Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bibi1d | Structured version Visualization version GIF version |
Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bibi1d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | bibi2d 346 | . 2 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
3 | bicom 225 | . 2 ⊢ ((𝜓 ↔ 𝜃) ↔ (𝜃 ↔ 𝜓)) | |
4 | bicom 225 | . 2 ⊢ ((𝜒 ↔ 𝜃) ↔ (𝜃 ↔ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 317 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: bibi12d 349 bibi1 355 biass 389 axextg 2712 axextmo 2714 eqeq1dALT 2741 pm13.183 3564 elabgt 3567 elrab3t 3587 mob 3616 reu6 3625 sbctt 3752 sbcabel 3769 csb0 4296 isoeq2 7084 caovcang 7365 domunfican 8865 axacndlem4 10110 axacnd 10112 expeq0 13551 dfrtrclrec2 14507 relexpind 14513 sumodd 15833 prmdvdsexp 16156 isacs 17025 acsfn 17033 tsrlemax 17946 odeq 18796 isslw 18851 isabv 19709 t0sep 22075 xkopt 22406 kqt0lem 22487 r0sep 22499 nrmr0reg 22500 ismet 23076 isxmet 23077 stdbdxmet 23268 xrsxmet 23561 iccpnfcnv 23696 mdegle0 24830 isppw2 25852 tgjustf 26419 eleclclwwlkn 28013 eupth2lem1 28155 hvaddcan 29005 eigre 29770 opsbc2ie 30398 xrge0iifcnv 31455 sgn0bi 32084 signswch 32110 bnj1468 32397 subtr2 34142 nn0prpwlem 34149 nn0prpw 34150 bj-bm1.3ii 34858 dfgcd3 35115 ftc1anclem6 35478 zindbi 40340 expdioph 40417 islssfg2 40468 eliunov2 40833 pm14.122b 41579 elsetpreimafvbi 44377 line2ylem 45631 line2xlem 45633 |
Copyright terms: Public domain | W3C validator |