| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi1d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bibi1d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | bibi2d 342 | . 2 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
| 3 | bicom 222 | . 2 ⊢ ((𝜓 ↔ 𝜃) ↔ (𝜃 ↔ 𝜓)) | |
| 4 | bicom 222 | . 2 ⊢ ((𝜒 ↔ 𝜃) ↔ (𝜃 ↔ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi12d 345 bibi1 351 biass 384 axextg 2703 axextmo 2705 eqeq1dALT 2732 pm13.183 3632 elrab3t 3658 mob 3688 reu6 3697 sbctt 3823 sbcabel 3841 isoeq2 7293 caovcang 7590 caofidlcan 7691 domunfican 9272 axacndlem4 10563 axacnd 10565 expeq0 14057 dfrtrclrec2 15024 relexpind 15030 sumodd 16358 prmdvdsexp 16685 isacs 17612 acsfn 17620 tsrlemax 18545 odeq 19480 isslw 19538 isabv 20720 t0sep 23211 xkopt 23542 kqt0lem 23623 r0sep 23635 nrmr0reg 23636 ismet 24211 isxmet 24212 stdbdxmet 24403 xrsxmet 24698 iccpnfcnv 24842 mdegle0 25982 isppw2 27025 tgjustf 28400 eleclclwwlkn 30005 eupth2lem1 30147 hvaddcan 30999 eigre 31764 opsbc2ie 32405 sgn0bi 32765 xrge0iifcnv 33923 signswch 34552 bnj1468 34836 axsepg2 35072 axsepg2ALT 35073 subtr2 36303 nn0prpwlem 36310 nn0prpw 36311 bj-bm1.3ii 37052 dfgcd3 37312 ftc1anclem6 37692 zindbi 42935 expdioph 43012 islssfg2 43060 eliunov2 43668 pm14.122b 44412 omssaxinf2 44978 permaxrep 44996 permaxsep 44997 permaxinf2lem 45002 permac8prim 45004 elsetpreimafvbi 47392 line2ylem 48740 line2xlem 48742 |
| Copyright terms: Public domain | W3C validator |