Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nbbn | Structured version Visualization version GIF version |
Description: Move negation outside of biconditional. Compare Theorem *5.18 of [WhiteheadRussell] p. 124. (Contributed by NM, 27-Jun-2002.) (Proof shortened by Wolf Lammen, 20-Sep-2013.) |
Ref | Expression |
---|---|
nbbn | ⊢ ((¬ 𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xor3 383 | . 2 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)) | |
2 | con2bi 353 | . 2 ⊢ ((𝜑 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜑)) | |
3 | bicom 221 | . 2 ⊢ ((𝜓 ↔ ¬ 𝜑) ↔ (¬ 𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | 3bitrri 297 | 1 ⊢ ((¬ 𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: biass 385 pclem6 1022 xorass 1508 hadbi 1600 canth 7209 qextltlem 12865 onint1 34565 wl-df3xor2 35567 wl-3xornot1 35578 wl-2xor 35581 notbinot1 36164 notbinot2 36168 |
Copyright terms: Public domain | W3C validator |