| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi1d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bibi1d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | bibi2d 342 | . 2 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
| 3 | bicom 222 | . 2 ⊢ ((𝜓 ↔ 𝜃) ↔ (𝜃 ↔ 𝜓)) | |
| 4 | bicom 222 | . 2 ⊢ ((𝜒 ↔ 𝜃) ↔ (𝜃 ↔ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi12d 345 bibi1 351 biass 384 axextg 2709 axextmo 2711 eqeq1dALT 2738 pm13.183 3645 elrab3t 3670 mob 3700 reu6 3709 sbctt 3835 sbcabel 3853 isoeq2 7311 caovcang 7608 caofidlcan 7709 domunfican 9333 axacndlem4 10624 axacnd 10626 expeq0 14110 dfrtrclrec2 15077 relexpind 15083 sumodd 16407 prmdvdsexp 16734 isacs 17663 acsfn 17671 tsrlemax 18596 odeq 19531 isslw 19589 isabv 20771 t0sep 23262 xkopt 23593 kqt0lem 23674 r0sep 23686 nrmr0reg 23687 ismet 24262 isxmet 24263 stdbdxmet 24454 xrsxmet 24749 iccpnfcnv 24893 mdegle0 26034 isppw2 27077 tgjustf 28452 eleclclwwlkn 30057 eupth2lem1 30199 hvaddcan 31051 eigre 31816 opsbc2ie 32457 sgn0bi 32819 xrge0iifcnv 33964 signswch 34593 bnj1468 34877 axsepg2 35113 axsepg2ALT 35114 subtr2 36333 nn0prpwlem 36340 nn0prpw 36341 bj-bm1.3ii 37082 dfgcd3 37342 ftc1anclem6 37722 zindbi 42970 expdioph 43047 islssfg2 43095 eliunov2 43703 pm14.122b 44447 omssaxinf2 45013 permaxrep 45031 permaxsep 45032 permaxinf2lem 45037 elsetpreimafvbi 47405 line2ylem 48731 line2xlem 48733 |
| Copyright terms: Public domain | W3C validator |