| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi1d | Structured version Visualization version GIF version | ||
| Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bibi1d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | bibi2d 342 | . 2 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
| 3 | bicom 222 | . 2 ⊢ ((𝜓 ↔ 𝜃) ↔ (𝜃 ↔ 𝜓)) | |
| 4 | bicom 222 | . 2 ⊢ ((𝜒 ↔ 𝜃) ↔ (𝜃 ↔ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi12d 345 bibi1 351 biass 384 axextg 2703 axextmo 2705 eqeq1dALT 2732 pm13.183 3623 elrab3t 3649 mob 3679 reu6 3688 sbctt 3814 sbcabel 3832 isoeq2 7259 caovcang 7554 caofidlcan 7655 domunfican 9230 axacndlem4 10523 axacnd 10525 expeq0 14017 dfrtrclrec2 14983 relexpind 14989 sumodd 16317 prmdvdsexp 16644 isacs 17575 acsfn 17583 tsrlemax 18510 odeq 19447 isslw 19505 isabv 20714 t0sep 23227 xkopt 23558 kqt0lem 23639 r0sep 23651 nrmr0reg 23652 ismet 24227 isxmet 24228 stdbdxmet 24419 xrsxmet 24714 iccpnfcnv 24858 mdegle0 25998 isppw2 27041 tgjustf 28436 eleclclwwlkn 30038 eupth2lem1 30180 hvaddcan 31032 eigre 31797 opsbc2ie 32438 sgn0bi 32798 xrge0iifcnv 33902 signswch 34531 bnj1468 34815 axsepg2 35051 axsepg2ALT 35052 subtr2 36291 nn0prpwlem 36298 nn0prpw 36299 bj-bm1.3ii 37040 dfgcd3 37300 ftc1anclem6 37680 zindbi 42922 expdioph 42999 islssfg2 43047 eliunov2 43655 pm14.122b 44399 omssaxinf2 44965 permaxrep 44983 permaxsep 44984 permaxinf2lem 44989 permac8prim 44991 elsetpreimafvbi 47379 line2ylem 48740 line2xlem 48742 |
| Copyright terms: Public domain | W3C validator |