| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi1d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bibi1d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | bibi2d 342 | . 2 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
| 3 | bicom 222 | . 2 ⊢ ((𝜓 ↔ 𝜃) ↔ (𝜃 ↔ 𝜓)) | |
| 4 | bicom 222 | . 2 ⊢ ((𝜒 ↔ 𝜃) ↔ (𝜃 ↔ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi12d 345 bibi1 351 biass 384 axextg 2704 axextmo 2706 eqeq1dALT 2733 pm13.183 3635 elrab3t 3661 mob 3691 reu6 3700 sbctt 3826 sbcabel 3844 isoeq2 7296 caovcang 7593 caofidlcan 7694 domunfican 9279 axacndlem4 10570 axacnd 10572 expeq0 14064 dfrtrclrec2 15031 relexpind 15037 sumodd 16365 prmdvdsexp 16692 isacs 17619 acsfn 17627 tsrlemax 18552 odeq 19487 isslw 19545 isabv 20727 t0sep 23218 xkopt 23549 kqt0lem 23630 r0sep 23642 nrmr0reg 23643 ismet 24218 isxmet 24219 stdbdxmet 24410 xrsxmet 24705 iccpnfcnv 24849 mdegle0 25989 isppw2 27032 tgjustf 28407 eleclclwwlkn 30012 eupth2lem1 30154 hvaddcan 31006 eigre 31771 opsbc2ie 32412 sgn0bi 32772 xrge0iifcnv 33930 signswch 34559 bnj1468 34843 axsepg2 35079 axsepg2ALT 35080 subtr2 36310 nn0prpwlem 36317 nn0prpw 36318 bj-bm1.3ii 37059 dfgcd3 37319 ftc1anclem6 37699 zindbi 42942 expdioph 43019 islssfg2 43067 eliunov2 43675 pm14.122b 44419 omssaxinf2 44985 permaxrep 45003 permaxsep 45004 permaxinf2lem 45009 permac8prim 45011 elsetpreimafvbi 47396 line2ylem 48744 line2xlem 48746 |
| Copyright terms: Public domain | W3C validator |