![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bibi1d | Structured version Visualization version GIF version |
Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
imbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bibi1d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | bibi2d 334 | . 2 ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) |
3 | bicom 214 | . 2 ⊢ ((𝜓 ↔ 𝜃) ↔ (𝜃 ↔ 𝜓)) | |
4 | bicom 214 | . 2 ⊢ ((𝜒 ↔ 𝜃) ↔ (𝜃 ↔ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 306 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 |
This theorem is referenced by: bibi12d 337 bibi1 343 biass 376 eubidvOLD 2620 eubidOLDOLD 2627 axext3 2756 axext3ALT 2757 axextmo 2759 bm1.1OLD 2760 eqeq1dALT 2781 pm13.183 3549 pm13.183OLD 3550 elabgt 3553 elrab3t 3571 mob 3600 reu6 3607 sbctt 3718 sbcabel 3734 isoeq2 6840 caovcang 7112 domunfican 8521 axacndlem4 9767 axacnd 9769 expeq0 13208 dfrtrclrec2 14204 relexpind 14211 sumodd 15518 prmdvdsexp 15831 isacs 16697 acsfn 16705 tsrlemax 17606 odeq 18353 isslw 18407 isabv 19211 t0sep 21536 xkopt 21867 kqt0lem 21948 r0sep 21960 nrmr0reg 21961 ismet 22536 isxmet 22537 stdbdxmet 22728 xrsxmet 23020 iccpnfcnv 23151 mdegle0 24274 isppw2 25293 tgjustf 25824 eleclclwwlkn 27474 eupth2lem1 27622 hvaddcan 28499 eigre 29266 xrge0iifcnv 30577 sgn0bi 31208 signswch 31238 bnj1468 31515 subtr2 32898 nn0prpwlem 32905 nn0prpw 32906 bj-axext3 33346 bj-bm1.3ii 33596 dfgcd3 33766 ftc1anclem6 34117 zindbi 38474 expdioph 38553 islssfg2 38604 eliunov2 38932 pm14.122b 39583 line2ylem 43491 line2xlem 43493 |
Copyright terms: Public domain | W3C validator |