| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi1d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bibi1d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | bibi2d 342 | . 2 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
| 3 | bicom 222 | . 2 ⊢ ((𝜓 ↔ 𝜃) ↔ (𝜃 ↔ 𝜓)) | |
| 4 | bicom 222 | . 2 ⊢ ((𝜒 ↔ 𝜃) ↔ (𝜃 ↔ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi12d 345 bibi1 351 biass 384 axextg 2705 axextmo 2707 eqeq1dALT 2734 pm13.183 3621 elrab3t 3646 mob 3676 reu6 3685 sbctt 3811 sbcabel 3829 isoeq2 7252 caovcang 7547 caofidlcan 7648 domunfican 9206 axacndlem4 10501 axacnd 10503 expeq0 13999 dfrtrclrec2 14965 relexpind 14971 sumodd 16299 prmdvdsexp 16626 isacs 17557 acsfn 17565 tsrlemax 18492 odeq 19463 isslw 19521 isabv 20727 t0sep 23240 xkopt 23571 kqt0lem 23652 r0sep 23664 nrmr0reg 23665 ismet 24239 isxmet 24240 stdbdxmet 24431 xrsxmet 24726 iccpnfcnv 24870 mdegle0 26010 isppw2 27053 tgjustf 28452 eleclclwwlkn 30054 eupth2lem1 30196 hvaddcan 31048 eigre 31813 opsbc2ie 32453 sgn0bi 32821 xrge0iifcnv 33944 signswch 34572 bnj1468 34856 axsepg2 35092 axsepg2ALT 35093 subtr2 36355 nn0prpwlem 36362 nn0prpw 36363 bj-bm1.3ii 37104 dfgcd3 37364 ftc1anclem6 37744 zindbi 42985 expdioph 43062 islssfg2 43110 eliunov2 43718 pm14.122b 44462 omssaxinf2 45027 permaxrep 45045 permaxsep 45046 permaxinf2lem 45051 permac8prim 45053 elsetpreimafvbi 47428 line2ylem 48789 line2xlem 48791 |
| Copyright terms: Public domain | W3C validator |