![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bibi1d | Structured version Visualization version GIF version |
Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bibi1d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | bibi2d 342 | . 2 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
3 | bicom 222 | . 2 ⊢ ((𝜓 ↔ 𝜃) ↔ (𝜃 ↔ 𝜓)) | |
4 | bicom 222 | . 2 ⊢ ((𝜒 ↔ 𝜃) ↔ (𝜃 ↔ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: bibi12d 345 bibi1 351 biass 384 axextg 2713 axextmo 2715 eqeq1dALT 2743 pm13.183 3679 elabgtOLDOLD 3687 elrab3t 3707 mob 3739 reu6 3748 sbctt 3880 sbcabel 3900 isoeq2 7354 caovcang 7651 domunfican 9389 axacndlem4 10679 axacnd 10681 expeq0 14143 dfrtrclrec2 15107 relexpind 15113 sumodd 16436 prmdvdsexp 16762 isacs 17709 acsfn 17717 tsrlemax 18656 odeq 19592 isslw 19650 isabv 20834 t0sep 23353 xkopt 23684 kqt0lem 23765 r0sep 23777 nrmr0reg 23778 ismet 24354 isxmet 24355 stdbdxmet 24549 xrsxmet 24850 iccpnfcnv 24994 mdegle0 26136 isppw2 27176 tgjustf 28499 eleclclwwlkn 30108 eupth2lem1 30250 hvaddcan 31102 eigre 31867 opsbc2ie 32504 xrge0iifcnv 33879 sgn0bi 34512 signswch 34538 bnj1468 34822 axsepg2 35058 axsepg2ALT 35059 subtr2 36281 nn0prpwlem 36288 nn0prpw 36289 bj-bm1.3ii 37030 dfgcd3 37290 ftc1anclem6 37658 zindbi 42903 expdioph 42980 islssfg2 43028 eliunov2 43641 pm14.122b 44392 elsetpreimafvbi 47265 line2ylem 48485 line2xlem 48487 |
Copyright terms: Public domain | W3C validator |