| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi1d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bibi1d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | bibi2d 342 | . 2 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
| 3 | bicom 222 | . 2 ⊢ ((𝜓 ↔ 𝜃) ↔ (𝜃 ↔ 𝜓)) | |
| 4 | bicom 222 | . 2 ⊢ ((𝜒 ↔ 𝜃) ↔ (𝜃 ↔ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi12d 345 bibi1 351 biass 384 axextg 2707 axextmo 2709 eqeq1dALT 2736 pm13.183 3617 elrab3t 3642 mob 3672 reu6 3681 sbctt 3807 sbcabel 3825 isoeq2 7258 caovcang 7553 caofidlcan 7654 domunfican 9213 axacndlem4 10508 axacnd 10510 expeq0 14001 dfrtrclrec2 14967 relexpind 14973 sumodd 16301 prmdvdsexp 16628 isacs 17559 acsfn 17567 tsrlemax 18494 odeq 19464 isslw 19522 isabv 20728 t0sep 23240 xkopt 23571 kqt0lem 23652 r0sep 23664 nrmr0reg 23665 ismet 24239 isxmet 24240 stdbdxmet 24431 xrsxmet 24726 iccpnfcnv 24870 mdegle0 26010 isppw2 27053 tgjustf 28452 eleclclwwlkn 30058 eupth2lem1 30200 hvaddcan 31052 eigre 31817 opsbc2ie 32457 sgn0bi 32828 xrge0iifcnv 33967 signswch 34595 bnj1468 34879 axsepg2 35115 axsepg2ALT 35116 subtr2 36380 nn0prpwlem 36387 nn0prpw 36388 bj-bm1.3ii 37129 dfgcd3 37389 ftc1anclem6 37759 zindbi 43064 expdioph 43141 islssfg2 43189 eliunov2 43797 pm14.122b 44541 omssaxinf2 45106 permaxrep 45124 permaxsep 45125 permaxinf2lem 45130 permac8prim 45132 elsetpreimafvbi 47516 line2ylem 48877 line2xlem 48879 |
| Copyright terms: Public domain | W3C validator |