| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbbn | Structured version Visualization version GIF version | ||
| Description: Move negation outside of biconditional. Compare Theorem *5.18 of [WhiteheadRussell] p. 124. (Contributed by NM, 27-Jun-2002.) (Proof shortened by Wolf Lammen, 20-Sep-2013.) |
| Ref | Expression |
|---|---|
| nbbn | ⊢ ((¬ 𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xor3 382 | . 2 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)) | |
| 2 | con2bi 353 | . 2 ⊢ ((𝜑 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜑)) | |
| 3 | bicom 222 | . 2 ⊢ ((𝜓 ↔ ¬ 𝜑) ↔ (¬ 𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | 3bitrri 298 | 1 ⊢ ((¬ 𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: biass 384 pclem6 1027 xorass 1515 hadbi 1598 canth 7359 qextltlem 13218 onint1 36467 wl-df3xor2 37487 wl-3xornot1 37498 wl-2xor 37501 notbinot1 38103 notbinot2 38107 onsupmaxb 43263 |
| Copyright terms: Public domain | W3C validator |