⊢ ((𝜓 ↔ 𝜃) ↔ (𝜃 ↔ 𝜓)) | |
4 | bicom 221 | . 2 ⊢ ((𝜒 ↔ 𝜃) ↔ (𝜃 ↔ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bibi12d 346 bibi1 352 biass 386 axextg 2706 axextmo 2708 eqeq1dALT 2736 pm13.183 3657 elabgtOLD 3664 elrab3t 3683 mob 3714 reu6 3723 sbctt 3854 sbcabel 3873 isoeq2 7315 caovcang 7608 domunfican 9320 axacndlem4 10605 axacnd 10607 expeq0 14058 dfrtrclrec2 15005 relexpind 15011 sumodd 16331 prmdvdsexp 16652 isacs 17595 acsfn 17603 tsrlemax 18539 odeq 19418 isslw 19476 isabv 20427 t0sep 22828 xkopt 23159 kqt0lem 23240 r0sep 23252 nrmr0reg 23253 ismet 23829 isxmet 23830 stdbdxmet 24024 xrsxmet 24325 iccpnfcnv 24460 mdegle0 25595 isppw2 26619 tgjustf 27755 eleclclwwlkn 29360 eupth2lem1 29502 hvaddcan 30354 eigre 31119 opsbc2ie 31747 xrge0iifcnv 32944 sgn0bi 33577 signswch 33603 bnj1468 33888 subtr2 35248 nn0prpwlem 35255 nn0prpw 35256 bj-bm1.3ii 35993 dfgcd3 36253 ftc1anclem6 36614 zindbi 41733 expdioph 41810 islssfg2 41861 eliunov2 42478 pm14.122b 43230 elsetpreimafvbi 46107 line2ylem 47485 line2xlem 47487 |
Copyright terms: Public domain | W3C validator |